Could continuous-cover forestry represent paludiculture in boreal peatland forests?

Raija Laiho, Sakari Sarkkola, Markku Saarinen, Hannu Hökkä, Mika Nieminen, Meeri Pearson, Timo Penttilä, Kari Minkkinen, Paavo Ojanen, Sauli Valkonen et al.
What is paludiculture?

- From Latin palūs ("mire"), "wet cultivation", where "the preservation of peat is always the most important/main objective"
- To produce such crops on peatlands that can be grown under high water-table levels (WT), natural or near-natural of mires
 - Reed, Sphagnum
- Considered so far mostly for rewetted former grasslands and croplands in Central Europe
 - Cultivation of alder (*Alnus glutinosa*) given as a further example, however
Why consider it for peatland forests?

<table>
<thead>
<tr>
<th>Region</th>
<th>Of land area</th>
<th>Peatland</th>
<th></th>
<th>Drained</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
<td>1000 ha</td>
<td>%</td>
</tr>
<tr>
<td>Uusimaa</td>
<td>7</td>
<td>20</td>
<td>47</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Varsinais-Suomi</td>
<td>8</td>
<td>26</td>
<td>62</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Etelä-Karjala</td>
<td>13</td>
<td>9</td>
<td>59</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>Pirkanmaa</td>
<td>14</td>
<td>40</td>
<td>135</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Etelä-Savo</td>
<td>18</td>
<td>51</td>
<td>200</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Satakunta</td>
<td>19</td>
<td>36</td>
<td>113</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Keski-Suomi</td>
<td>20</td>
<td>65</td>
<td>277</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Pohjanmaa</td>
<td>21</td>
<td>43</td>
<td>117</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Pohjois-Savo</td>
<td>21</td>
<td>71</td>
<td>289</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Pohjois-Karjala</td>
<td>29</td>
<td>139</td>
<td>372</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Etelä-Pohjanmaa</td>
<td>30</td>
<td>79</td>
<td>325</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Lappi</td>
<td>36</td>
<td>2475</td>
<td>823</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Keski-Pohjanmaa</td>
<td>38</td>
<td>60</td>
<td>133</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Kainuu</td>
<td>43</td>
<td>351</td>
<td>563</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Pohjois-Pohjanmaa</td>
<td>45</td>
<td>607</td>
<td>1001</td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>

Finland
| Finland | 29 | 4112 | 4650| 53 |
What are the WTs in boreal, undrained peatlands as in Finland?

![Graph showing stand volume and median WT for different site types.]

Stand volume

- V, m³ ha⁻¹
- WT

Open/treed site types
- LhK
- RhK
- MK
- PK
- Kgr
- KR
- IR
- RhSR
- VSR
- TSR
- TR
- RhsN
- RharN
- VSN

Forested site types
- LhK
- RhK
- MK
- PK
- Kgr
- KR
- IR
- RhSR
- VSR
- TSR
- TR
- RhsN
- RharN
- VSN

Median WT, cm
- -40
- -35
- -30
- -25
- -20
- -15
- -10
- -5
- 0
What are the WTs in boreal, forestry-drained peatlands as in Finland?

- Plots from the 8th National Forest Inventory = “regular” forestry-drained sites
- Average frost-free season water table (WT) ranged from ~0 to 80 cm
- WT mostly between 15 and 45 cm – not so different from undrained forested peatlands
Could we have peatland forestry without ditching or ditch network maintenance?

- WTs in drained sites are not so different from undrained forested peatlands in many cases
- Disturbing the soil causes loading of watercourses
- Deeper WTs increase C loss from soil
- Ditching, DNM, artificial regeneration = costs
- No clear-cuts, no DNM – system representing paludiculture in forestry?
Why ditch?

• Ditching with 1-m deep ditches in wet sites usually resulted in an initial lowering of the WT of 10-20 cm
 – Low hydraulic conductivity, subsidence of the surface
• This is enough for the (shrub and) tree stand to start to develop (Laiho et al. 2003, Holmgren et al. 2015)
Why ditch?

• Ditching with 1-m deep ditches in wet sites usually resulted in an initial lowering of the WT of 10-20 cm
 – Low hydraulic conductivity, subsidence of the surface
• This is enough for the (shrub and) tree stand to start to develop (Laiho et al. 2003, Holmgren et al. 2015)
• Raised WTs may still kill young seedlings; ditches prevent that
• Continued stand development contributes to drainage through rain interception and evapotranspiration
• Ditches may become unnecessary, at least temporarily:
How tree stand size affects WT (here late summer WT)

- Stand volume the strongest single expl. variable
- Strongest influence btw 10-100 m³ ha⁻¹
Weather conditions obviously play a role

Extremely wet summer, Ps 120 mm
Mean summer Ps: 75 mm in southern, 65 mm in northern Finland
Dry summer, Ps 40 mm
The role of ditch network maintenance in established stands

- DNM increases stand growth when WT is higher than 35–40 cm below the soil surface (Sarkkola et al. 2012)
- DNM has highest growth response in stands where WT is higher than 25–30 cm
- Ditches are more needed in northern Finland due to lower evapotranspiration than in the south

\[
y = 5.2314 + \frac{103.5916}{1 + e^{-(x-25.1573)/4.6817}}
\]

\[r^2 = 0.651\]
The idea of continuous-cover forestry on peatlands

- With selective cutting cycles maintaining the tree stand volume at 100-200 m3ha$^{-1}$, could we have a system where the WT remains at or just slightly lower than 30-40 cm, and the stand regenerates continuously?
 - No artificial regeneration, no soil preparation
 - No ditch network maintenance
 - No or low CH$_4$ emissions
 - Maintained soil C storage
 - = lower costs, lower environmental detriments
- Resembles the most productive undrained forested peatlands
- No real data to support this so far
- Experiments with varying levels of retained stand on-going
Shift into CCF

Multia, Havusuo
Ruutu 2

Number of stems

Stem diameter at 1.3 m, cm

Initial stand

© Natural Resources Institute Finland
Shift into CCF

Multia, Havusuo
Ruutu 2

Number of stems vs. Stem diameter at 1.3 m, cm
Shift into CCF

Multia, Havusuo
Ruutu 3

Number of stems

Stem diameter at 1.3 m, cm

Initial stand
Shift into CCF

Multia, Havusuo
Ruutu 3

Number of stems

Stem diameter at 1.3 m, cm

Retained stand
Risks

• If the retained stand is too small to keep the WT down, especially during wet summers, the stand may die
• WT up =>
 – Artificial regeneration, soil preparation, drainage needed to get back to forestry use
 – Loading of watercourses
• Storm damages?
• Wetter soils – problems for harvesting when no soil frost
• Root rot (*Heterobasidion*) spreading to/in peatland forests with frequent (no-frost) harvests?
References

