The future of the Arctic

In September 2012, Arctic sea ice cover declined to a record low, over 3 million square kilometers below the long-term average for the month. Photo: IIASA Newsletter

IIASA researchers and Finnish policymakers and scientists met in May to outline a new research agenda addressing the challenges facing the Arctic region.

The seminar, jointly organized by IIASA, The Finnish Prime Minister’s Office, and the Academy of Finland, brought together stakeholders to share views, discuss and clarify the kind of Arctic research that is most needed to help guide the region through an uncertain future. Prof Markku Kulmala took part in the meeting, giving a Finnish view on climate change issues. Other speakers included Prof Pavel Kabat, Director of the International Institute for Applied Systems Analysis IIASA, Austria; Ambassador Hannu Halinen, Arctic Affairs at the Finnish Ministry for Foreign Affairs; Minister Counsellor, Deputy Head of Mission, Ulrik Tideström, Embassy of Sweden in Helsinki; Special Adviser Christine Daae Olseng, Coordinator for the Polar Research Programme, the Research Council of Norway; Senior Vice President and Chief Techology Officer Kari Knuutila, Outotec Oyj, Finland; Director Teija Tiilikainen, Finnish Institute of International Affairs, Finland; and Dr., Researcher Seija Tuulentie, Finnish Forest Research Institute.

“The meeting was an important step in establishing a real, efficient and useful dialogue between policy makers and scientists. Our Division is involved in many such efforts because we find it is in the best interest of society in every respect”, says Prof Kulmala.

Climate change has hit the Arctic region harder than any location on Earth. Over the last 30 years, the sea ice that covers the Arctic Ocean has declined by over 40% in summer, opening up new routes for shipping and making oil extraction and fishing more feasible in previously impassable waters. In the same time period, average temperatures have risen twice as fast in the Arctic as in lower latitudes. The resulting thawing of permafrost can undermine infrastructure, and the climate shifts may disrupt marine and terrestrial ecosystems, as well as the cultures that depend on them.

These changes open up new economic opportunities for resource extraction, shipping, and tourism in Arctic countries, but also pose many new questions about how to guide sustainable economic development and avoid environmental damage.

IIASA researchers focus on many issues relevant to the Arctic, including energy resources, air quality, and fisheries. The Institute also integrates scientific analyses into the assessment of policy options and future scenarios, a function that could be vital in the rapidly changing region, which is becoming ever more important on the global economic and geopolitical stage.

The meeting was webcast. For more information, visit the Academy of Finland Web site: http://www.aka.fi/arctic2013.

Tanja Suni
Adapted from IIASA Newsletter, Issue 14, June 2013

The added value of our Centre of Excellence to society

Image: http://www.iass-potsdam.de

The FCoE has had a major input in land-atmosphere research on many levels and in various disciplines, such as the exchange of trace gases and aerosol particles between forests/lakes/wetlands and the atmosphere, micrometeorology, theoretical and empirical aerosol dynamics, and observations and modelling of all these in many different climatic zones from the tropics to the Arctic.

However, the effect of the FCoE does not end there; the research conducted in Kumpula and in Viikki contributes significantly to socioeconomic issues related to global sustainability and land-atmosphere-society interactions as well. Research programmes such as PEEX (Pan-Eurasian EXperiment), iLEAPS (Integrated Land-Ecosystems – Atmosphere Processes Study), and HENVI Forests and Climate Change concentrate on the effects of climate change on the environment and agriculture, forestry, energy consumption, urban planning, and extreme events. The FCoE is equipped to deal especially with questions such as sustainable managed environments and the mixed anthropogenic (sulphur and nitrogen) and biogenic (BVOCs) input to cloud and aerosol processes. The FCoE research is applied to socioeconomic issues also via the National Climate Panel chaired by Prof Kulmala; via the FCoE’s membership of the Forum of Environmental Information that produces scientific information for policy-making; and via Future Earth, the international initiative on global sustainability led by ICSU, ISSC, and UN. Yet another new avenue is opening this year, when the FCoE begins to steer the Finnish global change research towards global sustainability science co-designed by funders, scientists, and policy-makers: Prof Markku Kulmala has been elected to chair the new Finnish Global Change National Committee that will lead this development; Tanja Suni is also involved in the Committee as a Global Environmental Change programme expert.

As a major player in all these organisations, the FCoE will add value to the research conducted by its members also by advancing major global observation infrastructures such as the SMEAR and ICOS networks where the FCoE has a leading coordinative and research role; finally, the uniquely multidisciplinary composition of the group also allows a systems approach to land-atmosphere interactions from soil to vegetation and to atmospheric chemistry and cloud processes.

Tanja Suni
iLEAPS Executive Officer

 

Are diesel engines the answer in mitigating traffic emissions?

Photo: Antti Mannermaa in Tekniikka & Talous

Diesel engines are amongst the largest emission sources in urban air. The emissions consist of soot particles of about 40-80 nm in diameter. The engines emit also nanoparticles at less than 20 nm or so in diameter, consisting of various hydrocarbons and possibly also sulphur (in case of sulphur-containing fuel).

Why is it so attractive to switch to diesel instead of a less emitting gasoline engine? The answer is in fuel economy. In Finland, the national policy towards the diesel fleet has changed over the last couple of years. Today the price per liter is almost equal for both diesel and E10 gasoline. The owner of the diesel car needs to pay a monthly tax, and the savings must come from the more economical engine.

The emissions of diesel engines are rather well know and there is a continuous effort to limit the emissions even more. In 2013, the new EURO VI limits for heavy-duty vehicles will be 0.01 g/kWh for PM (particulate matter) and 0.4 g/kWh for NOx. If you compare these to the EURO I values just 20 years ago the change is dramatic: EURO I for PM was 0.36 g/kWh and for NOx 8 g/kWh. Unfortunately, the diesel engines tend to be strong and last forever, so we have to wait for a while until the fleet has majority of EURO VI level engines.

In order to cut down the emissions to EURO VI level, changes in engine technology alone will not be sufficient. This emphasises the importance of the after-treatment of the exhaust gases. Several different types of catalysts and filters exist. How well do these work? What is their efficiency? Answering these questions requires intensive research.

What makes the development towards lower emissions even more challenging is the need to consider also the effects of new type of fuels. It is possible to produce diesel fuel from biomass-based renewable energy sources, and research towards this goal is already going on. These new-generation fuels aim for a lower CO2 footprint.

I am acting as an opponent for a recent PhD thesis from Tampere Technical University that has focused on all of these aspects in a wide set of experiments. The overall message of the thesis is clear: with new technology, one can fight against particle and gaseous emissions successfully together with lower greenhouse gas emissions.

By Prof Kaarle Hämeri (aerosol physics, Division of Atmospheric Sciences)

See original blog post at http://hameri.blogspot.fi. The link for the press release of the thesis work can be found here in Finnish.

When money and climate put pressure on Finnish forests

Climate change is evident and we will expect that the Finnish forests will look different in the future because of increasing temperature and change in precipitation. However, forest management will also have to adapt to financial pressure. Pushed by both these drivers, forest owners will have to change their management practices by, for instance, changing the rotation period (the lifetime of the forest from planting to harvesting), the planted tree species, and the drainage of peatlands. Changing these parameters will again feed back on the climate. “Also, Finnish people have a strong connection with forests; changing the way they look or the way they can be used will stir people’s emotions. This, in turn, affects the willingness to change forest practices”, says Ditte Mogensen who is working on this multidisciplinary problem in the iLEAPS-HENVI project “Optimizing forest management and conservation to account for multiple interactions with the climate“. Other FCoE people taking part in this project include Eero Nikinmaa and Jaana Bäck from Forest Ecology, Michael Boy from our Division, and Ari Laaksonen from FMI.

The research program will, for the first time, analyze jointly all potentially important climate change impacts of forestry. Tradeoffs between the different climate change impacts and interactions between climate change mitigation and other forest uses will be analyzed. The research results have high relevancy for policy makers as we will analyse the full effects of forest management on climate change, tradeoffs between climate change mitigation and other forest services, as well as the social acceptability of climate change mitigation in the forestry.

The study is a collaborative effort between University of Helsinki department of Forest Sciences, and division of Atmospheric Sciences of department of Physics and the faculty of Social Sciences, the Finnish Forest Research institute and the Finnish Meteorological Institute.

Website of HENVI (Helsinki University Centre for Environment)

Website of iLEAPS (Integrated Land Ecosystem – Atmosphere Processes Study)

Photo of Ditte by Jari Juslin.