
COLUMN ORIENTED
COMPILATION OF VARIANT
TABLES
Albert Haag
SAP SE, Germany
(partial-retirement)
email: albert.haag@t-online.de

Disclaimer:
All work on my papers “Arc Consistency with Negative Variant Table” and
“Column Oriented Compilation of Variant Tables” was performed privately
during the last two years after transition into partial retirement.

It and the accompanying implementation are neither endorsed by SAP nor
do they reflect ongoing SAP development.

Notwithstanding:
The motivation for this work lies in my past at SAP and is based on
insights and experiences with the SAP product configurators. The
terminology follows that used in conjunction with the SAP Variant
Configurator and originates from roots in the manufacture of „variants“.

See paper(s) for references

Variant Table (VTAB)
• Originally, list of product

variants

Variant Table (VTAB)
• Originally, list of product

variants
• Example product: T-Shirt

Color 	
 	
 Size 	
 Print

Black Small 	
 MIB (Men in Black)

Black Medium MIB

Black Large MIB

Black Medium STW	
 (Save	
 the	
 Whales)

Black Large STW

Red Medium STW

Red Large STW

White Medium STW

White Large STW

Blue Medium STW

Blue Large STW

Variant Table (VTAB)
• Originally, list of product

variants
• Example product: T-Shirt

• 4 colors, 3 sizes, 2 prints
• 24 possible variants
• 11 legal ones listed in VTAB
• Others illegal

Color 	
 	
 Size 	
 Print

Black Small 	
 MIB (Men in Black)

Black Medium MIB

Black Large MIB

Black Medium STW	
 (Save	
 the	
 Whales)

Black Large STW

Red Medium STW

Red Large STW

White Medium STW

White Large STW

Blue Medium STW

Blue Large STW

Variant Table (VTAB)
• Originally, list of product

variants
• Example product: T-Shirt

• 4 colors, 3 sizes, 2 prints
• 24 possible variants
• 11 legal ones listed in VTAB
• Others illegal

• More generally, list of allowed
combinations of product
properties in tabular form

Color 	
 	
 Size 	
 Print

Black Small 	
 MIB (Men in Black)

Black Medium MIB

Black Large MIB

Black Medium STW	
 (Save	
 the	
 Whales)

Black Large STW

Red Medium STW

Red Large STW

White Medium STW

White Large STW

Blue Medium STW

Blue Large STW

Variant Table (VTAB)
• Originally, list of product

variants
• Example product: T-Shirt

• 4 colors, 3 sizes, 2 prints
• 24 possible variants
• 11 legal ones listed in VTAB
• Others illegal

• More generally, list of allowed
combinations of product
properties in tabular form

• Used in configuration
• Primarily for arc-consistency

(GAC)

Color 	
 	
 Size 	
 Print

Black Small 	
 MIB (Men in Black)

Black Medium MIB

Black Large MIB

Black Medium STW	
 (Save	
 the	
 Whales)

Black Large STW

Red Medium STW

Red Large STW

White Medium STW

White Large STW

Blue Medium STW

Blue Large STW

Variant Table (VTAB)
• Originally, list of product

variants
• Example product: T-Shirt

• 4 colors, 3 sizes, 2 prints
• 24 possible variants
• 11 legal ones listed in VTAB
• Others illegal

• More generally, list of allowed
combinations of product
properties in tabular form

• Used in configuration
• Primarily for arc-consistency

(GAC)
• As a database table (e.g. pricing)

Color 	
 	
 Size 	
 Print

Black Small 	
 MIB (Men in Black)

Black Medium MIB

Black Large MIB

Black Medium STW	
 (Save	
 the	
 Whales)

Black Large STW

Red Medium STW

Red Large STW

White Medium STW

White Large STW

Blue Medium STW

Blue Large STW

VTAB Maintenance (Modeling)
• VTAB maintenance distinct/separate from rest of

configuration model

VTAB Maintenance (Modeling)
• VTAB maintenance distinct/separate from rest of

configuration model
• Different skill-set needed (easier)

VTAB Maintenance (Modeling)
• VTAB maintenance distinct/separate from rest of

configuration model
• Different skill-set needed (easier)
• Different update cycle

VTAB Maintenance (Modeling)
• VTAB maintenance distinct/separate from rest of

configuration model
• Different skill-set needed (easier)
• Different update cycle
• Different knowledge sourcing

VTAB Maintenance (Modeling)
• VTAB maintenance distinct/separate from rest of

configuration model
• Different skill-set needed (easier)
• Different update cycle
• Different knowledge sourcing
• Database-like

VTAB Maintenance (Modeling)
• VTAB maintenance distinct/separate from rest of

configuration model
• Different skill-set needed (easier)
• Different update cycle
• Different knowledge sourcing
• Database-like

• VTAB changes can occur any time (typically daily)

VTAB Maintenance (Modeling)
• VTAB maintenance distinct/separate from rest of

configuration model
• Different skill-set needed (easier)
• Different update cycle
• Different knowledge sourcing
• Database-like

• VTAB changes can occur any time (typically daily)

Configurator with
Product Model 2

VTAB
Content

Configurator with
Product Model 1

What is Needed During Configuration

5

What is Needed During Configuration
Fast “easy to read” queries of individual
VTABs

5

What is Needed During Configuration
Fast “easy to read” queries of individual
VTABs

 In particular, support for arc-consistency
(GAC algorithm)

5

What is Needed During Configuration
Fast “easy to read” queries of individual
VTABs

 In particular, support for arc-consistency
(GAC algorithm)
• We want to “filter out” any values from any given domains

that are not supported by a tuple in the VTAB

5

Known Approaches

6

Known Approaches
• VTABs in databases

• Relational database
• Column Oriented Databases

6

Known Approaches
• VTABs in databases

• Relational database
• Column Oriented Databases

• Decision diagrams: BDD/MDD/… [Knuth, Andersen et al.]

6

Known Approaches
• VTABs in databases

• Relational database
• Column Oriented Databases

• Decision diagrams: BDD/MDD/… [Knuth, Andersen et al.]
• Compression of VTABs into a small number of Cartesian

products/cuboids, which I call c-tuples following
[Katsirelos/Walsh]

6

My Approach

7

My Approach
• Experimented with BDD approach using JavaBDD but ran

into issues
• Tool complex and tool not completely suited to task at hand
• Missing natural heuristics as starting point

7

My Approach
• Experimented with BDD approach using JavaBDD but ran

into issues
• Tool complex and tool not completely suited to task at hand
• Missing natural heuristics as starting point

• Then explored a simple recursive VTAB decomposition
• Yields a directed acyclic graph (DAG) which I call a Variant

Decomposition Diagram (VDD)
• Overriding development goals:

• “Easy to implement”
• fast lean development

7

	
 Print 	
 	
 Size Color

MIB Large Black

MIB Medium Black

MIB Small Black

STW Large Black

STW Large Blue

STW Large Red

STW Large White

STW Medium Black

STW Medium Blue

STW Medium Red

STW Medium White

Main Ideas of Decomposing a VTAB T

Columns reordered for ease of depiction:
3, 2, 1

	
 Print 	
 	
 Size Color

MIB Large Black

MIB Medium Black

MIB Small Black

STW Large Black

STW Large Blue

STW Large Red

STW Large White

STW Medium Black

STW Medium Blue

STW Medium Red

STW Medium White

Main Ideas of Decomposing a VTAB T
• Pick a value x in a column (j)

Columns reordered for ease of depiction:
3, 2, 1

	
 Print 	
 	
 Size Color

MIB Large Black

MIB Medium Black

MIB Small Black

STW Large Black

STW Large Blue

STW Large Red

STW Large White

STW Medium Black

STW Medium Blue

STW Medium Red

STW Medium White

Main Ideas of Decomposing a VTAB T
• Pick a value x in a column (j)

• e.g., MIB in column 3

Columns reordered for ease of depiction:
3, 2, 1

	
 Print 	
 	
 Size Color

MIB Large Black

MIB Medium Black

MIB Small Black

STW Large Black

STW Large Blue

STW Large Red

STW Large White

STW Medium Black

STW Medium Blue

STW Medium Red

STW Medium White

Main Ideas of Decomposing a VTAB T
• Pick a value x in a column (j)

• e.g., MIB in column 3

Columns reordered for ease of depiction:
3, 2, 1

	
 Print 	
 	
 Size Color

MIB Large Black

MIB Medium Black

MIB Small Black

STW Large Black

STW Large Blue

STW Large Red

STW Large White

STW Medium Black

STW Medium Blue

STW Medium Red

STW Medium White

Main Ideas of Decomposing a VTAB T
• Pick a value x in a column (j)

• e.g., MIB in column 3

• x decomposes T into three
parts

Columns reordered for ease of depiction:
3, 2, 1

	
 Print 	
 	
 Size Color

MIB Large Black

MIB Medium Black

MIB Small Black

STW Large Black

STW Large Blue

STW Large Red

STW Large White

STW Medium Black

STW Medium Blue

STW Medium Red

STW Medium White

Main Ideas of Decomposing a VTAB T
• Pick a value x in a column (j)

• e.g., MIB in column 3

• x decomposes T into three
parts

• B(T,j,x): the cells in column j
containing the value x

Columns reordered for ease of depiction:
3, 2, 1

	
 Print 	
 	
 Size Color

MIB Large Black

MIB Medium Black

MIB Small Black

STW Large Black

STW Large Blue

STW Large Red

STW Large White

STW Medium Black

STW Medium Blue

STW Medium Red

STW Medium White

Main Ideas of Decomposing a VTAB T
• Pick a value x in a column (j)

• e.g., MIB in column 3

• x decomposes T into three
parts

• B(T,j,x): the cells in column j
containing the value x

• L(T,j,x): the rows in T that don’t
have value x in column j

Columns reordered for ease of depiction:
3, 2, 1

	
 Print 	
 	
 Size Color

MIB Large Black

MIB Medium Black

MIB Small Black

STW Large Black

STW Large Blue

STW Large Red

STW Large White

STW Medium Black

STW Medium Blue

STW Medium Red

STW Medium White

Main Ideas of Decomposing a VTAB T
• Pick a value x in a column (j)

• e.g., MIB in column 3

• x decomposes T into three
parts

• B(T,j,x): the cells in column j
containing the value x

• L(T,j,x): the rows in T that don’t
have value x in column j

• R(T,j,x): rest after removing
L(T,j,x) and B(T,j,x)

Columns reordered for ease of depiction:
3, 2, 1

	
 Print 	
 	
 Size Color

MIB Large Black

MIB Medium Black

MIB Small Black

STW Large Black

STW Large Blue

STW Large Red

STW Large White

STW Medium Black

STW Medium Blue

STW Medium Red

STW Medium White

Main Ideas of Decomposing a VTAB T
• Pick a value x in a column (j)

• e.g., MIB in column 3

• x decomposes T into three
parts

• B(T,j,x): the cells in column j
containing the value x

• L(T,j,x): the rows in T that don’t
have value x in column j

• R(T,j,x): rest after removing
L(T,j,x) and B(T,j,x)

• L(T,j,x) and R(T,j,x) in turn can
be decomposed further

Columns reordered for ease of depiction:
3, 2, 1

Basic Graph Structure of a VDD
(Variant Decomposition Diagram)

B(T,j,x)

Left child: L(T,j, x) Right child: R(T,j,x)

⊥ ⊤

Basic Graph Structure of a VDD
(Variant Decomposition Diagram)

• A root node represents all of T
(here labeled B(T,j,x))

B(T,j,x)

Left child: L(T,j, x) Right child: R(T,j,x)

⊥ ⊤

Basic Graph Structure of a VDD
(Variant Decomposition Diagram)

• A root node represents all of T
(here labeled B(T,j,x))

• A LO link (dotted line) points to a
node representing L(T,j,x) (vj ≠ x)

B(T,j,x)

Left child: L(T,j, x) Right child: R(T,j,x)

⊥ ⊤

Basic Graph Structure of a VDD
(Variant Decomposition Diagram)

• A root node represents all of T
(here labeled B(T,j,x))

• A LO link (dotted line) points to a
node representing L(T,j,x) (vj ≠ x)

• A HI link (filled line) points to a
node representing R(T,j,x) (vj = x)

B(T,j,x)

Left child: L(T,j, x) Right child: R(T,j,x)

⊥ ⊤

Basic Graph Structure of a VDD
(Variant Decomposition Diagram)

• A root node represents all of T
(here labeled B(T,j,x))

• A LO link (dotted line) points to a
node representing L(T,j,x) (vj ≠ x)

• A HI link (filled line) points to a
node representing R(T,j,x) (vj = x)

• Terminal nodes (sinks)
• An empty L(⦁,j,x) is represented by

the predefined sink (node) ⊥ (FALSE)
• An empty R(⦁,j,x) is represented by

the predefined sink (node) ⊤ (TRUE)

B(T,j,x)

Left child: L(T,j, x) Right child: R(T,j,x)

⊥ ⊤

One VDD of VTAB T-Shirt

One VDD of VTAB T-Shirt
• Node label <(j, x)>

One VDD of VTAB T-Shirt
• Node label <(j, x)>
• Nodes for identical

subtables (circled) are
represented only
once

One VDD of VTAB T-Shirt
• Node label <(j, x)>
• Nodes for identical

subtables (circled) are
represented only
once

• Results in a DAG
(usually not a tree)

One VDD of VTAB T-Shirt
• Node label <(j, x)>
• Nodes for identical

subtables (circled) are
represented only
once

• Results in a DAG
(usually not a tree)

• With care could be
interpreted as a ZDD
(Zero-Supressed-DD)
[Knuth]

Two Implemented Heuristics: h1 and h2

Two Implemented Heuristics: h1 and h2

h1 is a classical heuristic:

Two Implemented Heuristics: h1 and h2

h1 is a classical heuristic:
Calculates an estimated “utility” of all possible
next choices of x and chooses a “best” one

Two Implemented Heuristics: h1 and h2

h1 is a classical heuristic:
Calculates an estimated “utility” of all possible
next choices of x and chooses a “best” one

h2 is very simple:

Two Implemented Heuristics: h1 and h2

h1 is a classical heuristic:
Calculates an estimated “utility” of all possible
next choices of x and chooses a “best” one

h2 is very simple:
Choose first value in first column at each step

Two Implemented Heuristics: h1 and h2

h1 is a classical heuristic:
Calculates an estimated “utility” of all possible
next choices of x and chooses a “best” one

h2 is very simple:
Choose first value in first column at each step

• Assumes VTAB is sorted

Two Implemented Heuristics: h1 and h2

h1 is a classical heuristic:
Calculates an estimated “utility” of all possible
next choices of x and chooses a “best” one

h2 is very simple:
Choose first value in first column at each step

• Assumes VTAB is sorted
• My results are obtained with also sorting the columns by

number of distinct occurring values (row with most values
last − Print, Size, Color in t-shirt example)

T-Shirt: VDDs for Heuristics h1 and h2

T-Shirt: VDDs for Heuristics h1 and h2

h1: 16 nodes h2: 12 nodes

Comparison of Heuristics h1 and h2

Comparison of Heuristics h1 and h2

• Test bed: 238 “real” customer VTABs

Comparison of Heuristics h1 and h2

• Test bed: 238 “real” customer VTABs
• h2 outperforms h1 in most (but not all) cases

Comparison of Heuristics h1 and h2

• Test bed: 238 “real” customer VTABs
• h2 outperforms h1 in most (but not all) cases
• Compilation of largest VTAB takes

• 20 min for h1

• 0.6 sec for h2

Comparison of Heuristics h1 and h2

• Test bed: 238 “real” customer VTABs
• h2 outperforms h1 in most (but not all) cases
• Compilation of largest VTAB takes

• 20 min for h1

• 0.6 sec for h2

• Overall h2 clearly outperforms h1

Set-labeled Nodes

Set-labeled Nodes
• SAP Variant Configurator allows VTABs with real-valued

continuous intervals in cells

Set-labeled Nodes
• SAP Variant Configurator allows VTABs with real-valued

continuous intervals in cells
• Therefore, my implementation provides for set-valued nodes

representing a disjunction (any value in set is possible)

Set-labeled Nodes
• SAP Variant Configurator allows VTABs with real-valued

continuous intervals in cells
• Therefore, my implementation provides for set-valued nodes

representing a disjunction (any value in set is possible)
• Includes real-valued continuous intervals

Set-labeled Nodes
• SAP Variant Configurator allows VTABs with real-valued

continuous intervals in cells
• Therefore, my implementation provides for set-valued nodes

representing a disjunction (any value in set is possible)
• Includes real-valued continuous intervals
• But, in particular, allow nodes labeled with discrete sets

h2*: h2 with Merging of Nodes

h2*: h2 with Merging of Nodes
• Idea: Merge nodes

representing a disjunction
into one set-labeled node

h2*: h2 with Merging of Nodes
• Idea: Merge nodes

representing a disjunction
into one set-labeled node

• Column order plays a role

h2*: h2 with Merging of Nodes
• Idea: Merge nodes

representing a disjunction
into one set-labeled node

• Column order plays a role
• I refer to h2 with the stated

column order heuristic and
merging as h2

*

h2*: h2 with Merging of Nodes
• Idea: Merge nodes

representing a disjunction
into one set-labeled node

• Column order plays a role
• I refer to h2 with the stated

column order heuristic and
merging as h2

*

• The results from querying a
VDD may now be c-tuples. A
final additional intersection
with given a given run-time
restriction R is needed

Visual Comparison of h2
* and MDD for the T-shirt

Visual Comparison of h2
* and MDD for the T-shirt

VDD for t-shirt for h2*

Visual Comparison of h2
* and MDD for the T-shirt

VDD for t-shirt for h2*

MDD for t-shirt [Andersen et al.]
(same number of nodes)

Statistical Characteristics of Test Bed —
238 “Real” VTABs

Statistical Characteristics of Test Bed —
238 “Real” VTABs
• Arity

• Maximum: 16
• Average : 4.29

Statistical Characteristics of Test Bed —
238 “Real” VTABs
• Arity

• Maximum: 16
• Average : 4.29

• Size (cells)
• Maximum: 213,720
• Average : 1,591

Statistical Characteristics of Test Bed —
238 “Real” VTABs
• Arity

• Maximum: 16
• Average : 4.29

• Size (cells)
• Maximum: 213,720
• Average : 1,591

• Number of distinct values (s)
• Maximum: 998
• Average : 79

Statistical Characteristics of Test Bed —
238 “Real” VTABs
• Arity

• Maximum: 16
• Average : 4.29

• Size (cells)
• Maximum: 213,720
• Average : 1,591

• Number of distinct values (s)
• Maximum: 998
• Average : 79

Arity/ distinct values (s) biggest VTAB:
10/152

Comparison of Compilation Results:
 h1 / h2 / h2

*

Comparison of Compilation Results:
 h1 / h2 / h2

*

Compilation of largest VTAB:
• Compilation time (msec): 1,192,988 / 598 / 659
• Number of nodes: 391 / 431 / 145

Comparison of Compilation Results:
 h1 / h2 / h2

*

Compilation of largest VTAB:
• Compilation time (msec): 1,192,988 / 598 / 659
• Number of nodes: 391 / 431 / 145

Average compilation results:
• Compilation time (msec): 5,476 / 10 / 12
• Number of nodes: 179 / 150 / 84

Comparison of Compilation Results:
 h1 / h2 / h2

*

Compilation of largest VTAB:
• Compilation time (msec): 1,192,988 / 598 / 659
• Number of nodes: 391 / 431 / 145

Average compilation results:
• Compilation time (msec): 5,476 / 10 / 12
• Number of nodes: 179 / 150 / 84

Summary performance (number of nodes)

Comparison of Compilation Results:
 h1 / h2 / h2

*

Compilation of largest VTAB:
• Compilation time (msec): 1,192,988 / 598 / 659
• Number of nodes: 391 / 431 / 145

Average compilation results:
• Compilation time (msec): 5,476 / 10 / 12
• Number of nodes: 179 / 150 / 84

Summary performance (number of nodes)
• h2 outperformed h1 for: 143 VTABS

Comparison of Compilation Results:
 h1 / h2 / h2

*

Compilation of largest VTAB:
• Compilation time (msec): 1,192,988 / 598 / 659
• Number of nodes: 391 / 431 / 145

Average compilation results:
• Compilation time (msec): 5,476 / 10 / 12
• Number of nodes: 179 / 150 / 84

Summary performance (number of nodes)
• h2 outperformed h1 for: 143 VTABS
• h2 equal to h1 for: 71 VTABS

Comparison of Compilation Results:
 h1 / h2 / h2

*

Compilation of largest VTAB:
• Compilation time (msec): 1,192,988 / 598 / 659
• Number of nodes: 391 / 431 / 145

Average compilation results:
• Compilation time (msec): 5,476 / 10 / 12
• Number of nodes: 179 / 150 / 84

Summary performance (number of nodes)
• h2 outperformed h1 for: 143 VTABS
• h2 equal to h1 for: 71 VTABS
• h2 beaten by h1 for: 24 VTABS

Conclusion

Conclusion
• Summary:

• h2/h2
* is a very simple/ very fast compilation technique for VTABs

• Number of nodes seems comparable to that of the examples reported
for MDDs [Andersen et al.]and table compression [Katsirelos/Walsh]

• Implementation (Java) supports real-valued continuous intervals

Conclusion
• Summary:

• h2/h2
* is a very simple/ very fast compilation technique for VTABs

• Number of nodes seems comparable to that of the examples reported
for MDDs [Andersen et al.]and table compression [Katsirelos/Walsh]

• Implementation (Java) supports real-valued continuous intervals
• Results

• A VDD allows fast queries (proportional to their size – like a BDD)
• Direct queries for filtering out unsupported values are easily

implemented
• Simple database queries are subsumed by these queries
• Iteration and counting are implemented as well

Conclusion
• Summary:

• h2/h2
* is a very simple/ very fast compilation technique for VTABs

• Number of nodes seems comparable to that of the examples reported
for MDDs [Andersen et al.]and table compression [Katsirelos/Walsh]

• Implementation (Java) supports real-valued continuous intervals
• Results

• A VDD allows fast queries (proportional to their size – like a BDD)
• Direct queries for filtering out unsupported values are easily

implemented
• Simple database queries are subsumed by these queries
• Iteration and counting are implemented as well

• Outlook
• Formal analysis and application to wider test bed is future work
• Objective run-time measurements still missing

Thank You

