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Statically configurable at compile time

v

> 23,000 explicit constraints
POF: ~1,000, 000 variables in ~2,000,000 clauses

Hard questions:

v

> Are there inadmissible features?
> Are there necessary features? (Kaiser et Kiichlin 2001 [1])
» Constraints violations possible?

> ..
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Three intermediate representations
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Listing 1: net/netfilter/Kconfig

config NF_NAT_IPV4
tristate "IPv4 NAT”
depends on NF_CONNTRACK_IPV4
default m if NETFILTER_.ADVANCED=n
select NF_NAT
help

The IPv4 NAT option allows masquerading ,...
forms of full Network Address Port Trans...

controlled by iptables or nft.

if NF_NAT_IPV4
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Actions in this step:
» Abstract from underlying input files
» Strip configuration invariant data

» Group configuration blocks by symbols
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The Zengler Model

Database: Symbols as lists of configuration blocks

> dependencies as lists of Tristate expressions
» lists of attributes

visibility

default

select

range

v Vvyy

v
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Attributes Model

Actions in this step:

» Abstract from individual configuration blocks

» Collect dependencies for each attribute

» Store Kconfig "select” attributes with referenced symbols
Database:

» Symbols as sets of attributes

» Dependencies as lists of expressions in Tristate Logic
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What is Tristate Logic?

Tristate Logic is a three-valued logic — Why?
= Features have three states of activation:

» |nactive
» Runtime loadable module

> Integration at compile time
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Domain: {0,1,2}

Three operators:

| & |0 1 2 Ijo 1 2
0|2 0 [0 0 0 0/0 1 2
1)1 1 (0 1 1 11 1 2
2|0 2 |0 1 2 212 2 2

» ldea: First create POF in Tristate Logic

> Interpretation: Valid configuration 2, invalid configuration 0

= Not possible: Functionally not complete.
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POF Creation

» Symbols remain as variables

» Auxiliary variables for attributes

» Auxiliary variables for upper and lower bound

» Fixed correlation between a symbol and its auxiliary variables

» Dependencies are expressions consisting of symbols and affect
auxiliary variables

» = POF creation straightforward as each symbol can be
considered separately
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Translation into Propositional POF

Translation from Tristate* Logic into Propositional Logic:
» Tristate Variable A ~~ 2 Propositional Variables py(A), p1(A)

» Tristate Formula e ~ 2 projections g (e), 71 (€) to
Propositional Logic

Translation rules:

¢ mo () 1 (€')

A po(A) pi(A)

le o (€) A -1 (e) w1 (e)

col---tke, mo(eo) - Ao (en) Niego....ny (7o (1) V1 (€1)) AVie(o...np ™1 (1)
el en 7o (e0) V -+ Vo (en) Niego,....ny (7m0 (€1)) AVigqo,....m 71 (&7)

a s e (m0 (e1) > mo (€2)) A (1 (&) > 1 (&2)) L

e = e mo (e2) V-mo (1) A(=my (e1) Vi (e2)) L

= Tristate* POF &7 ~ 7 (CDT), Plaisted-Greenbaum for CNF
=- Same methods as in automotive industry



Sizes of Formulae

Table: Sizes of POFs for Linux 4.0

arch variables aux total variables variables clauses

TPOF TPOF  TPOF L-POF CNF CNF
arm 11976 55760 67736 134270 1299812 2849653
cbx 10548 48174 58722 115799 949031 1708805
iab4 10866 49850 60716 119837 1010856 1834072
m68k 10717 49136 59853 118115 1008800 1836987
mips 11249 52034 63283 125090 1048937 1909971
powerpc 11247 51964 63211 124935 1055822 1917736
s390 10699 49084 59783 117997 008901 1813210
score 10539 48168 58707 115783 049788 1710461
sh 10955 50336 61291 121037 1020515 1854779

sparc 10774 49327 60101 118582 1004762 1823946
x86 11135 51280 62415 123314 1051478 1913811




Analysis Results

Table: Redundant or necessary symbols in Linux 4.0

arch inadmissible  necessary
arm 1691 75
cbx 4644 42
iab4 3454 74
mo68k 3741 32
mips 2773 64
powerpc 2652 94
5390 4149 107
score 7068 36
sh 3297 67
sparc 3201 51
x86 2301 138

Using unmodified picosat: < 0.3s in > 99 % of the cases



Outlook

v

Re-configuration

v

List possible constraints violations

v

Incorporate Linux 4.2 Updates (<=, >=, <, >)

v

Design new configuration language?
SATCOUNT?
Configuration Lifting

v

v



Questions?
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