Harjoitustehtävät kisällioppimisessa – esimerkkejä lineaarialgebran kesäkurssilta

Opetin touko-kesäkuussa Helsingin yliopiston Avoimessa yliopistossa kisällioppimisen menetelmää soveltaen kurssin Lineaarialgebra ja matriisilaskenta I. Kisällioppimisessa yhtenä perusajatuksena on tekemällä oppiminen, minkä vuoksi harjoitustehtävien laatimiseen oli kiinnitettävä erityistä huomiota. Kisällioppimisessa harjoitukset pyritään suunnittelemaan niin, että tehtävät

  • kattavat kurssin keskeiset asiat mahdollisimman hyvin
  • ohjaavat opiskelijan selvittämään asioita itse kurssimateriaalin avulla
  • kiinnittävät opiskelijan huomion oppimisen kannalta oleellisiin seikkoihin
  • mahdollistavat opiskelijan oman oivalluksen
  • ovat asteittain vaikeutuvia
  • sisältävät sopivasti kertausta.

Lisätietoa kisällioppimisesta löytyy blogikirjoituksesta ”Kisällioppiminen”.

Katsaus harjoitustehtäviin

Alla esiteltävät harjoitustehtävät eivät syntyneet tyhjästä tälle kesäkurssille, vaan ne ja niiden johdatteleva tyyli perustuvat aikaisempien kurssitoteutusten tehtäviin, jotka sain käyttööni Jokke Häsältä ja Johanna Rämöltä.

Harjoitus 1

Kurssin ensimmäinen tehtävä ohjasi opiskelijat heti kurssimateriaalin pariin. Ajatuksena oli, että opiskelijat pääsevät itse tekemään niitä asioita, joista kurssimateriaalissa puhutaan. Osalle kurssin opiskelijoista tehtävä oli helposti lähestyttävä lämmittelytehtävä; toisille opiskelijoille hyvinkin tarpeellista kertausta muun muassa koordinaatiston piirtämisestä ja pisteen merkitsemisestä koordinaatistoon.

h1t1

Lineaarikombinaation käsitteeseen liittyvä vektorien virittämän aliavaruuden käsite on monille opiskelijoille opintojen alkuvaiheessa haasteellinen. Tämän vuoksi näiden käsitteiden pohjustaminen aloitettiin heti ensimmäisessä harjoituksessa. Alla näkyvän tehtävän 7 b-kohta sai monet palaamaan lineaarikombinaation määritelmään ja toimi mainiosti kysymysten herättäjänä.

h1t6-7

Ensimmäisen harjoituksen lopussa pohjustettiin vektorien virittämän aliavaruuden käsitettä yhdistämällä lineaarikombinaation käsite span-merkintään:

h1t18-19

Harjoitus 2

Tehtävässä 1 kerrattiin lineaarikombinaation käsitettä ja harjoiteltiin määritelmän käyttöä:

h2t1

Tehtävissä 5 ja 6 harjoiteltiin span-merkintää yksinkertaisissa, konkreettisissa tilanteissa:

h2t5

h2t6

Tehtävässä 9 opeteltiin etsimään aliavaruudelle virittäjävektorit tietynlaisessa tilanteessa. Tätä taitoa tarvittiin myöhemmin vaativampien tehtävien yhteydessä.

h2t9

Harjoitus 3

Vektorien virittämän aliavaruuden käsitettä, siihen liittyviä merkintöjä ja geometrisia näkökulmia kerrattiin tehtävässä 1:

h3t1

Tehtävissä 8-10 lineaarikombinaation ja virittämisen käsitteitä tarvittiin kannan käsitteen opiskelun yhteydessä:

h3ts3

Harjoitus 4

Tehtävissä 5 ja 7 virittäminen ja lineaarikombinaatiot esiintyvät kannan ja koordinaattien opiskelun yhteydessä. Tehtävä 6 on abstraktimpi vektorien virittämään aliavaruuteen liittyvä tehtävä. Näissä tehtävissä tarvittavia taitoja oli jo harjoiteltu edellisillä viikoilla, mikä auttoi opiskelijoita pääsemään niissä alkuun. Toisaalta opiskelijat saivat näissä tehtävissä kerrata aikaisemmin opiskelemiaan asioita ja soveltaa niitä laajemmissa kokonaisuuksissa.

h4ts2

Kurssin osallistujat ja rakenne

Kurssille ilmoittautui 132 opiskelijaa. Heistä suurin osa oli Helsingin yliopiston perustutkinto-opiskelijoita, jotka lukivat matematiikkaa sivuaineenaan. Kurssi kesti viisi viikkoa ja siihen kuului viisi harjoitustehtäväkokoelmaa, joissa kussakin oli 15-19 tehtävää. Opiskelijat palauttivat tekemiensä tehtävien ratkaisut viikoittain kirjallisesti, mutta niitä ei tarkastettu. Harjoituksia teki kurssin aikana 97 opiskelijaa.

Luentoja oli yhteensä 24 tuntia, 2-3 kertaa viikossa kaksi tuntia kerrallaan. Lisäksi kurssiin kuului 17 harjoitustuntia, joiden aikana opiskelijat saivat tehdä tehtäviä omassa tahdissaan itsenäisesti tai toistensa kanssa. Paikalla olevilta ohjaajilta oli tällöin mahdollista kysyä neuvoa. Harjoitustunneille osallistui kurssin aikana 50 eri opiskelijaa, joista osa oli paikalla lähes joka kerta ja osa silloin tällöin. Kurssilla oli vastuuopettajan lisäksi yksi harjoitusohjaaja.

Kurssikokeeseen ja kahteen uusintakokeeseen osallistui yhteensä 81 eri opiskelijaa, joista 74 sai kurssin suoritettua. Kurssin sisällöstä ja käytännöistä löytyy lisätietoa kurssin sivulta.

Vastaa

Sähköpostiosoitettasi ei julkaista. Pakolliset kentät on merkitty *