Entä jos kukaan ei vastaa?

Opiskelijoiden aktiivisen roolin merkitystä ja luennoilla tapahtuvaa vuorovaikutusta on käsitelty tässä blogissa jo ainakin kirjoituksissa Opettamisesta oppimiseen ja Aktiivisempia luentoja. Esimerkiksi erilaisten kysymysten ja äänestysten avulla opiskelijoita voi herätellä pohtimaan luennon aiheita ja samalla kannustaa heitä jakamaan ajatuksiaan pienissä ryhmissä tai pareittain. Lopuksi kysymystä voidaan tarkastella yhdessä, jolloin opettajakin pääsee kuulemaan opiskelijoiden mietteitä ja johdattelemaan keskustelua tarvittaessa oikeaan suuntaan.

Isossa salissa yhteisen keskustelun käynnistäminen ei kuitenkaan aina onnistu. Opiskelijoista saattaa tuntua epämukavalta olla yksin äänessä isossa ihmisjoukossa, ja kynnys erityisesti ensimmäisen puheenvuoron pyytämiseen voi olla korkea.

Keväällä järjestetyssä Matematiikan opetuksen iltapäivässä Aalto-yliopiston apulaisprofessori Pauliina Ilmonen kertoi kehittämästään luentopelistä, joka rohkaisee opiskelijoita osallistumaan keskusteluun. Peli on hyvin yksinkertainen: Opettaja jakaa opiskelijat kahteen suurin piirtein yhtä suureen joukkueeseen jakamalla luentosalin keskeltä kahtia. Kun opettaja kysyy kysymyksen, opiskelijat pyytävät puheenvuoroa viittaamalla, ja jokainen viittaava opiskelija tuo omalle joukkueelleen yhden pisteen. Jos kukaan ei pyydä puheenvuoroa, saa opettaja pisteen.

Päätin kokeilla peliä heti lineaarialgebran kurssillani, ja se todella toimii! Jos ryhmän puheliaimmat opiskelijat olivat poissa eikä yhteinen keskustelu ottanut käynnistyäkseen, aloitin pelin ja hävisin sen joka ikinen kerta saamatta yhtäkään pistettä koko kurssin aikana. Useimmiten vastauksia alkoi sadella niin paljon, että sekosin lopulta tukkimiehen kirjanpidossani ja pelin tulos jäi enemmän tai vähemmän epäselväksi. Halusin kannustaa opiskelijoita hyödyntämään luennot mahdollisimman tehokkaasti, joten annoin joukkueille pisteitä myös opiskelijoiden esittämistä kysymyksistä.

IMG_6292b

Kokemusteni mukaan luentopeli paitsi auttaa käynnistämään keskustelun, myös lisää siihen osallistuvien opiskelijoiden määrää, kun entistä useammat opiskelijat rohkaistuvat viittaamaan. Tämä tarjoaa hyvän tilaisuuden tuoda esiin erilaisia ajattelutapoja ja näkökulmia. Opettajalle opiskelijoiden kysymykset ja vastaukset antavat arvokasta tietoa siitä, millaisiin asioihin pitää vielä paneutua tarkemmin. Suosittelenkin luentopelin kokeilemista kaikille opettajille, jotka haluavat aktivoida opiskelijoitaan ryhmän yhteiseen keskusteluun.

II Matematiikan opetuksen iltapäivä

Toinen Matematiikan opetuksen iltapäivä järjestettiin Otaniemessä tiistaina 19.5. teemanaan opettajien ja opiskelijoiden välinen kommunikaatio. Mukana oli Helsingin yliopiston matematiikan ja tilastotieteen laitoksen sekä Aalto-yliopiston matematiikan ja systeemianalyysin laitoksen väkeä. Iltapäivän ohjelmassa oli viisi lyhyttä alustusta ja niihin liittyvät pienryhmäkeskustelut.

Ensimmäisessä alustuksessa Johanna Rämö kertoi kirjallisesta palautteesta, jota opiskelijat saavat kotitehtävistään kisällioppimisen menetelmällä toteutetuilla kursseilla. Tämän jälkeen Kirsi Peltonen Aalto-yliopistosta puhui Kristallinkukkia peilisaleissa -kurssista ja erityisesti sen yhteydessä toteutetuista reflektioista, joissa opiskelijat pohtivat kurssin asioita ja omaa oppimistaan. Anne-Maria Ernvall-Hytönen puolestaan kertoi projektitöistä, joita hän on teettänyt opiskelijoilla esimerkiksi kryptografian ja lukuteorian kursseilla, ja kokemuksistaan niihin liittyen.

Näiden alustusten jälkeen osallistujat jakautuivat oman kiinnostuksensa mukaan kolmeen ryhmään, joissa keskustelu aiheista jatkui. Muistiinpanoja ryhmien keskusteluista:

Ekat

Tokat

Kahvitauon jälkeen Lotta Oinonen kertoi kisällioppimisen menetelmällä toteutettujen kurssien ohjaajien koulutuksesta sekä ohjausperiaatteista, jotka ovat syntyneet ohjaajien ja opettajien yhteisissä keskusteluissa. Viimeisessä alustuksessa Pertti Palo pohdiskeli, miten opettaa matematiikkaa opiskelijoille, joilla on lähtökohtaisesti negatiivinen kuva omista kyvyistään oppia matematiikkaa, mutta jotka kuitenkin tarvitsevat matemaattisia työkaluja oman alansa ongelmien ratkaisemiseen.

Keskustelu jatkui pienemmissä ryhmissä ja iltapäivän päätteksi kaikista ryhmäkeskusteluista esiteltiin yhteenvedot.

Kiitokset kaikille osallistujille sekä Aalto-yliopiston puolella järjestelyistä vastanneille Riikka Kangaslammelle ja Harri Varpaselle onnistuneesta iltapäivästä!

Hyviä opettajia palkittiin

Ainejärjestöt Matrix ja Moodi sekä Matematiikan ja tilastotieteen laitos järjestivät maanantaina 20.4. opetusaiheisen keskustelutilaisuuden, jonka yhteydessä palkittiin opiskelijoiden parhaiksi äänestämiä opettajia ja ohjaajia.

Palkitut ohjaajat ja opettajat

Palkitut ohjaajat ja opettajat: Henri Karttunen, Olli Tapiola, Pekka Nieminen ja Petri Ola

Lukuvuoden parhaiksi opettajiksi valittiin Petri Ola ja Pekka Nieminen. Petri piti syyslukukaudella Osittaisdifferentiaaliyhtälöiden jatkokurssin. Kevätlukukaudella hän on opettanut tehostetun kisällioppimisen menetelmällä kursseja Algebralliset rakenteet I ja II. Petrin saamaa palautetta:

Selkeä ja opiskelijan ymmärryksen tasolle asettuva luennoitsija. Harva opettaja ajattelee näin paljon opiskelijan hyödyksi. Käyttää luennoilla sopivasti aikaa tarinointiin työelämästä ja siihen liittyvistä vaatimuksista.

Pekka on opettanut lukuvuoden aikana kursseja Johdatus tilastolliseen päättelyyn, Tilastollinen päättely ja Tilastollisen päättelyn jatkokurssi. Pekan saamaa palautetta:

Loistava luennoitsija, jota oikeasti kiinnostaa opiskelijoiden oppiminen. Osaa esittää vaikeat asiat perustellen ja hyvin lokeroituina, jolloin ne on helpompi sisäistää. Luennoitsijan oma mielenkiinto aiheeseensa välittyy kuulijallekin. Oikeasti tilastollinen päättely voi olla jopa kiinnostavaa!

Lukuvuoden parhaiksi ohjaajiksi valittiin Olli Tapiola ja Henri Karttunen. Olli on lukuvuoden aikana pitänyt harjoituksia kursseilla Mitta ja integraali sekä Reaalianalyysi I ja osallistunut laskuharjoitusten kehittämiseen. Ollin saamaa palautetta:

Olli käy pyytämättä läpi tehtävien ratkaisut todella perusteellisesti ja pyrkii tekemään selväksi kaikki epäselvät kohdat. Hänen laskuharjoituksissaan on rohkaiseva ja kannustava ilmapiiri ja taululle on mukava mennä esittämään ratkaisujaan.

Henri on uudistanut laskuharjoituskäytäntöjä kursseilla Tilastollinen päättely ja Luokitteluaineistojen analyysi. Lisäksi hän on ohjannut harjoituksia ja OT-ryhmää kurssilla Analyysi I, toiminut ohjaajana Ratkomossa ja opettanut yhdessä Ville Hyvösen kanssa kurssia Data-analyysi R-ohjelmistolla. Henrin saamaa palautetta:

Niin innostunut kaikesta, että se tarttuu muihinkin. Yrittää aina auttaa, vaikka asia ei välttämättä olisikaan täysin hallussa. Kiinnostunut parantamaan laskuharjoituksia ja valmis kokeilemaan uusia ideoita. Hänen laskareissaan on hyvä meininki ja hankalatkin asiat tulee selviksi.

Palkintojenjaon jälkeen keskustelutilaisuudessa pohdittiin laitoksemme opetusta ja sen kehittämistä. Ensimmäiseksi keskustelunaiheeksi tilaisuuden puheenjohtajat Tommi Mäklin ja Topias Tolonen nostivat erilaiset uudet käytännöt laskuharjoituksissa. Kuluvan lukuvuoden aikana laskuharjoitustilaisuuksia on kehitetty monin eri tavoin. Näiden hyvien käytäntöjen ja ideoiden jakaminen sai kannatusta, samoin ohjaajien yhteiset palaverit. Uusien kokeilujen toivottiin leviävän syventävienkin kurssien harjoituksiin.

Vilkasta keskustelua syntyi myös opiskelijoiden motivointiin liittyen. Todettiin, että olisi hyvä pyrkiä valottamaan opiskelijoille entistä paremmin eri kurssien asioiden välisiä yhteyksiä sekä yhteyksiä erilaisiin sovelluksiin. Opiskelijat toivoivat myös lisää työelämään liittyvää tietoa. Tänä keväänä toteutettuja ”Matemaatikko työelämässä” -haastatteluja pidettiin askeleena oikeaan suuntaan. Haastatteluja julkaistaan vähitellen myös laitoksen uudessa työelämäaiheisessa blogissa Töissä, jonne on tulossa tilastotieteilijöidenkin haastatteluja.

Muita tilaisuudessa esiin nousseita aiheita olivat muun muassa opintojen ajoitusmallit ja opintopiiritoiminta. Opiskelijat toivoivat, että ajoitusmallit olisivat yksityiskohtaisempia. Lisäksi niitä olisi hyvä olla useita erilaisia eri tahdissa opiskelevia varten. Opintopiirejä taas vaivaa osallistujapula, vaikka kysyntää ja tarvetta asioiden rauhalliselle yhdessä pohtimiselle tuntuu olevan. Keskustelussa pohdittiin opintopiirien roolia ja mietittiin keinoja opiskelijoiden aktivoimiseen.

Tämä jo perinteeksi muodostunut keväinen keskustelutilaisuus oli tänäkin vuonna tunnelmaltaan erinomainen ja tuotti monia käyttökelpoisia ideoita opetuksen kehittämiseen. Opiskelijoita oli paikalla ilahduttavan paljon. Kiitokset järjestäjille ja kaikille osallistujille!

Terveisiä Cermestä

Osallistuimme helmikuun alussa Prahassa järjestettyyn Cerme 9 -konferenssiin. Cerme-konferensseja järjestää European Society for Research in Mathematics Education (ERME), jonka tavoitteena on edistää vuorovaikutusta ja yhteistyötä matematiikan opetuksen tutkimuksessa. Näiden tavoitteiden mukaisesti Cerme-konferensseissa painotetaan keskustelua ja ryhmätyöskentelyä valmiiden esitysten kuuntelemisen sijaan.

Cerme 9 -konferenssissa osallistujia oli noin 650 ja teemaryhmiä 20. Osallistuimme yliopistomatematiikan opetuksen teemaryhmään, jossa osallistujia oli arviolta viitisenkymmentä. Ennen konferenssia meidän piti lukea mahdollisimman monta ryhmässä käsiteltävää artikkelia, joita oli kaikkiaan 35. Oman esityksemme lisäksi meidän piti myös valmistella lyhyt enintään yhden dian mittainen reaktio toiseen artikkeliin.

Konferenssissa pääosa ajasta käytettiin teemaryhmissä työskentelyyn. Jokaisessa teemaryhmän sessiossa käsiteltiin neljästä kuuteen artikkelia. Niistä pidettiin aluksi lyhyet viiden minuutin esitykset, minkä jälkeen osallistujat jakaantuivat kiinnostuksensa mukaan pienryhmiin. Kukin pienryhmä keskittyi pohtimaan puolen tunnin ajan, miten tarkasteltavaa artikkelia voisi kehittää ja parantaa. Etukäteen valmisteltu reaktio avasi tämän keskustelun. Session päätteeksi kaikkien pienryhmien kirjurit esittivät lyhyet yhteenvedot keskusteluista koko teemaryhmällemme.

Artikkeleiden käsittelyn lisäksi tutustuimme teemaryhmämme osallistujien postereihin, joita oli yhteensä 14. Kaikille teemaryhmille yhteinen ohjelma sisälsi kolme noin tunnin mittaista esitelmää tai paneelikeskustelua, kaksi ensikertalaisille suunnattua infotilaisuutta sekä ERMEn toimintaan liittyviä kokouksia.

Konferenssin parasta antia oli ehdottomasti omassa teemaryhmässä työskentely ja ihmisiin tutustuminen. Yliopistomatematiikan opetuksen tutkimuksen laajan kirjon näkeminen avarsi omia ajatuksia. Toisaalta vahvistui käsitys siitä, että yliopistomatematiikan opetukseen liittyvät kysymykset ja ongelmat ovat hyvin samanlaisia monissa maissa. Kisällioppimisen käytännön toteutus herätti kiinnostusta, ja tutustuimme moniin ihmisiin, joiden kanssa toivottavasti teemme tulevaisuudessa yhteistyötä tavalla tai toisella.

Johanna ja Enrique Vltava-joen sillalla, taustalla Prahan linna.

Enrique ja Johanna Vltava-joen sillalla, taustalla Prahan linna.

Matematiikan opetuksen iltapäivä

Marraskuun lopulla Kumpulassa järjestettiin ensimmäinen Matematiikan opetuksen iltapäivä, johon kutsuttiin opettajia ja opetuksesta kiinnostuneita sekä Helsingin yliopiston matematiikan ja tilastotieteen laitokselta että Aalto-yliopistosta Otaniemestä. Iltapäivän tavoitteena oli jakaa hyväksi havaittuja käytäntöjä ja uusia ideoita osallistujien kesken sekä edistää yhteistyötä yliopistojemme välillä.

Tapahtuman aluksi järjestäjien edustajat Harri Varpanen Aalto-yliopistosta ja Johanna Rämö Helsingin yliopistosta kertoivat kandivaiheen matematiikan opetuksesta Otaniemessä ja Kumpulassa. Otaniemessä suuri osa kandivaiheen matematiikan opetuksesta on palveluopetusta, jonka tavoitteena on varmistaa tuleville diplomi-insinööreille heidän muissa opinnoissaan tarvitsemansa matematiikan taidot. Kumpulassa kandivaiheen matematiikan opinnot on puolestaan suunniteltu ensisijaisesti matematiikan pääaineopiskelijoilta varten. Lähtökohdat opetukselle ovat siis melko erilaiset ja osa haasteistakin poikkeaa sen vuoksi toisistaan: esimerkiksi Kumpulassa ongelmana on ohjaajien löytäminen kaikille kandintyötä tekeville opiskelijoille, kun taas Otaniemessä ohjattavista on jopa pulaa.

Kahvitauon jälkeen alkoi iltapäivän toiminnallinen osuus, kun osallistujat jakaantuivat ryhmiin. Kukin ryhmä sai oman pöydän ja keskustelunaiheen, joita oli yhteensä kuusi: luennot, laskuharjoitustilaisuudet, opetusympäristöt, arviointi, tutkielmat ja teknologia. Lyhyen tutustumisen jälkeen ryhmät keskustelivat oman pöytänsä aiheesta ja kirjasivat muistiin esiin nousseita ideoita ja kysymyksiä. Tämän jälkeen aihetta ja pöytää vaihdettiin ohjeiden mukaan niin, että seuraavat keskustelut käytiin aina uudessa ryhmässä. Näin kaikki pääsivät jakamaan ajatuksiaan ja tutustumaan uusiin ihmisiin.

lakanaLuennotPieni

Ryhmissä käydyistä keskusteluista nousi esiin joitakin molemmissa yliopistoissa ajankohtaiseksi koettuja teemoja. Opiskelijoiden omaa tekemistä painotettiin sekä luentojen että laskuharjoitustilaisuuksien yhteydessä. Luentoja onkin muutettu toiminnallisemmiksi esimerkiksi luentotehtävien, porinaryhmien ja Presemolla tai Socrativella toteutettujen luentoäänestysten avulla. Laskuharjoituksissa pienryhmissä työskentely antaa kaikille opiskelijoille mahdollisuuden päästä puhumaan ja tekemään. Kotitehtävien tarkastus voidaan esimerkiksi tehdä vertaistarkastuksena harjoituksen ohjaajan antamien kriteerien mukaan. Myös arvioinnissa kehityksen suuntana tuntui olevan jatkuva arviointi, jossa painotetaan yhä enemmän opiskelijan työskentelyä kurssin aikana.

lakanaTeknologiaPieni

Matematiikasta keskustelu ja siihen kannustaminen nähtiin tärkeäksi monessa yhteydessä. Luennoilla keskustelutaitoja voi harjoitella luentotehtävien yhteydessä esimerkiksi pareittain, jolloin opitaan sosiaalisia taitoja, matematiikan puhumista ja saadaan kavereita. Laskuharjoitustilaisuudet tarjoavat oivan tilaisuuden kommunikointi- ja esiintymistaitojen harjoitteluun pienissä ryhmissä. Presemon tai Moodlen avulla keskustelusta voi tehdä ajasta ja paikasta riippumatonta. Liitutaulujen ja tussipöytien lisääminen helpottaa sekin ideoiden jakamista.

lakanaArviointiPieni

Opiskelijan tukeminen opiskelussa tuli keskusteluissa esiin monin eri tavoin. Esimerkiksi tutkielmaa tehdessään opiskelija on helposti epävarma, kokee ohjaustilanteen arvostelutilanteena ja saattaa jopa pelätä ohjaajan tapaamista, mikä pitää ottaa huomioon. Hyvän ohjauksen tuntomerkkeinä nähtiinkin kannustavuus ja säännöllisyys; lisäksi opiskelijalle olisi hyvä asettaa sopivia välitavoitteita. Oppimisympäristön pitäisi olla sopivan rento eikä esimerkiksi laskuharjoituksiin menemistä pitäisi joutua pelkäämään.

Hyväntuulinen, keskusteluun ja yhteistyöhön innostava tunnelma teki Matematiikan opetuksen iltapäivästä onnistuneen. Suosittelemme lämpimästi vastaavien tapahtumien järjestämistä ja kiitämme kaikkia mukana olleita!

Harjoitustehtävät kisällioppimisessa – esimerkkejä lineaarialgebran kesäkurssilta

Opetin touko-kesäkuussa Helsingin yliopiston Avoimessa yliopistossa kisällioppimisen menetelmää soveltaen kurssin Lineaarialgebra ja matriisilaskenta I. Kisällioppimisessa yhtenä perusajatuksena on tekemällä oppiminen, minkä vuoksi harjoitustehtävien laatimiseen oli kiinnitettävä erityistä huomiota. Kisällioppimisessa harjoitukset pyritään suunnittelemaan niin, että tehtävät

  • kattavat kurssin keskeiset asiat mahdollisimman hyvin
  • ohjaavat opiskelijan selvittämään asioita itse kurssimateriaalin avulla
  • kiinnittävät opiskelijan huomion oppimisen kannalta oleellisiin seikkoihin
  • mahdollistavat opiskelijan oman oivalluksen
  • ovat asteittain vaikeutuvia
  • sisältävät sopivasti kertausta.

Lisätietoa kisällioppimisesta löytyy blogikirjoituksesta ”Kisällioppiminen”.

Katsaus harjoitustehtäviin

Alla esiteltävät harjoitustehtävät eivät syntyneet tyhjästä tälle kesäkurssille, vaan ne ja niiden johdatteleva tyyli perustuvat aikaisempien kurssitoteutusten tehtäviin, jotka sain käyttööni Jokke Häsältä ja Johanna Rämöltä.

Harjoitus 1

Kurssin ensimmäinen tehtävä ohjasi opiskelijat heti kurssimateriaalin pariin. Ajatuksena oli, että opiskelijat pääsevät itse tekemään niitä asioita, joista kurssimateriaalissa puhutaan. Osalle kurssin opiskelijoista tehtävä oli helposti lähestyttävä lämmittelytehtävä; toisille opiskelijoille hyvinkin tarpeellista kertausta muun muassa koordinaatiston piirtämisestä ja pisteen merkitsemisestä koordinaatistoon.

h1t1

Lineaarikombinaation käsitteeseen liittyvä vektorien virittämän aliavaruuden käsite on monille opiskelijoille opintojen alkuvaiheessa haasteellinen. Tämän vuoksi näiden käsitteiden pohjustaminen aloitettiin heti ensimmäisessä harjoituksessa. Alla näkyvän tehtävän 7 b-kohta sai monet palaamaan lineaarikombinaation määritelmään ja toimi mainiosti kysymysten herättäjänä.

h1t6-7

Ensimmäisen harjoituksen lopussa pohjustettiin vektorien virittämän aliavaruuden käsitettä yhdistämällä lineaarikombinaation käsite span-merkintään:

h1t18-19

Harjoitus 2

Tehtävässä 1 kerrattiin lineaarikombinaation käsitettä ja harjoiteltiin määritelmän käyttöä:

h2t1

Tehtävissä 5 ja 6 harjoiteltiin span-merkintää yksinkertaisissa, konkreettisissa tilanteissa:

h2t5

h2t6

Tehtävässä 9 opeteltiin etsimään aliavaruudelle virittäjävektorit tietynlaisessa tilanteessa. Tätä taitoa tarvittiin myöhemmin vaativampien tehtävien yhteydessä.

h2t9

Harjoitus 3

Vektorien virittämän aliavaruuden käsitettä, siihen liittyviä merkintöjä ja geometrisia näkökulmia kerrattiin tehtävässä 1:

h3t1

Tehtävissä 8-10 lineaarikombinaation ja virittämisen käsitteitä tarvittiin kannan käsitteen opiskelun yhteydessä:

h3ts3

Harjoitus 4

Tehtävissä 5 ja 7 virittäminen ja lineaarikombinaatiot esiintyvät kannan ja koordinaattien opiskelun yhteydessä. Tehtävä 6 on abstraktimpi vektorien virittämään aliavaruuteen liittyvä tehtävä. Näissä tehtävissä tarvittavia taitoja oli jo harjoiteltu edellisillä viikoilla, mikä auttoi opiskelijoita pääsemään niissä alkuun. Toisaalta opiskelijat saivat näissä tehtävissä kerrata aikaisemmin opiskelemiaan asioita ja soveltaa niitä laajemmissa kokonaisuuksissa.

h4ts2

Kurssin osallistujat ja rakenne

Kurssille ilmoittautui 132 opiskelijaa. Heistä suurin osa oli Helsingin yliopiston perustutkinto-opiskelijoita, jotka lukivat matematiikkaa sivuaineenaan. Kurssi kesti viisi viikkoa ja siihen kuului viisi harjoitustehtäväkokoelmaa, joissa kussakin oli 15-19 tehtävää. Opiskelijat palauttivat tekemiensä tehtävien ratkaisut viikoittain kirjallisesti, mutta niitä ei tarkastettu. Harjoituksia teki kurssin aikana 97 opiskelijaa.

Luentoja oli yhteensä 24 tuntia, 2-3 kertaa viikossa kaksi tuntia kerrallaan. Lisäksi kurssiin kuului 17 harjoitustuntia, joiden aikana opiskelijat saivat tehdä tehtäviä omassa tahdissaan itsenäisesti tai toistensa kanssa. Paikalla olevilta ohjaajilta oli tällöin mahdollista kysyä neuvoa. Harjoitustunneille osallistui kurssin aikana 50 eri opiskelijaa, joista osa oli paikalla lähes joka kerta ja osa silloin tällöin. Kurssilla oli vastuuopettajan lisäksi yksi harjoitusohjaaja.

Kurssikokeeseen ja kahteen uusintakokeeseen osallistui yhteensä 81 eri opiskelijaa, joista 74 sai kurssin suoritettua. Kurssin sisällöstä ja käytännöistä löytyy lisätietoa kurssin sivulta.