Vaikuttaako kipsinlevitys kaloihin?

Suomen ympäristökeskuksen tutkijat Jarno Turunen ja Janne Markkula sähkökalastamassa Savijoella, Liedonperällä lokakuussa 2017.  Kuva: Jukka Rapo, Keksi / Ympäristöministeriö.

SYKEn tutkijat suorittivat lokakuussa sähkökalastuksia Savijoen valuma-alueella. Sähkökalastuksilla pyrittiin saamaan selville onko kipsin levityksellä merkittäviä vaikutuksia Savijoen kalastoon. Kipsin levitys lisää veden sulfaattipitoisuuksia, millä voi korkeina pitoisuuksina olla haitallisia vaikutuksia makean veden kaloihin ja niiden lisääntymiseen. Toisaalta kipsin levitys vähentää maahiukkasten huuhtoutumista vesistöön, mikä voi parantaa virtakutuisten kalojen, kuten taimenen, lisääntymismenestystä. Maahiukkaset voivat joen pohjalle laskeutuessaan tukkia sorapohjia veden virtaukselta, mikä haittaa sorapohjille kutevien kalojen, kuten taimenen, mätimunien kehitystä.

Sähköä Savijokeen

Kalaston selvitys tehtiin sähkökalastamalla, joka on standardimenetelmä virtavesien kalastoselvityksissä ja -tutkimuksissa. Menetelmässä sähkökalastuslaitteella luodaan kalastettavalle alueelle tasavirtasähkökenttä, mikä tainnuttaa kalat (katso menetelmästä kertova video). Sähkökalastajan apuna on haavitsija, joka nappaa taintuneet kalat haaviin. Haavista kalat kipataan vesiastiaan ja pyynnin päätyttyä lajit tunnistetaan ja mitataan. Sähkökalastetun alueen pinta-ala mitataan ja saaliista lasketaan kalalajien tiheyksiä suhteessa alaan. Sähkökalastus ei vaurioita kaloja, joten ne voidaan laskea mittausten ja kalojen virkoamisen jälkeen takaisin veteen.

Sähkökalastaja ja haavitsija yhteistyössä syksyisessä jokimaisemassa. Kuva: Jukka Rapo, Keksi / Ympäristöministeriö.

Sähkökalastus toteutettiin neljässä paikassa Savijoen valuma-alueella: Rynkön koskella, Yliskulman koskialueella, Yliskulman purossa ja Mittapadon koskella. Paikoista oli, Mittapatoa lukuun ottamatta, aiempaa sähkökalastusaineistoa ajalta ennen kipsin levitystä, johon saalista voitiin verrata. Mittapadon paikka taas sijaitsee kipsin levitysalueen ulkopuolella, joten myös sen saalista käytettiin kipsin vaikutusten arviointiin.

Kivisimppu, kivennuoliainen… taimen!

Kuten usein käy, päätti luonto taas tehdä tutkijoiden työstä hankalaa. Koetta edeltävän viikon sateet olivat nostaneet Savijoen veden tulvakorkeuteen eikä ennuste luvannut helpotusta seuraavillekaan viikoille. Homma päätettiin toteuttaa sovittuna päivänä.

Tulvalle eväänsä lotkauttamatta sähkökalastajat tekivät homman suunnitellusti. Saalistakin saatiin, jos kohta suuret maineteot jäivät uupumaan. Saalis koostui valtaosin kivisimpuista ja kivennuoliaisista, joita saatiin kymmenittäin. Taimenista saatiin kaksi havaintoa. Toinen, 31 cm pitkä vonkale, eksyi haaviin Rynkön koskesta ja toinen, 8 cm poikanen, Yliskulman purosta. Verrattuna aiempiin kalastuksiin, olivat kivennuoliaisten tiheydet samalla tasolla ja kivisimppujen jonkin verran korkeammalla syksyllä 2017.

Haaviin saatu kivennuoliainen tutkijan kädellä. Virrottuaan kalat pääsivät takaisin jokeen. Kuva: Jukka Rapo, Keksi / Ympäristöministeriö.

Savijoessa aiemmin tavattuja särkikaloja, kuten turpaa ja töröä, ei saatu saaliiksi. Näiden kalojen tiheydet ovat olleet pieniä myös aiemmissa kalastuksissa, joten puuttuminen saaliista selittynee satunnaisuudella ja hankalilla olosuhteilla. Lisäksi vesi oli jo jäähtynyt noin 8 asteiseksi, joten kyseiset lajit ovat voineet poistua koskialueilta talvehtimaan miedommin virtaaviin suvantoihin.  Kyseisiä lajeja ei myöskään saatu vertailualueena toimivalta Mittapadon paikalta, josta saaliiksi tuli vain kivennuoliaisia.

Taimenten tiheyksissä huomio kiinnittyy Yliskulman puron pieneen tiheyteen (0.6 yksilöä / 100 m2) verrattuna vuoden 2012 tiheyksiin (17 yksilöä / 100 m2). Ero selittynee osittain istutuksilla, joita ei keväällä 2017 tehty. Puroon on istutettu viimeksi 2016 keväällä taimenen vastakuoriutuneita poikasia (8000 kpl), joita ei siis tällä kertaa saatu saaliiksi. Ongelmallista arvion kannalta on myös se, ettei kalastuksia ole tehty viime vuosina. Taimenen poikasten luontainen kuolevuus vaihtelee runsaasti vuosien välillä. Saaliiksi saatu 8 cm poikanen edustaa todennäköisesti 2017 keväällä luonnonkudusta kuoriutuneita poikasia. Sen löytyminen on hyvä merkki ja osoittaa, että purossa on myös luontaista lisääntymistä.

Aiempien syksyjen ja syksyn 2017 (lihavoitu) sähkökalastusten tulokset. Luvut ovat ilmoitettu yksilömäärinä per 100 m2 kalastettua alaa. Tiheydet on laskettu yhden pyynnin perusteella.

Mitä tuloksista voisi päätellä?

Tulva varmasti heikensi kalojen pyydystettävyyttä. Vaikuttaa kuitenkin siltä, että kipsin levitys ei ole vaikuttanut ainakaan haitallisesti tyypillisiin koskikaloihin kuten kivisimppuihin ja kivennuoliaisiin. Taimenen osalta eroa ei Savijoen pääuomassa ole, ja ero Yliskulman puron taimentiheyksissä selittynee istutuksilla, tulvalla ja luontaisilla tekijöillä. Savijoen sulfaattipitoisuudet ovat olleet kipsin levityksen jälkeen keskimäärin 30 mg/l ja hetkellisesti reilu 400 mg/l. Yli 400 mg/l pitoisuuksilla on havaittu lieviä negatiivisia vaikutuksia lohikalojen mädin kehitykseen pitkän ajan altistuskokeissa, mutta hetkellisinä piikkeinä vaikutusta tuskin on.

Vertailualueen saaliin, aiempien sähkökalastusten ja matalien sulfaattipitoisuuksien valossa kipsin levitys ei näytä vaikuttavan merkittävästi kaloihin tai muihinkaan vesieliöihin. Toki vahvemman näytön saamiseksi sähkökalastusseurantaa olisi hyvä jatkaa ensi vuonna. Hankkeessa on lisäksi käynnissä taimenen mädin haudontakoe, joka antaa tärkeää lisävalaistusta kipsin levityksen vaikutuksista taimeneen. SAVE-hanke ei siis ole etsimässä pelastuskeinoja Saaristomerelle virtavesiluonnon kustannuksella.

Jarno Turunen, SYKE

 

Mädinhaudontaa Savijoella

Seuraavien kuukausien aikana Savijoen rantatörmillä seikkailee jälleen kahluuvarusteisiin sonnustautuneita tutkijoita! Tällä kertaa olemme kiinnostuneita siitä, vaikuttaako peltojen kipsikäsittely taimenen alkioiden selviytymismahdollisuuksiin. Vastausta tähän kysymykseen haemme mädinhaudontakokeen avulla. Kokeessa seuraamme taimenen mätimunien selviytymistä ja alkioiden kasvua. Aloitimme kokeen lokakuun lopulla, jolloin veimme hedelmöitetyt mätimunat koepaikkojen soraikkoihin hautoutumaan.

Koepaikkoja on kaikkiaan kolme. Savijoella kipsialueen koepaikaksi valikoitui Koskelan alue, kun taasen kipsitön vertailupaikka löytyi mittapadon yläpuoliselta jokiosuudelta. Lisäksi sisällytimme kokeeseen yhden metsäisen vertailupaikan läheisellä Järvijoella. Kaikissa näissä koepaikoissa joen pohjan ja veden virtauksen olosuhteet olivat sopivia taimenen jälkikasvun haudonnalle.

Luonnossa taimenen alkiot kehittyvät ja kuorituvat joen pohjassa soran suojissa, niin kutsutussa kutupesässä. Kokeessa matkimme tätä taimenemon tekemää rakennelmaa hautaamalla mätimunat taimenen luontaisen kutupesän olosuhteita muistuttavaan ”keinopesään”. Keinopesä koostui yhdestä korista, jossa oli neljä haudontasylinteriä (Kuva 1). Mätimunat laitoimme sylintereiden sisään sorakerrosten väliin. Tämän jälkeen peitimme koreissa olevat sylinterit varovasti soralla ja kivillä. Lopuksi laitoimme korin joen pohjaan kaivettuun pieneen syvennykseen ja tuimme sen soralla ja kivillä (Kuva 2). Kas näin, keinopesä oli valmis! Ja jotta kaikki munat eivät olisi samassa korissa, rakensimme kullekin koepaikalle kolme pesää.

Kuva 1. Keinopesän kori ja haudontasylinterit. Vasemmanpuoleisessa kuvassa alimmaisena on valmis sylinteri, jossa jo kansi päällä, alaoikealla olevaan sylinteriin on juuri laitettu mätimunat. Oikeanpuoleisessa kuvassa on jokeen laittoa vaille valmis haudontakori. Kuvat: Maija Hannula

Suomen kylmissä vesissä taimenenpoikaset kuoriutuvat pääsääntöisesti keväällä. Näin ollen annamme mätimunissa olevien alkioiden kasvaa ja kehittyä keinopesien suojissa ensi kevääseen saakka. Keväällä laskemme kuoriutuneet, kuolleet ja elävät alkiot. Elossa olevista alkioista mittaamme myös pituuden.

Kuva 2. Valmis keinopesä Savijoella. Tarkalla silmällä – tai hyvällä mielikuvituksella – kuvasta voi erottaa joen pohjassa olevan haudontakorin reunat. Kuva: Maija Hannula

Aiemmissa mädinhaudontakokeissa alueilla, joilla vedenlaatu on ollut hyvä ja ihmistoiminnan vaikutus vähäistä, on suurin osa taimenen alkioista selvinnyt talven yli kevääseen. Ihmistoiminnan vaikutuksen alaisilla paikoilla sen sijaan on selviytyminen usein ollut huomattavasti heikompaa. Savijoella peltojen kipsikäsittely saattaisi parhaimmillaan vaikuttaa siten, että mätimunat selviytyisivät kipsikäsittelyalueella paremmin kuin käsittelemättömällä alueella – kenties yhtä hyvin kuin metsäisellä vertailupaikalla Järvijoella. Huonoimmassa tapauksessa peltojen kipsikäsittely vähentäisi mätimunien selviytymistä vertailupaikkoihin nähden. Jäämme siis jännityksellä odottamaan ensi kevättä, jolloin meille selviää, onko kipsikäsittelyllä vaikutusta taimenen alkioiden selviytymiseen ja kasvuun!

Hanna Arola
Bio- ja ympäristötieteiden laitos
Jyväskylän yliopisto

Kasvinsuojeluaineiden pitoisuuksia seurataan Savijoella

Pieni osa viljelyssä käytetyistä kasvinsuojeluaineista kulkeutuu pintavesiin. Toukokuussa 2016 Savijoella aloitettiin kasvinsuojeluaineiden vesistöseuranta, joka jatkuu syyskuuhun 2017. Mukana on kaksi näytteenottopistettä: yläjuoksulla sijaitseva mittapato, jonka valuma-alueelle ei ole levitetty kipsiä, sekä kipsinlevitysalueen alajuoksulla oleva SAVE-hankkeen näytteenottopiste Bränikkälässä Parmaharjulla.

Vuosina 2007 – 2014 Suomessa on seurattu kasvinsuojeluaineiden pitoisuuksia jokivesissä noin kymmenellä maatalousvaltaisella näytepaikalla Maa- ja metsätalouden vesistökuormituksen seurantahankkeessa (MaaMet). Valtaosa paikoista on vaihtunut vuosittain ja näin ollen on saatu kerättyä laaja, mutta harva aineisto. Yksittäiseltä paikalta saattaa olla vain 5 tai 10 näytteen tulokset.

Aineiston keruulla on pyritty täyttämään seurantavelvoitteita, ja tietoa on käytetty esimerkiksi vesien kemiallisen tilan luokittelussa. Valuma-alueet ovat kuitenkin olleet suuria ja siksi tuloksia on ollut vaikea yhdistää alueiden viljelytoimiin ja kasvinsuojeluaineiden käyttöön. Aineiden käyttömääriä ei rutiininomaisesti kerätä Suomessa, vaikka viljelijät on velvoitettu pitämään niistä lohkokohtaisesti kirjaa. Käyttötietojen haarukointi haastatteluin on puolestaan erittäin työlästä.

Savijoen tutkimusalueilla haarukointi on vielä mahdollisuuksien rajoissa. Vuoden 2016 käyttömääriä selvitettiin SAVE-hankkeen kyselyn yhteydessä. Savijoen kasvinsuojeluaineseuranta tarjoaa mahdollisuuden yhdistää valuma-alueen tietoja kasvinsuojeluaineiden pitoisuustuloksiin. Se voi siten auttaa prosessien ymmärtämisessä ja kuormituksen vähentämiskeinojen miettimisessä.

Pitoisuuksia selvitetään aktiivisesti passiivikeräimillä

Savijoella vesinäytteitä on otettu kasvukauden aikaan kahden viikon välein ja talvella kerran kuukaudessa. Tämä on huomattavasti tiheämpää näytteenottoa kuin aiemmassa kansallisessa seurannassa, mutta ei silti välttämättä riittävää kasvinsuojeluaineiden pitoisuuksien vaihtelun havaitsemiseen. Pitoisuudet voivat vaihdella nopeasti jopa tuhatkertaisesti.

Tämän vuoksi seurannassa on altistettu myös passiivikeräimiä vesinäytteenottojen välillä. Keräimissä on ohut kalvo, johon haitta-aineet tarttuvat. Keräimien avulla voidaan määrittää kasvinsuojeluaineen keskimääräinen pitoisuus vedessä altistusaikana (2 – 4 viikkoa). Niiden avulla voidaan havaita myös sellaisia aineita, joiden pitoisuuspiikki ei osu näytteenottohetkeen.

Passiivikeräimet ennen altistusta ja kahden viikon altistuksen jälkeen.

Kasvinsuojeluaineiden suurimmat pitoisuudet ovat yleensä odotettavissa käsittelyjä seuranneiden valuntojen aikaan. Sateiden ajoittuminen suhteessa käsittelyyn vaikuttaa huippupitoisuuteen. Pitkäaikaisemmalla säätilalla puolestaan on merkitystä myös kulkeutuneisiin ainemääriin: kuivana jaksona kulkeutuminen on vähäistä.

Sään lisäksi kasvinsuojelun tarve ja kemikaalien käyttö vaihtelevat vuosittain. Siksi olisi mielekästä seurata pitoisuuksia samalla paikalla useamman vuoden ajan. Eri aineiden sitoutumis- ja hajoamisominaisuudet ovat erilaisia. Hitaasti hajoavia yhdisteitä voidaan havaita vesistä vielä myöhään syksyllä ja jopa vuosien päästä käytöstä.

Montako kasvinsuojeluainetta on havaittu?

Sekä vesinäytteistä että passiivikeräimistä on analysoitu yli 210 yhdistettä. Kuten kuvasta 1 havaitaan, yksittäisistä vesinäytteistä on kesällä havaittu toistakymmentä ja passiivikeräimistä jopa yli 30 ainetta, yhteensä Savijoesta havaittuja aineita on toistaiseksi 45. Tuloksista voidaan todeta, että alajuoksulta on havaittu useampia aineita kuin yläjuoksulta. Tämä johtunee siitä, että Bränikkälän näytepisteen valuma-alue on ollut suurempi ja siellä on ollut monipuolisempaa viljelyä.

Kuva 1. Havaittujen aineiden lukumäärä vesinäytteissä ja vertailun vuoksi myös Bränikkälän passiivikeräimissä.

Passiivikeräimistä havaittiin useampia erilaisia aineita kuin vesinäytteistä. Tämä on seurausta sekä keräimien alemmista määritysrajoista että pitoisuuksien vaihtelusta näytteenottojen välillä. Vesinäytteistä havaittiin kaikkein yleisimmin hyttyskarkote DEET:ä (havaitaan yleisesti ympäristönäytteistä myös muualta), glyfosaatin hajoamistuotetta AMPA:a ja rikkakasvien torjunta-aineita (mm. MCPA:ta, bentatsonia ja tritosulfuronia). Kaikista passiivikeräinnäytteistä havaittiin näiden lisäksi kasvitautien torjunnassa käytettyjä aineita kuten propikonatsolia, jota oli myös pohjasedimentissä. Passiivikeräimistä havaittiin yleisesti myös tuholaisten torjunnassa käytettyä klotianidiinia, jonka käyttöä on rajoitettu EU:ssa mehiläismyrkyllisyyden vuoksi. Suomi on kuitenkin myöntänyt hätäluvan sitä sisältävän valmisteen käyttöön (öljykasvien siementen peittaukseen).

Pitoisuudet eivät ole ylittäneet asetuksessa annettuja aineiden haitallisuuteen perustuvia ympäristönlaatunormeja, joita on määritetty vain muutamille aineelle, mutta jokunen yksittäinen vastaavalla tavalla laskettu vertailuarvo on ylittynyt. Savijoki edustaa kuormitukseltaan melko tyypillistä varsinaissuomalaista valuma-aluetta kehitteillä olevan kasvinsuojelulaineiden kuormitusindikaattorin mukaan. Indikaattori perustuu lohkokohtaiseen viljelykasviaineistoon, tyypilliseen kasvinsuojeluaineiden käyttömääriin kasvikohtaisesti ja kertoimiin, joilla huomioidaan yhdisteiden erilaista haitallisuutta. Kuormitusindikaattorin riskialueilla pitoisuudet voivat olla paljon suurempia kuin Savijoella.

Nyt kerätty aineisto on kansallisesti ainutlaatuinen ja vertailukelpoinen Ruotsissa ja Norjassa toteutettujen seurantojen kanssa. Toistaiseksi seuranta on voitu toteuttaa MaaMet–hankkeen ja passiivikeräinten osalta osin Vesien- ja merenhoidon uudet prioriteettiaineet -hankkeen (UuPri) puitteissa. Haemme kuitenkin vielä rahoitusta kasvinsuojeluaineiden käyttötietojen keräämiseen ja käsittelyyn sekä vuonna 2017 altistettujen, pakastimessa odottavien, passiivikeräinten analytiikkaan.

Entäpä sitten kipsikäsittely? Voisiko kipsillä olla vaikutusta fosforin lisäksi myös kasvinsuojeluaineiden huuhtoutumiseen? Tähän kysymykseen ei löydy vastausta kirjallisuudesta eikä toistaiseksi vielä Savijoeltakaan. Jotta vaikutusta tai vaikuttamattomuutta voitaisiin arvioida, pitäisi pitoisuustuloksista laskea ainekohtaiset kuormitusmäärät ja suhteuttaa ne yläpuolisen valuma-alueen käyttömäärätietoihin. Tämän teemme, jos rahoitus varmistuu.

Katri Siimes ja Heidi Ahkola, SYKE

San Pellegrino ja Savijoki – sulfaatit vesissämme

Petri Ekholm
Erikoistutkija
Suomen ympäristökeskus

Kipsin sisältämä sulfaatti on herättänyt huolta: voisiko sillä olla haitallisia vaikutuksia vesiympäristössä? SAVE-hankkeessa näitä mahdollisia vaikutuksia tutkitaan, mutta mitä sulfaatti oikeastaan on ja mistä se on peräisin?

Sulfaatti (SO4) on yleinen osanen elollisessa ja elottomassa luonnossa. Kasveille se on tärkeä rikin lähde, ja valtameriveden sulfaattipitoisuus – peräti 2700 mg/l – kertoo kallioperän rikkipitoisten mineraalien rapautumisesta. Kemiallisesti määriteltynä sulfaatti on rikkihapon (H2SO4) anioni, ja ihmisen aiheuttamat sulfaattipäästöt liittyvätkin pitkälti rikkihapon käyttöön. Rikkihappo on maailman käytetyin kemiallinen yhdiste ja sen maakohtaisesta kulutuksesta voidaan tehdä päätelmiä jopa bruttokansantuotteesta. Rikkihappoa tarvitaan mitä moninaisimmissa teollisuuden prosesseissa lannoitteiden valmistuksesta ja sellun keitosta aina pigmenttien valmistukseen.

Eri vesien sulfaattipitoisuuksia. Kuva aukeaa suuremmaksi klikkaamalla.

Ympäristötutkimus kiinnostui sulfaatista 1970-luvulla, kun maailma havahtui happosateiden aiheuttamiin ongelmiin. Hiilivoimaloiden piiput tupruttivat ilmaan rikkidioksidia, joka muuntui ilmakehässä rikkihapoksi. Nykyisin voimalaitosten savukaasuja pestään ja happamoittavat rikkipäästöt ovat vähentyneet. Myös tässä prosessissa syntyy kipsiä. Sulfaatin toi uudelleen otsikoihin Talvivaaran kaivoksen natriumsulfaattipäästöt, jotka suolasivat lähijärviä. Esimerkiksi kaivoksen alapuolisen Kivijärven pohjanläheisessä vedessä sulfaattipitoisuus on ollut yli 6000 mg/l.

Talvivaaran tapauksessa sulfaatin alkuperä oli prosessissa käytetty rikkihappo ja osin myös malmin sisältämät rikkiyhdisteet (sulfidit). Järviä ja metsiä tuhonneen happaman laskeuman rikki taas oli peräisin kivihiilestä – jos kivihiili on aikoinaan muodostunut meriveteen kontaktissa olleesta turpeesta, sen rikkipitoisuus on erityisen korkea. Mutta mistä Siilinjärven kipsin sulfaatti on peräisin?

Kuten Samuli kertoi tehdasvierailua kuvaavassa blogissaan, kipsiä eli kalsiumsulfaattidihydraattia syntyy sivutuotteena, kun apatiittimineraalia liuotetaan rikkihapolla. Näin saadaan fosforihappoa lannoiteteollisuuden tarpeeseen. Tätä nykyä Siilijärvellä käytettävä rikkihappo valmistetaan kotimaisessa öljynjalostuksessa syntyvästä rikistä. Viime syksynä Savijoen pelloille levitettiin siis sulfaattia, joka on erotettu fossiilisista polttoaineista, ts. muinaisten levien ja bakteerien merivedestä sitomaa rikkiä, sekä Siilinjärven kalliosta peräisin olevaa kalsiumia.

Happamoitumistutkimuksissa sulfaattia pidettiin niin sanottuna läpivirtausionina, joka ei reagoi vesiympäristössä, mutta kuvastaa kylläkin happaman laskeuman suuruutta. Sulfaatilla on kuitenkin tärkeä rooli esimerkiksi pohjasedimenttien ainekierroissa. Itämeressä suurellakaan sulfaattikuormituksella ei ole merkitystä, sillä murtovesi sisältää luonnostaan runsaasti sulfaattia, esimerkiksi Helsingin edustalla 500 mg/l. Järviin sulfaattia ei kuitenkaan pidä päästää, ainakaan suuria määriä, sillä se voi vähentää niiden pohja-aineksen kykyä sitoa fosforia ja siten pahentaa rehevöitymiskierrettä.

Sulfaattia kuitenkin päätyy järviin monista eri lähteistä. Koska sulfaattikuormitusta seurataan vain muutamien kuormittajien osalta, voimme esittää pelkästään karkean arvion kuormituksen suuruudesta. Sen mukaan Suomen kolme suurinta järvien sulfaattikuormittajaa ovat maatalous, ilmalaskeuma ja selluteollisuus. Ilmalaskeuman kontolle on tässä laskettu metsistä tuleva sulfaattihuuhtouma, mikä kuvastanee aikojen saatossa maaperäämme sitoutunutta ilmaperäistä, siis energian tuotannosta peräisin olevaa sulfaattia.

Rautasulfaatteja käytetään niin raaka- kuin jäteveden puhdistuksessa. Esimerkiksi HSYn (Helsingin seudun ympäristöpalvelut) puhdistusprosessissa Päijänteen veden noin 8 mg/l sulfaattipitoisuus nousee yli kaksinkertaiseksi. Tämä ei kuitenkaan vielä riitä muuttamaan pääkaupunkiseudun kraanavettä kulinaariseksi kivennäisvedeksi, sillä esimerkiksi San Pellegrinon mineraalivedessä sulfaattipitoisuus on yhtä korkea kuin Suomenlahdessa. Makutestien mukaan sulfaatti parantaa veden makua. Optimaalinen pitoisuus kalsiumsulfaatille on 270 mg/l. Maailman terveysjärjestö WHO ei ole asettanut juomaveden sulfaatille ylärajaa, joskin laksatiivisia vaikutuksia saattaa ilmetä pitoisuuden ylittäessä 1000 mg/l, makuongelmia seuralaiskationista riippuen jo aiemmin – natriumsulfaatti ei ole yhtä hyvää kuin kalsiumsulfaatti.

Savijoessa toistaiseksi havaitut sulfaattipitoisuudet ovat suhteellisen pieniä: kipsin levityksen jälkeen keskiarvo on ollut vain runsas 30 mg/l. Hetkellisesti pitoisuus on toki ollut yli 400 mg/l. Blogeissamme on jo aiemmin käsitelty tämän pitoisuustason vaikutusta – tai paremminkin vaikuttamattomuutta – vuollejokisimpukkaan. SAVE-hankkeessa on tarkoitus vielä selvittää, miten sulfaatti vaikuttaa kaloihin ja päällysleviin. Lisäksi tutkitaan, voisiko jokien pohjalta vapautua fosforia sulfaattipitoisuuden nousun vuoksi samalla tavalla kuin järvissä. Korkeina pitoisuuksina sulfaatista on haittaa rakenteille, esim. teräkselle ja betonille, mutta tällaisia vaikutuksia ei ole odotettavissa Savijoen maltillisissa sulfaattipitoisuuksissa.

Näkyykö kipsikäsittely Savijoen levämäärissä?

Syksyllä 2016 SYKEn tutkijat aloittivat Savijoella pohjalevien kasvua mittaavan kokeen. Kokeessa selvitetään kipsikäsittelyn vaikutuksia Savijoen pohjassa kasvavien päällyslevien tuotantoon. Koe on osa Maa- ja metsätalouden vesistövaikutusten seurantaohjelmaa ja sitä jatketaan tänä syksynä.

Levien määrä ja lajisto on tärkeä vesistöjen ekologisen tilan mittari. Virtavesissä pohjalla kasvavat päällyslevät ovat laiduntavien pohjaeläinten ravintoa. Pohjaeläimet taas ovat tärkeä kalojen ravintokohde.

Levien määrään vaikuttaa erityisesti saatavilla olevien ravinteiden ja valon määrä. Kipsikäsittely saattaakin siis merkittävästi vaikuttaa levien määrään ja tätä myötä Savijoen tilaan.

Rautakaupan kautta maastoon

Kokeen käytännön valmistelu alkoi rautakaupasta. Pohjalevien tuotantoa mitataan joen pohjalle aseteltavilta tummanharmailta lattialaatoilta, jotka ankkuroitiin pohjaan rakennustiilten ja kulmarautojen avulla. Laatat on kiinnitetty silikonilla kulmarautoihin ja kulmaraudat nippusiteillä rakennustiiliin.

Samalla vedenalaisen valon määrää ja veden lämpötilaa mitataan 30 minuutin välein tiiliin kiinnitetyillä jatkuvatoimisilla loggereilla.

Tutkimusta tehdään kahdella koealueella. Toinen paikoista sijaitsee kipsinlevityksen vaikutuspiirissä (Savijoki Koskela) ja vertailupaikka joen yläjuoksulla alueella (Savijoki mittapato).

Vasemmalla tutkimuspaikat Savijoessa. Savijoki Koskela on kipsinlevityskokeen vaikutuspiirissä. Yläjuoksun tutkimuspaikka Savijoki mittapato sijaitsee kipsinlevitysalueen yläpuolella. Oikeanpuoleisessa kuvassa SYKEn harjoittelija Maria Rajakallio nostaa uomassa ollutta levälaattaa mittauksiin. Kuva: Tiina Laamanen, SYKE

Ensimmäinen osa kokeen laatoista vietiin paikoilleen 29.8.2016 ja haettiin pois kokeen puolivälissä 11.10. Toinen osa laatoista vietiin paikoilleen kokeen puolivälissä 11.10. ja haettiin pois 9.11.

Laatoilta mitataan levien määrää sekä maastossa kenttämittarilla että SYKEn laboratoriossa tarkemmin uuttomenetelmällä. Kullakin tiilellä on kaksi laattaa. Toiselta laatoista mitattiin levämäärä heti niiden uomasta poiston jälkeen BenthoTorch-fluorometrillä. Fluorometri on laite, jolla voidaan maastossa mitata kolmen leväryhmän määrää a-klorofyllin fluoresenssina. A-klorofyllin summana saadaan arvio levien kokonaismäärästä. Mittaamisen jälkeen laattaparin toinen puolisko suljettiin minigrip-pussiin ja pakastettiin odottamaan laboratorioanalyysejä.

BenthoTorch-fluorometrillä on kätevä mitata maastossa päällyslevien määrää. Kuvassa Marja Lindholm Muhosjoella. Oikeanpuoleisessa kuvassa uomasta nostettuja laattapareja Savijoen Koskelan tutkimuspaikalla lokakuussa 2016. Laatoilta on juuri tehty BenthoTorch-fluorometrilla levämäärien mittaukset (pyöreät rengasmaiset jäljet vasemmanpuolimmaisilla laatoilla). Kuvat: Tiina Laamanen, SYKE

Talvi yllätti!

Syksyn 2016 olosuhteet olivat talviset jo marraskuussa. Tällöin ei kenttämittauksia pystytty enää tekemään, koska uoma oli jäässä! Yllättäen saapuneen talven vuoksi vain kaksi alapuolisen tutkimuspaikan loggereista onnistuttiin kokeen päättyessä löytämään. Yläosalla talvehtinut valologgeri, ja sen data, saatiin kuitenkin onnekkaasti pelastettua tänä kesänä.

Talviset olosuhteet yllättivät viimeisellä käyntikerralla 9.11.2016. Kuvassa jään alla olevia laattoja yläjuoksun Savijoen mittapadon tutkimuspaikalla. Kuva: Tiina Laamanen, SYKE

Mitä tulokset kertovat?

Syksyn 2016 toteutetun seurannan avulla saatiin selville tärkeää taustatietoa Savijoen levämääristä. Nyt tiedetään molempien tutkimusalueiden levämäärät ennen kipsikäsittelyn vaikutusta. Näiden taustapitoisuuksien avulla voidaan jatkossa arvioida kipsin mahdollisia vaikutuksia.

Kokonaislevämäärä oli klorofylliuuttomenetelmällä arvioituna Koskelan alueella keskimäärin 6,9 µg/cm² ja mittapadon tutkimuspaikalla 1,3 µg/cm². Yläjuoksun vertailualueen pienempi päällyslevien tuotanto selittyy todennäköisesti valaistus- ja virtausolosuhteiden eroilla, sillä paikkojen veden ravinnepitoisuudet eivät eronneet ennen kipsikäsittelyä.

Levämäärien arvioinnissa oli menetelmissä selvä eri. BenthoTorchilla mitattuna Koskelan alueen levämäärä oli keskimäärin 3,2 µg/cm² ja mittapadon tutkimuspaikalla 0,7 µg/cm². BenthoTorchilla ja uuttomenetelmällä arvioidut klorofyllimäärät vastasivat melko hyvin toisiaan pienillä levämäärillä. Kun leväkasvustoa oli paljon, fluorometrillä arvioitu levämäärä oli kuitenkin vain puolet uuttomenetelmällä arvioidusta. Fluorometri mittaakin levämäärän optisesti vain pintakerroksen perusteella, kun taas uuttomenetelmässä mitataan koko laatan levästö.

Laboratorion uuttomenetelmällä (y-akseli) ja BenthoTorch-kenttäfluorometrillä (x-akseli) mitattujen laattojen klorofyllimäärien suhde syksyn 2016 ensimmäisellä koejaksolla.

Mitä seuraavaksi?

Päällyslevien määrää mittaava koe toistetaan syksyllä 2017. Tämän jälkeen tuloksia voidaan rinnastaa vuoden 2016 mittauksiin ja arvioida mahdollisten vedenlaadun muutosten vaikutusta pohjalevien määrään.

Tilanne on erittäin mielenkiintoinen. Jos kipsikäsittelyn myötä leville saatavilla olevien ravinteiden määrä vähentyisi, voisi myös levien määrän olettaa vähenevän. Toisaalta jos kipsikäsittely kirkastaa jokivettä, saattaa lisääntynyt valon määrä lisätä levien kasvua. Jatkuvatoimisten loggereiden avulla seuraamme valon määrää myös tänä syksynä.

Jukka Aroviita, Tiina Laamanen, Jarno Turunen ja Maria Rajakallio, SYKE.

SAVE goes west

Antti Iho
Antti Iho, Erikoistutkija, Luke

Yksi kipsihankkeen tavoitteista on kipsin kansainvälisten käyttömahdollisuuksien kartoittaminen. Arvelimme hanketta suunnitellessamme, että Itämeren rantavaltioiden lisäksi Yhdysvaltojen ja Kanadan suurten järvien valuma-alue saattaa olla sovelias kipsin käyttökohde. Saatoimme osua oikeaan.

Huronjärvi on yksi Pohjois-Amerikan viidestä suuresta järvestä. Kuva: Samuli Puroila

Vierailin kesäkuussa Penn Statessa, Pennsylvanian osavaltion Land Grant –yliopistossa. Kustakin osavaltiosta löytyvät Land Grant -yliopistot keskittyivät alun perin käytännönläheisiin tieteisiin, mm. maatalouteen. Tätä nykyä niiden opetuskirjo on yhtä laaja kuin missä tahansa yliopistossa. Silti ne toimivat edelleen maataloustutkimuksessa tärkeimpinä nivelinä akateemisen tutkimuksen ja käytännön sovellusten välillä. Ympäristönsuojelun ja maatalouden yhteensovittaminen on nykyään todella tärkeä tutkimusten ja sovellusten kohde.

Pennsylvaniassa maatalouden ympäristöohjauksen kenttään tuo muuten mielenkiintoisen mausteen noin 70 000 amissia, joista suurin osa harjoittaa maataloutta – 1700-luvun käytännöillä. Ja ei, se ei Penn Staten ihmisten mukaan ole ympäristöystävällistä tuotettua maitogallonaa kohden tarkasteltuna. Agricultural and Environment Centerin johtaja Matt Royer kertoi jotenkin liikuttuneena kahdesta amissiviljelijästä, jotka olivat muuttaneet lannanlevityskäytäntöjään sen jälkeen, kun olivat osallistuneet retkelle Chesapeake Baylle ja tutustuneet kalastajien ammattiin. Amissiyhteisö ei kai ole kovinkaan ketterä liikkeissään. Ehkä näistä kahdesta kaverista tulee muutosagentteja?

Palaveerasimme puolikkaan päivän verran kampuksella sijaitsevan maatalousministeriön alaisen Pasture Systems and Watershed Management Research -yksikön tutkijoiden kanssa.

Yksi asia ja ongelma tuntui olevan yli muiden: liukoisen fosforin kuormituksen hallinta. Aika moni muukin oli lukenut tuoreet tutkimuspaperit Eriejärven liukoisen fosfori kuormituksen voimakkaasta kasvusta ja pysyvän kasvipeitteisyyden roolista siinä. Laitoksen johtaja Pete Kleinman kertoi saavansa jatkuvasti kyselyitä aiheesta. Toimivat keinot kaikkien fosforijakeiden kuormituksen vähentämiseen olisivat nyt todella arvokkaita, ei pelkästään Eriejärvellä vaan myös Chesapeake Bayn valuma-alueella, mitä suurin osa Pennsylvaniasta on.

Leväkukintaa Eriejärvellä. Kuva: NOAA GLERL (flickr.com)

Maaperätieteilijä Ray Bryant on tehnyt noin kymmenen vuoden aikana yhä enemmän kokeita kipsin käyttömahdollisuuksista vesiensuojelussa. Heidänkin tuloksensa ovat olleet lupaavia siinä mielessä, että kipsi tuntuu vähentävän kaikkia fosforijakeita. Tutkimushankkeet ovat olleet tähän mennessä olleet suppeahkoja kenttätutkimuksia. Esittelin SAVE-hanketta, volttilähdöllä TRAPin kautta. Erityisesti Ray oli erittäin kiinnostunut. Hän tenttasi minua varmaan kaksi tuntia, vaikka kyllä muutkin heittivät kysymyksiään sekaan. Ilokseni saatoin vastata melkein kaikkiin kohtiin, että kyllä, olemme ottaneet tämän koejärjestelyissä huomioon.

Kipsin saatavuudesta ja logistiikasta puhuttiin. Savukaasujen puhdistuksen sivutuotteena syntyvää kipsiä oli tarjolla riittävästi, eikä Ray nähnyt merkittäviä esteitä laajamittaiselle toteuttamiselle. Lohkokohtaisesta liukoisen fosforin (nopeasta) mittaamisesta puhuttiin paljon. Paikalle marssitettiin tutkija salkkuun mahtuvan mittaushärvelin kanssa, jota esiteltiin minulle yksityiskohtaisesti. Yritin toppuutella sanomalla olevani taloustieteilijä, mutta ihmiset esittelevät mielellään töitään ja keksintöjään, joten kuuntelin kiltisti. Jostain pullosta meni ionisoitua vettä johonkin ja se pullo piti vaihtaa kerran kuussa, sen muistan…

Yhtä kaikki, kipsihanke iski voimakkaasti tulta. Kleinman lupasi tulla delegaation kanssa tutustumaan hankkeeseen ensi kesänä. Pitää koittaa pitää tämä lupaus mielessä ja tehdä siitä totta. Vielä innostavampi lupaus oli ottaa meidät mukaan Eriejärven valuma-alueella tehtäviin koejärjestelyihin. Katsotaan mitä näistä tulee. Mutta se on selvää, että kipsihankkeessa on imua.

Lisää Antin kertomuksia Pohjois-Amerikan vierailulta voit käydä lukemassa Luken blogisivuilta.

Viljelijöiden kokemuksista pontta kipsikäsittelyn tulevaisuudelle

Anna-Kaisa Kosenius, Helsingin yliopisto

Vuodenvaihteessa toteutimme kipsihankkeeseen osallistuneille viljelijöille kyselyn. Tarkoituksena oli selvittää kokemuksia kipsikäsittelyn eri vaiheista (toimitus, varastointi, tilan sisäinen kuljetus, levitys, peltotöihin sovitus ja kalusto). Lisäksi pyysimme viljelijöiden arvioita kipsin käytettävyydestä ja tulevaisuudennäkymistä osana maatalouden ympäristötukijärjestelmää. Taustatiedoiksi pyysimme vielä tietoja muun muassa viljelymenetelmistä, kokemuksesta, koulutuksesta ja mielipiteistä.

Kysely oli varsin pitkä ja työläs täyttää, ja siitä saimmekin palautetta. Eräässä vastauslomakkeessa haikailtiin humoristisesti sihteeriä paikalle täyttämään lomakkeita… Pituudesta huolimatta lähes kaikki vastasivat, ja vastausprosentti oli niinkin hyvä kuin 87. Vastanneiden viljelijöiden kipsikäsitelty pinta-ala vastasi 91 prosenttia kipsikäsitellystä alasta.

Kiitämme vielä kaikkia arvokkaista tiedoista liittyen kipsinlevityksen käytännön toteutukseen!

Käytännön haasteet ratkaistavissa

Vastauksia on analysoitu eri tavoilla ja erilaisilla tilastollisilla menetelmillä kevään kuluessa. Pääjohtopäätöksenä onkin jo aiemmin todettu pilotin sujuneen hyvin.

Ongelmia kipsikäsittelyn eri vaiheissa ei ilmennyt paljonkaan. Sovitut toimitusajankohdat pitivät päivän tarkkuudella. Seitsemän viljelijää raportoi pieniä harmeja: isojen rekkojen kulkuvaikeudet, juuttuminen peltoon tai tien painuminen. Mursketta ja sepeliä oli tarvittu. Maan ja teiden pehmenemisen lisäksi jotkut viljelijät peittelivät kipsikasoja sateen vuoksi. Toisaalta kipsin kastumisen ei havaittu vaikuttavan levittämiseen mitenkään. Tuulinen sää sen sijaan heikensi levityksen tasaisuutta. ”Säävaraus” liittyykin myös kipsinkäytön käytännön onnistumiseen.

Kipsinlevityksen sovittamisessa peltotöihin sovittamisessa vaikutti olleen eniten haasteita, vaikka syksyn sää olikin hyvä. Muutama viljelijä raportoi ajankäyttöhaasteista. Kipsinlevittäminen osui työhuippuun, ja etenkin syyskylvöjen vuoksi kipsin levittämiselle tuli kiire puinnin ja syyskylvöjen välissä. Päivää piti pidentää. Noin kuudesosa viljelijöistä levitti kipsin itse, mutta erään kyselyyn vastanneen viljelijän mielestä myös urakoitsijan käytöstä huolimatta hanke vei kohtuullisen paljon isännän työaikaa kaikkine järjestelyineen ja sopimisineen. Talvilevitys olisi varmasti helpompaa, mutta silloin suuri osa kipsistä huuhtoutuisi sulamisvesien myötä pois eikä vaikutus fosforin kuormitukseen olisi halutun voimakas.

Poikkeukselliset sääolosuhteet vaikuttivat myös kyselyyn

Pilotin tarkoituksena oli uuden menetelmän testaaminen käytännössä ja saadun kokemuksen ja opitun tallentaminen myöhempää käyttöä ja kipsikäsittelyn suunnittelua varten. Poikkeuksellisen hyvä syyssää pakotti kuitenkin kyselyn tekijät lisäämään poikkeuksellisia kysymyksiä kyselylomakkeeseen selvittämään kipsin käytön käytännön haasteita. Muutenhan käytännön pilotin hyödyllisyys kipsikäsittelyn suunnittelun tukena olisi jäänyt puolitiehen hyvän sään takia.

Olikin mielenkiintoista kuulla viljelijöiden arvioita siitä, miten kipsinlevitys sujuisi niin sanottuna tavallisena syksynä, joka ei olisi niin kuiva ja hyväsäinen kuin kulunut syksy, ja missä kohdissa tulisi eniten haasteita eteen. Hankalampana syksynä esimerkiksi toimituksen tulisi onnistua pomminvarmasti niin, että kipsi olisi levitettävissä säiden puolesta tarjoutuvana sopivana hetkenä. Haastava syksy lisäisi myös tilan sisäistä kuljetusta, kun pitäisi löytää kantavat varastointipaikat, ja myös kaluston vaurioitumisriski kasvaisi. Levitysvaihe varsinkin suorakylvöpelloille arvioitiin erityisen haastavaksi. Logistiikka, riittävä työvoima levittämisessä ja kustannusten nousu sateisena syksynä näyttävätkin nousevan ykköshaasteiksi.

Viljelijöillä uskoa kipsikäsittelyyn?

Entä viljelijöiden halukkuus käyttää kipsiä tulevaisuudessa? Analyysi paljasti monenlaisia syitä sille, miksi viljelijät lähtivät mukaan kipsipilottiin. Toki peltojen sopivuus ja sijainti valuma-alueella olivat ensimmäisiä asioita, mutta myös muita syitä kuvattiin tärkeiksi. Esimerkiksi pilotissa mukana olleiden viljelijöiden mukaan uteliaisuus kipsimenetelmän vaikutuksista ulottui ravinnekuormituksesta maan rakenteeseen, ja kipsipilottihanke tuo uutta tietoa näistä asioista. Mitkä osallistumisen syyt liittyisivät kipsin käyttöön tulevaisuudessa, kun se ei olisikaan menetelmänä uusi?

 

Poimintoja viljelijäkyselyn tuloksista

Kipsin käyttöä tulevaisuudessa voidaan hiukan arvioida kyselyssä olleisiin yksittäisiin kysymyksiin annettujen vastausten perusteella, mutta parempi ymmärrys vaatii kyselyvastausten tarkastelua kokonaisuutena. Yleisesti suhtautuminen kipsiin oli positiivista. Noin neljä viidestä pilottiin osallistuneesta ilmoitti, että voisi käyttää kipsiä tulevaisuudessa. Miltei yhtä moni sanoi voivansa suositella käyttöä muille viljelijöille.  Vain noin viidennes uskoi, etteivät viljelijät muualla Suomessa ottaisi kipsiä käyttöön osana ympäristötukijärjestelmää.

Liitimme kyselyyn paljon mielipideväittämiä, jotta voisimme analysoida tilastollisin menetelmin, millaisia kiinnostuksen kohteita tai motiiveja osallistumiseen on. Aineistosta piirtyi hyvin kolme ulottuvuutta. Ensinnäkin se, että kipsi voi edistää satoa ja maanrakennetta. Toiseksi, kokeileminen ja kaluston kehittäminen on innostavaa. Ja kolmanneksi, kipsin avulla on mahdollisuus parantaa vedenlaatua ja maatalouden mainetta ympäristöasioissa.

Motivaatioihin ja niiden painotuksiin liittyvä Ålandsbankenin Itämeriprojektin rahoittama analyysi on tekeillä. Pyrimme selvittämään tätä asiaa lisää myös tulevan syksyn kyselyssä, josta yritämme tehdä edellistä kevyemmän. Sen tarkoitus on kipsikäsittelyn käyttöönoton edellytysten tarkentamisen lisäksi selvittää käytännön kokemuksia kipsin vaikutuksista.

 

Vähentääkö kipsi liuennutta, kaikkein rehevöittävintä fosforia?

Petri Ekholm
Erikoistutkija
Suomen ympäristökeskus

Valumavesissä on kahdenlaista fosforia: maa-ainekseen sitoutunutta fosforia ja liuennutta fosforia. Maa-ainekseen sitoutuneen fosforin määrää voi päätellä veden ulkonäöstä: mitä sameampaa vesi on, sitä enemmän siinä on maa-ainesta ja siihen sitoutunutta fosforia. Kipsin levityksen jälkeen valumavedet kirkastuivat silmin nähden. Kirkastumisen vahvistivat Savijoen jatkuvatoimiset anturit, jotka mittaavat veden sameutta tieteellisen tarkasti, hiukkasten aiheuttaman valon sironnan perusteella. Sameuden vähenemisestä voidaan päätellä, että kipsattujen peltojen eroosio väheni. Toisin sanoen maahiukkaset ja niihin sitoutunut fosfori eivät siis lähteneet aiemmassa määrin liikkeelle vaan jäivät peltoon.

Liuennut fosfori sen sijaan on niin silmille kuin antureillekin näkymätöntä: veden optisista ominaisuuksista ei voi päätellä, onko liuennutta fosforia vähän vai paljon. Pitoisuuden saa selville vain ottamalla vesinäytteen ja viemällä sen laboratorioon määritettäväksi. Siellä näyte suodatetaan hyvin tiuhan suodattimen läpi. Suodoksesta saadaan fosforin pitoisuus selville, kun fosfori värjätään siniseksi yhdisteeksi, jonka intensiteetti on suoraan verrannollinen pitoisuuteen.

Liukoisen fosforin vaikutukset vesistöissä on helppo havaita. Kuva: Pirjo Ferin

Vaikka liuennut fosfori ei silmille näy, näkyvät sen vaikutukset sitäkin selvemmin. Se on nimittäin levien herkkua. Niin sanottu liuennut ortofosfaatti on ainoa fosforin muoto, joka pystyy kulkeutumaan niin viljelyskasvien kuin levienkin solunseinän läpi. Se on siis ainoa suoraan kasveille käyttökelpoinen fosforiyhdiste. Jotta maa-ainekseen sitoutunut fosfori olisi käyttökelpoista, sen on ensin vapauduttava ortofosfaatiksi. Vuosikymmenten tutkimuksesta huolimatta on edelleen epäselvää, missä määrin ja millaisissa oloissa maa-ainesfosfori muuntuu käyttökelpoiseksi. Se kuitenkin tiedetään, että osa fosforista ei koskaan vapaudu vaan hautautuu hiukkasten mukana vesien pohjalle.

Maatalouden vesiensuojelumenetelmien olisi hyvä vähentää sekä maa-ainesfosforin että liuenneen fosforin kulkeutumista pelloilta vesiin. Valitettavasti näin ei aina ole. Esimerkiksi peltojen talviaikainen kasvipeite voi vähentää tehokkaasti eroosiota ja maa-ainesfosforin kulkeutumista, mutta saattaa lisätä liuenneen fosforin huuhtoutumista fosforin kertyessä pintamaakerrokseen, jossa se voimakkaimmin valumavesien huuhdottavana.

Kipsin etu on se, että se tehoaa kumpaankin fosforimuotoon. Näin tapahtui ainakin Nummenpään kipsikokeessa, jossa käsiteltiin 100 hehtaaria peltoa kipsillä Vantaanjoen valuma-alueella. Siellä maa-ainesfosforin kulkeuma väheni 60 prosenttia ja liuenneen fosforin huuhtouma 30 prosenttia. Mutta miten käy Savijoella? Tähän kysymykseen ei vielä voida vastata.

Lounais-Suomen poikkeuksellisen kuivien kelien johdosta SAVE-hankkeelle on kertynyt liian vähän edustavia vesinäytteitä, joiden perusteella liuenneen fosforin muutoksia voi arvioida. Siinä missä kipsinlevitysalueen alajuoksulta, Parmanharjulta, on kipsikäsittelyn jälkeen kertynyt yli 5000 sameushavaintoa, vesinäytteitä ja liuenneen fosforin määrityksiä on vain 12. Aineistossa oleva hajonta, ”kohina”, peittää vielä alleen mahdollisen kipsisignaalin. Tästä keväästä lähtien näytteenottoa on tihennetty, kun lisänäytteitä ottaa ja määrittää Lounais-Suomen vesiensuojeluyhdistys. Koska kesästä tulee kuiva ja lämmin, joutunemme odottamaan tietoa kipsin vaikutuksesta liuenneeseen fosforiin syksyyn asti.

Valokuvia maanäytteenotosta

Kerroimme vähän aikaa sitten, kuinka kipsin vaikutuksia maaperään ja kasvustoon tutkitaan. Jotta tiedämme, minkälainen tilanne on ollut ennen kipsin levitystä, käytiin pilottialueella näytteitä ottamassa viime kesänä. Nyt kun kipsin levityksestä on jo kulunut hieman aikaa ja kipsi on liuennut maaperään, oli aika käydä ottamassa uudet näytteet vaikutuksien arvioimista varten.

Riikka Mäkilä ja Terhi Ajosenpää ProAgriasta kävivät toukokuun alussa näytteenottokierroksella pilottialueella. Näytteet otettiin samoista pisteistä, joista ensimmäiset näytteet oli otettu. Näytteiden ottamisessa noudatetaan tarkkoja ohjeita, jotta varmistetaan näytteiden vertailukelpoisuus.

Alta löytyy hieman valokuvia näytteenottokierrokselta. Näytteet on nyt lähetetty Viljavuuspalvelun ja Luken laboratorioihin. Niiden valmistuttua osaamme jo kertoa hieman kipsin vaikutuksesta maaperässä. Tuloksista kerrotaan nettisivuillamme syksyllä.

SAVE-hankkeen maanäytteiden otossa käytetyt välineet.
Vasemmanpuoleisessa kuvassa Terhi Ajosenpää ottaa pintamaanäytettä vertailulohkolta, jolle ei ole levitetty kipsiä. Oikealla Terhi kaivaa pohjamaanäytteen ottoa varten maakuoppaa.
Pohjamaanäytteen otto pohjamaanäytekairalla.
Edustavat maanäytteet koottiin rasioihin, jotka lähetettiin analysoitavaksi Viljavuuspalveluun, ja minigrip-pusseihin, jotka lähetettiin tutkittaviksi Luonnonvarakeskukselle.

Valokuvat Riikka Mäkilä / SAVE-hanke.

SAVE mukana Rantojensiivoustalkoissa

SAVE-hanke osallistui viime lauantaina 29.4. Itämerihaasteen, Helsingin kaupungin ympäristökeskuksen ja Helsingin yliopiston järjestämiin Puhtaat rannat -rantojensiivoustalkoisiin. Talkoilla siivottiin Herttoniemenrantaa Tuorinniemen uimarannan molemmin puolin. Jo perinteeksi muodostuneet Rantatalkoot olivat tänä vuonna osa Itämerihaasteen ja SiistiBiitsin Rantojen siivousaaltoa 29.4. – 6.5.2017, jonka aikana järjestetään talkoita Suomi100-hengessä ja kansainvälisenä yhteistyönä eri puolella Itämerta.

Talkooväki jalkautui maastoon siivoamaan rantoja roskista Kuva: Eliisa Punttila

Koleasta säästä huolimatta talkoisiin saapui mukava määrä porukkaa. Alkuun kuultiin apulaiskaupunginjohtaja Pekka Saurin tervehdys ja seurattiin videotervehdykset Tallinnasta, Turusta ja Pietarista, joissa myös järjestettiin rantatalkoot. Helsingin yliopiston Tvärminnen tutkimusryhmä oli paikalla sukeltamassa roskia uimarannan edustalta sekä esittelemässä akvaarioiden avulla miltä meren pohjassa näyttää. Meren mikroroskista ja SYKEn uusista merien roskaantumisesta kertovista nettisivuista oli kertomassa Outi Setälä Suomen ympäristökeskuksesta. Yleisö pääsi kuulemaan myös, miten rantavedet saadaan kirkkaammiksi peltojen kipsikäsittelyn avulla projektikoordinaattori Eliisa Punttilan kertomana.

Talkooväki koolla. Kuva: Eliisa Punttila

Siivouksen jälkeen talkoolaiset saivat vielä nauttia Loopin tarjoaman talkoolounaan sekä Dave Lindholmin esityksen. Rannoilta löytyi roskaa kymmeniä jätesäkillisiä ja ympäristötaiteilija Tikke Tuuran johdolla mielenkiintoisimmista roskista tehtiin roskataidetta.

Talkoolaiset keräsivät rantaviivan läheisyydestä valtavan määrän roskaa. Pressun päälle kerättynä erikoisimmat löydöt. Kuva: Pinja Näkki
Talkoolaiset saivat tietoa myös peltojen kipsikäsittelystä Kuva: Eliisa Punttila