Juhlavuoden kipsi-ilotulitus

Eliisa Punttila Projektikoor-dinaattori Helsingin yliopisto

Hankkeen toisen vuoden aikana peltojen kipsikäsittely on ottanut ison harppauksen eteenpäin. Alunperin menetelmän idea syntyi maaperäkemian teorian pohjalta. Sitä testattiin ensin laboratoriossa ja sitten pienellä valuma-alueella. Savijoen valuma-alueella toteutetussa kipsipilotissa menetelmä on nyt todettu toteutuskelpoiseksi myös isommassa mittakaavassa. Siksi kipsikäsittely on ehdolla vuoden tulokkaaksi maatalouden vesiensuojelun keinovalikoimaan!

SAVE-hankkeessa tehdään maatalouden vesiensuojelun historiaa ja hanke on huomattu laajalti. Kemianteollisuus ry aloitti Suomi 100- juhlavuoden kunniaksi luodun juttusarjan suomalaisista kemian keksinnöistä esittelemällä ensimmäiseksi peltojen kipsikäsittelyn (lue juttu täältä). Ålandsbankenin Itämeriprojekti -kilpailussa tuomaristo nimesi peltojen kipsikäsittelyn suosikikseen. Kipsikäsittely on ollut esillä myös Ylen Aamu-TV:ssä ja MTV3:n Kymmenen uutisissa.

Savijoen kipsikokeilu on huolellisen koeasetelmansa ja mittakaavansa vuoksi maailmanlaajuisesti ainutlaatuinen. Tällaisen viestin saimme yhdysvaltalaisilta kipsi- ja fosforitutkijoilta kesällä (ks. SAVE goes west). Pennsylvanian osavaltion lisäksi hanketta on esitelty Tallinnassa, Pariisissa, Parmassa – ja Parmaharjussa… SAVE-hanke ei siis syyttä ansaitse omaa Wikipedia-sivuaan!

Maineessa ja loisteessa paistattelu hetkeksi sikseen. Sekä edessä että takana on paljon työtä. Olemme kuluneen vuoden aikana tarkastelleet monesta näkökulmasta sitä, mitä viime syksyn kipsipilotissa ja etenkin sen jälkeen on tapahtunut. Olemme etsineet muutoksen merkkejä Savijoen vedestä, lätäköistä ja kaivovesistä sekä maasta ja viljakasveista. Olemme kysyneet ajatuksia kaikilta pilotissa mukana olleilta. Olemme tutkineet, mitä sammaleet, simpukat ja kalat saattavat kipsistä tuumata. Tätä kautta olemme koonneet aineksia kipsikäsittelyn jatkosuunnitelmia varten, joista kuulette ensi vuonna.

Viljelijöiden ja muiden avaintahojen kokemuksia kipsinlevityksestä ja koko hankkeen organisoinnista kerättiin pitkin vuotta. Viljelijät ovat joutuneet hikoilemaan pitkien kysymyslistojemme kanssa, mistä olemme suuressa kiitollisuuden (ja ehkä myös anteeksipyynnön) velassa. Saimme selityksen sille, miksi niin moni viljelijä lähti ensimmäisten joukossa kokeilemaan kipsikäsittelyä. Taustalla olivat ympäristösyyt, uteliaisuus ja halu toimia maatalouden edelläkävijänä. Kokeiluun oli helppo lähteä mukaan myös siksi, että se oli maksutonta, eikä aiempien kokemuksien mukaan siihen liittynyt suurempia riskejä.

Suomen ympäristökeskuksen vetämänä on pyörinyt valtava luonnontieteellinen tutkimuskokonaisuus. Osa tutkimuksista ei kuulunut alkuperäisiin suunnitelmiimme, mutta otimme hankkeen ulkopuolelta tulleet huolet vakavasti ja päätimme varmistaa, ettei sulfaatista ole haittaa virtavesien eliöstölle tai pohjavesille. Tuloksia on odotettu henkeä pidätellen, mutta ainakaan tähän mennessä valmistuneiden tutkimusten mukaan ei ole syytä huoleen. Savijoessa havaituilla sulfaattipitoisuuksilla ei ollut vaikutusta esimerkiksi vuollejokisimpukoiden toukkiin. Joidenkin tutkimusten, kuten mätirasiakokeiden, tuloksia saamme kuitenkin odottaa vielä ensi vuoteen.

Lopuksi palaan vielä alun teemoihin ja totean, että Suomi 100 -juhlavuoden hengessä voimme kaikki olla ylpeitä siitä, että peltojen kipsikäsittelyä tutkitaan juuri Suomessa. Kipsikäsittely on erinomainen esimerkki juhlavuoden teemasta, yhdessä tekemisestä. Kipsikäsittelyn toteuttaminen vaatii yhteistyötä, ja sen positiiviset vaikutukset ulottuvat laajalle.

Tässä ilotulitukseni peltojen kipsikäsittelystä. Kiitos kuluneesta vuodesta ja kaikkea hyvää vuodelle 2018!

Tilannekuva Savijoelta – vedenlaatu 405 päivää kipsin levityksen jälkeen

Petri Ekholm
Erikoistutkija Suomen ympäristökeskus

Säät ovat suosineet hankettamme. Viime vuoden kuiva syksy sopi kipsin levitykselle, ja tämän syksyn märkyys taas on asettanut kipsin koetukselle. Juuri tällaisia ankaria testejä tarvitsemme voidaksemme arvioida kipsin tehoa. Miltä siis näyttää lupauksemme kirkkaammasta Savijoesta ja vähentyneestä fosforikuormituksesta 405 päivää ja 232 valumavesimillimetriä kipsin levityksen jälkeen?

Blogieni lukijat muistavat, että fosforia kulkeutuu pelloilta vesiin kahdessa muodossa: maa-ainekseen sitoutuneena ja veteen liuenneena. Näiden fosforimuotojen rehevöittävyys ja huuhtoutumismekanismit poikkeavat toisistaan. Niinpä jotkut ympäristötoimet voivat purra maa-ainesfosforin huuhtoutumiseen, mutta jopa lisätä liuenneen fosforin huuhtoutumista. Tätä emme tahdo, ja aiempiin tutkimuksiin perustuva oletuksemme onkin, että kipsi vähentää kummankin fosforimuodon huuhtoutumista Savijoen valuma-alueella

Smoke-elokuvassa Auggie-kauppias otti joka päivä valokuvan liikkeensä edustan kaupunkimaisemasta. Jos tämä Harvey Keitelin esittämä hahmo olisi pitänyt kauppaansa Savijoen rannalla, saisimme kuivina kausina katsoa kuvia, jotka näyttäisivät pitkästyttävän samanlaisilta. Tulva-aikoina taas päivittäinenkään ”kuvanotto” ei riittäisi ilmentämään veden ja sen kuljettaman fosforin vaihtelua.

SAVE-hankkeen anturit rekisteröivät Savijoen veden laatua kerran tunnissa. Näin saamme tarkan käsityksen veden sameudesta ja sitä kautta maa-ainesfosforin pitoisuudesta. Ihan joka tunti dataa ei kuitenkaan kerry, sillä antureissa on aika ajoin häiriöitä: ne ovat hautautuneet joen pohjamutaan, niiden optiset sensorit ovat tukkiutuneet roskista ja välillä ne on ollut pakko nostaa ylös huoltoa varten. Katkostilanteet hoidan laskennallisesti; kokonaiskuva joesta kestänee pienen editoinnin.

Savijoki rauhoittumassa joulun viettoon. Mittapato joulukuussa 2017. Kuva: Jarkko Ylijoki

Tunnittaisesta aineistosta lasken kullekin havaintopaikalle maa-ainesfosforin kulkeuman kertomalla pitoisuuden valunnalla­­ – tai siis laittamalla SAS-nimisen ohjelmiston duuniin. Ohjelmistolta laskenta ja laatukonversiot hoituvat muutamassa sekunnissa, minulta siinä menisi hermot. Tulokseksi saan tiedon, kuinka paljon maa-ainesfosforia on kulkeutunut kipsittömällä vertailualueella Savijoen mittapadolla, pilottialueen keskellä Yliskulmassa ja alajuoksulla Parmaharjulla. Tulkitessani tuloksia oletan toistaiseksi, että kaikki maa-ainesfosfori tulee pelloilta, mikä ei toki pidä paikkaansa, mutta kohtelee kipsikäsiteltyjä ja kipsittömiä peltoja tasapuolisesti. Aineiston kertyessä myös laskentamenetelmää tullaan kehittämään niin, että erilaisia valuma-aluetekijöitä ja epävarmuuksia otetaan huomioon tilastotieteen keinoin.

Ajalta ennen kipsin levitystä aineistoa on 164 päivältä, helmikuun puolivälistä heinäkuun 2016 loppuun. Vettä tuona jaksona valui 112 mm ja Savijoen yläjuoksun vertailualueella huuhtoutui 0,34 kiloa maa-ainesfosforia peltohehtaaria kohden. Yliskulmassa vastaava arvo oli 0,46 kg/ha, mikä tarkoittaa, että pilottialueen yläosassa, mittapadon ja Yliskulman välisellä alueella, pellot ovat olleet kuormittavampia kuin vertailualueella. Pilottialueen yläosassa peltohehtaarilta on huuhtoutunut 0,53 kg fosforia ja pilottialueen alaosassa, Yliskulmalta Parmaharjulle, lähes saman verran 0,48 kg/ha. Miten tilanne muuttui kipsin levityksen myötä?

Kipsin levityksen jälkeistä aineistoa on toistaiseksi käsitelty 405 päivän ajalta ja 232 valuntamillimetrin osalta, marraskuun 2016 alusta joulukuun kymmenenteen päivään 2017. Tämän jakson aikana vertailualueen pelloilta kulkeutui 1,7 kg/ha maa-ainesfosforia, mutta kipsinlevitysalueen keskiosassa vain 1,4 kg/ha ja alaosassa 1,3 kg/ha. Jotakin on siis tapahtunut. Jotta näistä luvuista päädyttäisiin kipsin todelliseen tehoon, meidän on otettava huomioon kipsikäsiteltyjen peltojen määrä. Nimestään huolimatta kipsinlevitysalueen yläosassa ”vain” 47 % pelloista sai kipsikäsittelyn, alaosassa 54 %. Kun tämä otetaan huomioon, kipsikäsitellyiltä pelloilta on huuhtoutunut 42 % vähemmän maa-ainesfosforia kuin kipsittömiltä pelloilta. Tällaiseen lukuun päästään Yliskulman mittausten perusteella. Parmaharjun mukaan vähennysprosentti on korkeampi: 50. Kipsin teho on vieläkin suurempi, jos laskennassa otetaan huomioon se, että kipsinlevitysalueen pellot vaikuttivat olevan luontaisesti kuormittavampia kuin vertailualueella.

Entäpä liuennut fosfori? Siitä meillä on huomattavasti harvempi aineisto, vaikka Lounais-Suomen vesiensuojeluyhdistys on tuottanut meille lisäaineistoa. Koska liuenneen fosforin arviointi perustuu käsinäytteenottoon ja laboratoriomäärityksiin, ”valokuvia” eli näytteitä on otettu yli kahden viikon välein. Pitoisuudet ovat Parmaharjulla olleet noin 10 % pienempiä kuin mittapadolla, joten kipsikäsitellyiltä pelloilta näyttää huuhtoutuneen noin viidenneksen vähemmän liuennutta fosforia kuin kipsittömiltä pelloilta. Koska liuenneen fosforin pitoisuudet eivät vaihtele niin voimakkaasti kuin maa-ainesfosforin, tilannetta ei tarvitse joka päivä saati sitten joka tunti seurata. Tarkempi arvio vaatisi kuitenkin vielä muutaman näytteen täyden tulvatilanteen ajalta.

Maa-ainesfosforin osalta tiedämme, että kipsi on tepsinyt: Savijoki on tullut kirkkaammaksi. Muutosta voi ehkä olla vaikea uskoa. Syksyllä joessa on näkynyt, erästä viljelijää lainatakseni, kaikkea polkupyörää pienempää. Vaikka ihmissilmä ei eroa havaitsisikaan, Luoteen antureilla mitattuna sameusero on selvä. Toki myös maa-ainesfosforin vähentymäprosentti tarkentuu aineiston täydentyessä ja tulkintamenetelmien parantuessa, mutta enemmän alamme nyt jännittää sitä, kuinka pitkään kipsi vielä tehoaa. Laskelmieni mukaan noin 85 % kipsistä on vielä maassa, joten oletan anturien jatkossakin rekisteröivän Yliskulmalla ja Parmaharjulla pienempiä sameuksia kuin mittapadolla. Ennen kipsin levitystä tilannehan oli toisinpäin.

Kasvinsuojeluaineiden käyttö Savijoen valuma-alueella

Suomen ympäristökeskuksen tutkijat Katri Siimes, Ville Junttila ja Emmi Vähä seuraavat kasvinsuojeluaineiden käyttöä ja huuhtoutumista Savijoen valuma-alueella. Kasvinsuojeluaineiden seuranta on jo itsessään hyvin tärkeää. Alueella toteutetun kipsipilotin myötä voidaan tutkia myös sitä, vaikuttaako kipsikäsittely kasvinsuojeluaineiden kulkeutumiseen vesistöihin.  

Mittapato mittaa veden virtaamaa Savijoessa lokakuussa 2017. Kuva: Jarkko Ylijoki

Vuosi sitten toteutetussa SAVE-hankkeen kyselytutkimuksessa maanviljelijöiltä kysyttiin myös kasvinsuojeluaineiden käytöstä. Lämmin kiitos kaikille kyselyyn vastanneille! Vastaukset ovat erittäin tärkeitä kasvinsuojeluaineiden huuhtoutumista tutkittaessa. Tässä tekstissä käsitellään lyhyesti kyselyn tuloksia ja Savijoen vesinäytteiden kasvinsuojeluainepitoisuuksia.

SAVE:n kipsipilottialuetta koskeviin kasvinsuojeluainekysymyksiin vastasi yhteensä 52 tilaa. Vertailualueelta saatiin lisäksi kolmen tilan kasvinsuojeluainekäyttöä koskevat tiedot. Pilottialueen tiloilla vuonna 2016 käytetyissä kasvinsuojeluainevalmisteissa oli yhteensä 59 eri tehoainetta, kun taas vertailualueella käytettiin 10 eri tehoainetta. Kaikkia vertailualueella käytettyjä tehoaineita oli käytetty myös pilottialueella. Tässä kirjoituksessa tarkastelemme näitä 10 tehoainetta sekä niitä aineita, joita käytettiin pilottialueella vähintään 25 %:lla alasta tai määrällisesti eniten (>35 kg). Taulukossa 1. on esitetty näiden aineiden käyttö.

Taulukko 1. Valittujen tehoaineiden käyttömäärät ja käsitellyn peltoalan osuus pilottialueella ja vertailualueella vuonna 2016. Rikkakasvien torjuntaan käytetyt aineet on merkitty vihreällä, kasvitautien torjuntaan käytetyt aineet violetilla ja kasvunsääteet oranssilla.

Eniten käytettiin glyfosaattia, jonka käyttömäärä pilottialueella oli 1000 kg ja vertailualueella 52 kg. Glyfosaatilla käsitelty pinta-ala kattoi peltoalasta pilottialueella 39 % ja vertailualueella 44 %. MCPA:ta (eli 2-metyyli-4-kloorifenoksietikkahappoa) ruiskutettiin laajimmalle alueelle: pilottialueella sillä käsiteltiin 42 % peltoalasta ja vertailualueella 9 % peltoalasta (Taulukko 1).

 

Käytetyimmät tehoaineet: MCPA ja glyfosaatti

MCPA:ta ruiskutettiin tutkitulla Savijoen valuma-alueella yli 40 % peltoalasta, mikä on viljavaltaisilla alueilla tavanomaista. MCPA.ta on käytetty 1950-luvulta lähtien leveälehtisten rikkojen torjuntaan mm. viljapelloilla ja se on edelleen toiseksi eniten myyty kasvinsuojeluaine Suomessa. MCPA:n laajamittainen käyttö selittänee myös sen, että se on ollut yleisimmin havaittu kasvinsuojeluaine pintavesien kasvinsuojeluaineiden seurannassa. Savijoelta havaitut pitoisuudet olivat enimmäkseen pieniä, mutta ruiskutuskausi näkyi selvästi MCPA:n pitoisuuksien nousuna vesissä. Pitoisuuksien keskiarvo jäi vuosikeskiarvolle asetettua ympäristönlaatunormia (1,6 µg/l) alhaisemmaksi.

Glyfosaatti on Suomen myydyin herbisidi eli rikkakasvien torjunta-aine. Sen käytön uudelleenhyväksymisestä EU:ssa käydään edelleen keskustelua (Tukes). Glyfosaatin osuus Suomen kasvinsuojeluaineiden tehoainemyynnistä oli 56 % (n. 850 tonnia) vuonna 2016 (Tukes). Tällä määrällä voisi käsitellä noin kolmasosan Suomen maatalousalasta.  Glyfosaattia käytetään erityisesti juuririkkojen, eli monivuotisten kasvien juurista esiin pomppaavien kasvustojen, torjuntaan. Juuririkkojen torjunnan tarve on kasvanut kevennettyjen muokkausmenetelmien yleistyessä. Sen seurauksena glyfosaatin myyntimäärät ovat kasvaneet 1990-luvulta lähtien.  Glyfosaatin käyttömäärät Savijoen valuma-alueella eivät poikenneet tavanomaisista käyttömääristä Etelä-Suomessa. Muutama kipsipilottialueen viljelijä on mukana myös Luonnonvarakeskuksen glyfosaattihankkeessa (GlyFos II -hankkeen kotisivut).

Glyfosaattia ja sen hajoamistuotetta AMPA:a havaittiin Savijoen vesinäytteistä, mutta pitoisuudet keikkuivat enimmäkseen määritysrajan (0,10 µg/l) tuntumassa. Glyfosaatin pitoisuus oli huomattavasti pienempi kuin sille ehdotettu ympäristönlaatunormi (100 µg/l; Kontiokari & Mattsoff, 2011). Glyfosaatin laajan käytön huomioiden sitä havaitaan vesistöistä melko pieniä määriä. Tämä johtunee siitä, että se sitoutuu erittäin vahvasti maaperään.

 

Muut pilottialueella yleisesti käytetyt aineet

Protiokonatsoli ja tebukonatsoli olivat yleisimmin käytetyt kasvitautien torjunta-aineet tutkitulla alueella. Tebukonatsolia havaittiin yleisesti loppukesästä 2016 pilottialueen alapuolisella näytepisteellä, mutta sen pitoisuudet jäivät noin kolmannekseen ehdotetusta ympäristönlaatunormista. Protiokonatsolin pitoisuutta ei ole analysoitu Suomen vesistöseurannassa. Se ei myöskään tässä seurannassa kuulunut laboratorion analysoitujen aineiden pakettiin.

Fluroksipyyriä, florasulaamia ja klopyralidia levitettiin kutakin yli neljännekselle peltoalasta pilottialueella. Näitä aineita saa käyttää mm. kevätviljojen ja apilattomien nurmien rikkakasvien torjunnassa. Näitä havaittiin vesinäytteistä, mutta ehdotetut ympäristönlaatunormit (fluroksipyyrille 460 µg/l; florasulamille 0,016 µg/l ja klopyralidille 50 µg/l) eivät ylittyneet vesinäytteissä.

Pilottialueella käytettiin suuria määriä diklorproppi-P:tä ja mekoproppi-P:tä, jotka ovat viljoilla käytettäviä fenoksihappoherbisidejä kuten MCPA. Niitä havaittiin Savijoen vesinäytteissä, mutta pitoisuudet olivat pieniä.

Myös perunan sekä mm. härkäpavun viljelyssä käytettävää aklonifeenia käytettiin melko suuri määrä, vaikka levitysala ei kovin suuri ollutkaan (7 % peltoalasta). Aklonifeenia ei kuitenkaan havaittu Savijoen vesinäytteistä.

Juurikkaiden rikkakasvien torjunnassa käytettävää metamitronia ruiskutettiin vain prosentille peltoalasta, mutta peltolohkoa kohden käytettävät määrät olivat suuria ja ainetta on ruiskutettu todennäköisesti monta kertaa kesän aikana. Metamitroni sitoutuu melko heikosti maahan ja huuhtoutuu siksi helposti. Sekä metamitronia että sen hajoamistuotetta havaittiin vesinäytteistä, mutta pitoisuudet eivät ylittäneet ympäristönlaatunormia.

 

Muut vertailualueella käytetyt torjunta-aineet

Taulukon 1. kuuden viimeisen aineen käyttö ei ollut kovin laajamittaista pilottialueella, mutta aineet ovat kiinnostavia, sillä niitä oli käytetty sekä vertailualueella että pilottialueella. Kasvinsuojeluaineista yleisimmin käytetyt aineet, tai edes yleisimmin havaitut aineet, eivät ole välttämättä niitä, joista syntyy suurin ympäristöriski.

Triadimenoli, imatsaliili ja pikoksistrobiini ovat kasvitautien torjunta-aineita. Näistä triadimenolia ja imatsaliilia käytettiin Savijoella lähinnä peittausaineina. Pikoksistrobiinia havaittiin molemmilla näytteenottopaikoilla, triadimenolia vain vertailualueen mittapadolla. Triadimenolin ja pikoksistrobiinin pitoisuudet eivät ylittäneet ehdotettuja ympäristönlaatunormeja.

Triasulfuroni ja tritosulfuroni ovat pien’annosherbisidejä eli rikkakasvien torjunta-aineita, joiden levitysmäärät peltohehtaaria kohti ovat hyvin pieniä. Ne ovat kuitenkin erittäin kulkeutuvia aineita. Tritosulfuronia havaittiin Savijoesta melko yleisesti, mutta sen pitoisuus ei ylittänyt ehdotettua ympäristönlaaturnomia (0,75 µg/l). Triasulfuroni on vesikasveille erittäin haitallista ja sille ehdotettu ympäristönlaatunormi on vain 0,0018 µg/l (Kontiokari & Mattsoff, 2011). Triasulfuroni on ainoa markkinoilla oleva kasvinsuojeluaine, jonka pitoisuus on ylittänyt sille ehdotetun ympäristönlaatunormin jokivesissä 2010-luvulla toistuvasti (Karjalainen ym. 2014). Vuonna 2016 triasulfuronia ei havaittu Savijoen vesinäytteissä, mutta elo-syyskuussa 2017 sitä havaittiin muutamasta näytteestä melko korkeina pitoisuuksina. Laskennallinen vuosikeskiarvo ei kuitenkaan ylittänyt ehdotettua ympäristönlaatunormia. Triasulfuroni poistui käytöstä syyskuussa 2017.

Näytteenottoa mittapadolla ja Bränikkälässä viime kesänä ja keväällä 2016. Kuvat: Katri Siimes ja Heidi Ahkola

Yhteenvetoa käytettyjen aineiden havaitsemisesta vesissä

Tarkasteluun valituista (taulukossa 1. näkyvistä) 18:sta kasvinsuojeluaineiden tehoaineesta 15 analysoitiin vesinäytteistä. Kahden aineen kohdalla (aklonifeeni ja pinoksadeeni) pitoisuudet olivat niin pieniä, ettei niitä havaittu vesinäytteistä, joten vain 13 aineesta saatiin numeerista pitoisuustietoa. Havaitsemiseen vaikuttavat mm. laboratoriossa käytetty määritysraja ja näytteenoton ajoittuminen. Uomaan kulkeutumiseen vaikuttavat lukuisat tekijät kuten aineen sitoutuminen, hajoamisnopeus, käsitellyn pellon etäisyys uomasta ja sääolot levityksen aikaan ja sen jälkeen.

Nykytiedon mukaan tutkimusalueella yleisimmin käytetyt aineet eivät aiheuta vesieliöille merkittävää haittaa. On kuitenkin huomioitava, että tässä tarkastelussa on ollut mukana vain 18 kyselytutkimuksessa mainituista 59 aineesta, eikä aineiden yhteisvaikutuksia ole huomioitu mitenkään.

 

Mihin tietoja tarvitaan tulevaisuudessa?

Suomessa on vain vähän tietoa kasvinsuojeluaineiden huuhtoutumisesta. Savijoen aineistosta lasketaan tehoainekohtaisia päästökertoimia, joita käytetään hyväksi muun muassa kasvinsuojeluaineiden riskien arvioinnissa ja hallinnassa. Luotettavien päästökertoimien laskemiseksi tarvitaan ainekohtainen käyttömäärätieto koko mittauspisteen yläpuolisella valuma-alueella. Käytännössä kyselyn ulkopuolelle jääneiden tilojen kasvinsuojeluaineiden käyttö pitää arvata, vaikka erilaisia interpolointimenetelmiä käytettäisiinkin, ja tästä aiheutuu suuri epävarmuus laskettavaan päästökertoimeen.

Päästökertoimien avulla voidaan selvittää kipsin vaikutusta kasvinsuojeluaineiden huuhtoumiin. Mikäli pilottialueen päästökerroin muuttuu kipsin levityksen jälkeen (2016 vs 2017) enemmän kuin vertailualueen päästökerroin (2016 vs 2017), voidaan olettaa erojen yhdeksi syyksi kipsin vaikutus. Vertailu voidaan tehdä luotettavasti vain sellaisille aineille, joille on voitu laskea päästökertoimet sekä vertailualueella että pilottialueella kahtena peräkkäisenä vuotena. Näillä näkymin se tulee olemaan mahdollista ainakin glyfosaatin ja MCPA:n kohdalla.

Jos tutkimus osoittaa, että kipsin levitys lisää kasvinsuojeluaineiden huuhtoutumista, tulisi kipsin levityksen riskejä arvioida vielä tarkemmin alueilla, joilla kasvinsuojeluaineet aiheuttavat ongelmia vesistöissä. Mikäli kipsi vähentää huuhtoutumista, kipsiä voitaisiin mahdollisesti hyödyntää alueilla, joilla kasvinsuojeluaineet aiheuttavat riskejä vesieliöille. Tutkittu tieto on hyödyllistä myös siinä tapauksessa, jos kipsi ei merkittävästi vaikuta kasvinsuojeluhuuhtoumiin.

Mikäli joku alueen viljelijä haluaa vielä täydentää kasvinsuojeluaineiden käyttötietokyselyä vuoden 2016 osalta, otamme kaiken tiedon ilolla vastaan. Samoin kannustamme kaikkia vastaamaan vuoden 2017 käyttötietokyselyihin!

 

Katri Siimes, Ville Junttila, Emmi Vähä ja Samuli Puroila
Suomen ympäristökeskus (SYKE)

Lisätietoja: Katri Siimes, etunimi.sukunimi@ymparisto.fi

 

Vesinäytteiden kasvinsuojeluainepitoisuudet on analysoitu maa- ja metsätalousministeriön rahoittamassa Maa- ja metsätalouden kuormituksen ja sen vesistövaikutusten seuranta (MaaMet)-hankkeessa.

Kontiokari & Mattsoff 2011. Proposal of Environmental Quality Standards for Plant Protection Products. The Finnish Environment 7/2011. (Linkki: https://helda.helsinki.fi/handle/10138/37029)

Karjalainen, Siimes, Leppänen ja Mannio 2014. Maa- ja metsätalouden kuormittamien pintavesien haitta-aineseuranta Suomessa. Seurannan tulokset 2007–2012. Suomen ympäristökeskuksen raportteja 38/2014

 

 

 

 

 

 

 

 

 

Vaikuttaako kipsinlevitys kaloihin?

Suomen ympäristökeskuksen tutkijat Jarno Turunen ja Janne Markkula sähkökalastamassa Savijoella, Liedonperällä lokakuussa 2017.  Kuva: Jukka Rapo, Keksi / Ympäristöministeriö.

SYKEn tutkijat suorittivat lokakuussa sähkökalastuksia Savijoen valuma-alueella. Sähkökalastuksilla pyrittiin saamaan selville onko kipsin levityksellä merkittäviä vaikutuksia Savijoen kalastoon. Kipsin levitys lisää veden sulfaattipitoisuuksia, millä voi korkeina pitoisuuksina olla haitallisia vaikutuksia makean veden kaloihin ja niiden lisääntymiseen. Toisaalta kipsin levitys vähentää maahiukkasten huuhtoutumista vesistöön, mikä voi parantaa virtakutuisten kalojen, kuten taimenen, lisääntymismenestystä. Maahiukkaset voivat joen pohjalle laskeutuessaan tukkia sorapohjia veden virtaukselta, mikä haittaa sorapohjille kutevien kalojen, kuten taimenen, mätimunien kehitystä.

Sähköä Savijokeen

Kalaston selvitys tehtiin sähkökalastamalla, joka on standardimenetelmä virtavesien kalastoselvityksissä ja -tutkimuksissa. Menetelmässä sähkökalastuslaitteella luodaan kalastettavalle alueelle tasavirtasähkökenttä, mikä tainnuttaa kalat (katso menetelmästä kertova video). Sähkökalastajan apuna on haavitsija, joka nappaa taintuneet kalat haaviin. Haavista kalat kipataan vesiastiaan ja pyynnin päätyttyä lajit tunnistetaan ja mitataan. Sähkökalastetun alueen pinta-ala mitataan ja saaliista lasketaan kalalajien tiheyksiä suhteessa alaan. Sähkökalastus ei vaurioita kaloja, joten ne voidaan laskea mittausten ja kalojen virkoamisen jälkeen takaisin veteen.

Sähkökalastaja ja haavitsija yhteistyössä syksyisessä jokimaisemassa. Kuva: Jukka Rapo, Keksi / Ympäristöministeriö.

Sähkökalastus toteutettiin neljässä paikassa Savijoen valuma-alueella: Rynkön koskella, Yliskulman koskialueella, Yliskulman purossa ja Mittapadon koskella. Paikoista oli, Mittapatoa lukuun ottamatta, aiempaa sähkökalastusaineistoa ajalta ennen kipsin levitystä, johon saalista voitiin verrata. Mittapadon paikka taas sijaitsee kipsin levitysalueen ulkopuolella, joten myös sen saalista käytettiin kipsin vaikutusten arviointiin.

Kivisimppu, kivennuoliainen… taimen!

Kuten usein käy, päätti luonto taas tehdä tutkijoiden työstä hankalaa. Koetta edeltävän viikon sateet olivat nostaneet Savijoen veden tulvakorkeuteen eikä ennuste luvannut helpotusta seuraavillekaan viikoille. Homma päätettiin toteuttaa sovittuna päivänä.

Tulvalle eväänsä lotkauttamatta sähkökalastajat tekivät homman suunnitellusti. Saalistakin saatiin, jos kohta suuret maineteot jäivät uupumaan. Saalis koostui valtaosin kivisimpuista ja kivennuoliaisista, joita saatiin kymmenittäin. Taimenista saatiin kaksi havaintoa. Toinen, 31 cm pitkä vonkale, eksyi haaviin Rynkön koskesta ja toinen, 8 cm poikanen, Yliskulman purosta. Verrattuna aiempiin kalastuksiin, olivat kivennuoliaisten tiheydet samalla tasolla ja kivisimppujen jonkin verran korkeammalla syksyllä 2017.

Haaviin saatu kivennuoliainen tutkijan kädellä. Virrottuaan kalat pääsivät takaisin jokeen. Kuva: Jukka Rapo, Keksi / Ympäristöministeriö.

Savijoessa aiemmin tavattuja särkikaloja, kuten turpaa ja töröä, ei saatu saaliiksi. Näiden kalojen tiheydet ovat olleet pieniä myös aiemmissa kalastuksissa, joten puuttuminen saaliista selittynee satunnaisuudella ja hankalilla olosuhteilla. Lisäksi vesi oli jo jäähtynyt noin 8 asteiseksi, joten kyseiset lajit ovat voineet poistua koskialueilta talvehtimaan miedommin virtaaviin suvantoihin.  Kyseisiä lajeja ei myöskään saatu vertailualueena toimivalta Mittapadon paikalta, josta saaliiksi tuli vain kivennuoliaisia.

Taimenten tiheyksissä huomio kiinnittyy Yliskulman puron pieneen tiheyteen (0.6 yksilöä / 100 m2) verrattuna vuoden 2012 tiheyksiin (17 yksilöä / 100 m2). Ero selittynee osittain istutuksilla, joita ei keväällä 2017 tehty. Puroon on istutettu viimeksi 2016 keväällä taimenen vastakuoriutuneita poikasia (8000 kpl), joita ei siis tällä kertaa saatu saaliiksi. Ongelmallista arvion kannalta on myös se, ettei kalastuksia ole tehty viime vuosina. Taimenen poikasten luontainen kuolevuus vaihtelee runsaasti vuosien välillä. Saaliiksi saatu 8 cm poikanen edustaa todennäköisesti 2017 keväällä luonnonkudusta kuoriutuneita poikasia. Sen löytyminen on hyvä merkki ja osoittaa, että purossa on myös luontaista lisääntymistä.

Aiempien syksyjen ja syksyn 2017 (lihavoitu) sähkökalastusten tulokset. Luvut ovat ilmoitettu yksilömäärinä per 100 m2 kalastettua alaa. Tiheydet on laskettu yhden pyynnin perusteella.

Mitä tuloksista voisi päätellä?

Tulva varmasti heikensi kalojen pyydystettävyyttä. Vaikuttaa kuitenkin siltä, että kipsin levitys ei ole vaikuttanut ainakaan haitallisesti tyypillisiin koskikaloihin kuten kivisimppuihin ja kivennuoliaisiin. Taimenen osalta eroa ei Savijoen pääuomassa ole, ja ero Yliskulman puron taimentiheyksissä selittynee istutuksilla, tulvalla ja luontaisilla tekijöillä. Savijoen sulfaattipitoisuudet ovat olleet kipsin levityksen jälkeen keskimäärin 30 mg/l ja hetkellisesti reilu 400 mg/l. Yli 400 mg/l pitoisuuksilla on havaittu lieviä negatiivisia vaikutuksia lohikalojen mädin kehitykseen pitkän ajan altistuskokeissa, mutta hetkellisinä piikkeinä vaikutusta tuskin on.

Vertailualueen saaliin, aiempien sähkökalastusten ja matalien sulfaattipitoisuuksien valossa kipsin levitys ei näytä vaikuttavan merkittävästi kaloihin tai muihinkaan vesieliöihin. Toki vahvemman näytön saamiseksi sähkökalastusseurantaa olisi hyvä jatkaa ensi vuonna. Hankkeessa on lisäksi käynnissä taimenen mädin haudontakoe, joka antaa tärkeää lisävalaistusta kipsin levityksen vaikutuksista taimeneen. SAVE-hanke ei siis ole etsimässä pelastuskeinoja Saaristomerelle virtavesiluonnon kustannuksella.

Jarno Turunen, SYKE

 

Näkyykö kipsikäsittely Savijoen levämäärissä?

Syksyllä 2016 SYKEn tutkijat aloittivat Savijoella pohjalevien kasvua mittaavan kokeen. Kokeessa selvitetään kipsikäsittelyn vaikutuksia Savijoen pohjassa kasvavien päällyslevien tuotantoon. Koe on osa Maa- ja metsätalouden vesistövaikutusten seurantaohjelmaa ja sitä jatketaan tänä syksynä.

Levien määrä ja lajisto on tärkeä vesistöjen ekologisen tilan mittari. Virtavesissä pohjalla kasvavat päällyslevät ovat laiduntavien pohjaeläinten ravintoa. Pohjaeläimet taas ovat tärkeä kalojen ravintokohde.

Levien määrään vaikuttaa erityisesti saatavilla olevien ravinteiden ja valon määrä. Kipsikäsittely saattaakin siis merkittävästi vaikuttaa levien määrään ja tätä myötä Savijoen tilaan.

Rautakaupan kautta maastoon

Kokeen käytännön valmistelu alkoi rautakaupasta. Pohjalevien tuotantoa mitataan joen pohjalle aseteltavilta tummanharmailta lattialaatoilta, jotka ankkuroitiin pohjaan rakennustiilten ja kulmarautojen avulla. Laatat on kiinnitetty silikonilla kulmarautoihin ja kulmaraudat nippusiteillä rakennustiiliin.

Samalla vedenalaisen valon määrää ja veden lämpötilaa mitataan 30 minuutin välein tiiliin kiinnitetyillä jatkuvatoimisilla loggereilla.

Tutkimusta tehdään kahdella koealueella. Toinen paikoista sijaitsee kipsinlevityksen vaikutuspiirissä (Savijoki Koskela) ja vertailupaikka joen yläjuoksulla alueella (Savijoki mittapato).

Vasemmalla tutkimuspaikat Savijoessa. Savijoki Koskela on kipsinlevityskokeen vaikutuspiirissä. Yläjuoksun tutkimuspaikka Savijoki mittapato sijaitsee kipsinlevitysalueen yläpuolella. Oikeanpuoleisessa kuvassa SYKEn harjoittelija Maria Rajakallio nostaa uomassa ollutta levälaattaa mittauksiin. Kuva: Tiina Laamanen, SYKE

Ensimmäinen osa kokeen laatoista vietiin paikoilleen 29.8.2016 ja haettiin pois kokeen puolivälissä 11.10. Toinen osa laatoista vietiin paikoilleen kokeen puolivälissä 11.10. ja haettiin pois 9.11.

Laatoilta mitataan levien määrää sekä maastossa kenttämittarilla että SYKEn laboratoriossa tarkemmin uuttomenetelmällä. Kullakin tiilellä on kaksi laattaa. Toiselta laatoista mitattiin levämäärä heti niiden uomasta poiston jälkeen BenthoTorch-fluorometrillä. Fluorometri on laite, jolla voidaan maastossa mitata kolmen leväryhmän määrää a-klorofyllin fluoresenssina. A-klorofyllin summana saadaan arvio levien kokonaismäärästä. Mittaamisen jälkeen laattaparin toinen puolisko suljettiin minigrip-pussiin ja pakastettiin odottamaan laboratorioanalyysejä.

BenthoTorch-fluorometrillä on kätevä mitata maastossa päällyslevien määrää. Kuvassa Marja Lindholm Muhosjoella. Oikeanpuoleisessa kuvassa uomasta nostettuja laattapareja Savijoen Koskelan tutkimuspaikalla lokakuussa 2016. Laatoilta on juuri tehty BenthoTorch-fluorometrilla levämäärien mittaukset (pyöreät rengasmaiset jäljet vasemmanpuolimmaisilla laatoilla). Kuvat: Tiina Laamanen, SYKE

Talvi yllätti!

Syksyn 2016 olosuhteet olivat talviset jo marraskuussa. Tällöin ei kenttämittauksia pystytty enää tekemään, koska uoma oli jäässä! Yllättäen saapuneen talven vuoksi vain kaksi alapuolisen tutkimuspaikan loggereista onnistuttiin kokeen päättyessä löytämään. Yläosalla talvehtinut valologgeri, ja sen data, saatiin kuitenkin onnekkaasti pelastettua tänä kesänä.

Talviset olosuhteet yllättivät viimeisellä käyntikerralla 9.11.2016. Kuvassa jään alla olevia laattoja yläjuoksun Savijoen mittapadon tutkimuspaikalla. Kuva: Tiina Laamanen, SYKE

Mitä tulokset kertovat?

Syksyn 2016 toteutetun seurannan avulla saatiin selville tärkeää taustatietoa Savijoen levämääristä. Nyt tiedetään molempien tutkimusalueiden levämäärät ennen kipsikäsittelyn vaikutusta. Näiden taustapitoisuuksien avulla voidaan jatkossa arvioida kipsin mahdollisia vaikutuksia.

Kokonaislevämäärä oli klorofylliuuttomenetelmällä arvioituna Koskelan alueella keskimäärin 6,9 µg/cm² ja mittapadon tutkimuspaikalla 1,3 µg/cm². Yläjuoksun vertailualueen pienempi päällyslevien tuotanto selittyy todennäköisesti valaistus- ja virtausolosuhteiden eroilla, sillä paikkojen veden ravinnepitoisuudet eivät eronneet ennen kipsikäsittelyä.

Levämäärien arvioinnissa oli menetelmissä selvä eri. BenthoTorchilla mitattuna Koskelan alueen levämäärä oli keskimäärin 3,2 µg/cm² ja mittapadon tutkimuspaikalla 0,7 µg/cm². BenthoTorchilla ja uuttomenetelmällä arvioidut klorofyllimäärät vastasivat melko hyvin toisiaan pienillä levämäärillä. Kun leväkasvustoa oli paljon, fluorometrillä arvioitu levämäärä oli kuitenkin vain puolet uuttomenetelmällä arvioidusta. Fluorometri mittaakin levämäärän optisesti vain pintakerroksen perusteella, kun taas uuttomenetelmässä mitataan koko laatan levästö.

Laboratorion uuttomenetelmällä (y-akseli) ja BenthoTorch-kenttäfluorometrillä (x-akseli) mitattujen laattojen klorofyllimäärien suhde syksyn 2016 ensimmäisellä koejaksolla.

Mitä seuraavaksi?

Päällyslevien määrää mittaava koe toistetaan syksyllä 2017. Tämän jälkeen tuloksia voidaan rinnastaa vuoden 2016 mittauksiin ja arvioida mahdollisten vedenlaadun muutosten vaikutusta pohjalevien määrään.

Tilanne on erittäin mielenkiintoinen. Jos kipsikäsittelyn myötä leville saatavilla olevien ravinteiden määrä vähentyisi, voisi myös levien määrän olettaa vähenevän. Toisaalta jos kipsikäsittely kirkastaa jokivettä, saattaa lisääntynyt valon määrä lisätä levien kasvua. Jatkuvatoimisten loggereiden avulla seuraamme valon määrää myös tänä syksynä.

Jukka Aroviita, Tiina Laamanen, Jarno Turunen ja Maria Rajakallio, SYKE.

Virtaaman mittaamisesta

Edellisessä kirjoituksessa kerrottiin kuinka veden laatua seurataan, mutta tärkeää on myös tietää kuinka paljon vettä joessa virtaa. Kuulostaa äkkiseltään yksinkertaiselta, mutta tarkemmin kerrottuna on varsin mielenkiintoinen ja moniulotteinen asia. Miksi veden määrä pitää tietää ja kuinka sitä mitataan? Tästä kertoo SYKEn tutkimusinsinööri Jarmo Linjama.

Jo muinaiset roomalaiset olivat kiinnostuneita virtaavan veden määrästä. He nimittäin hoitivat vesihuoltoaan akvedukteilla, joita pitkin vuoristojäätiköiden sulamisvesi johdettiin kaupunkeihin. Rakenteet olivat valtavia ja kallistusta vain 2 cm kilometrillä. Melkoista insinöörityötä 2000 vuotta sitten – vetää vesi-insinöörin edelleen hiljaiseksi. Tosin Ramses II teetti orjillaan samanlaisia rakenteita Egyptissä jo 1200 vuotta aiemmin, mutta se on toinen juttu. Miten tämä liittyy virtaaman mittaamiseen? Ei välttämättä mitenkään muuten kuin että akveduktit piti mitoittaa kattamaan kaupungin vedentarve ja niiden kautta tulevaa vesimäärää todennäköisesti mitattiin seuraamalla kuinka kauan tietyn suuruisen vesisäiliön täyttyminen kestää. Ja sainpahan aloittaa tekstin roomalaisviittauksella.

Roomassa käytettyä virtaamamittausmenetelmää käytettiin sen keksimisen jälkeen noin 1500 vuotta. Kun haluttiin tietää paljonko vettä purossa lirisee, sitä voitiin yrittää arvioida silmämääräisesti. Jos purossa sattui olemaan pieni putous, tulos tarkentui työntämällä ämpäri alle ja laskemalla täyttymiseen kuluvat sekunnit.

Savijoen virtausta loppukesästä
Savijoen virtaamaa voi olla hankala arvioida silmämääräisesti. Kuva: Samuli Puroila

Suuren joen rannalla näistä konsteista ei ole apua. Virtaamaa kuitenkin pystyy arvioimaan, jos tiedetään uoman poikkileikkauspinta-ala ja veden virtausnopeus. Virtaama saadaan kertomalla nämä luvut keskenään. Suomessa tämä oivallettiin viimeistään 1700-luvun puolivälissä. Veden pinnalla kelluvan kohon tai muun roskan nopeus arvioitiin ja uoman syvyys luodattiin mittakepin avulla. Tulokset menivät useimmiten raskaasti yläkanttiin, koska virtausnopeus pinnalla on yleensä selvästi suurempi kuin poikkileikkauksessa keskimäärin.

Insinööri Woltmann esitteli potkurinkaltaiseen laitteeseen perustuvan virtaamanmittausmenetelmän Hampurissa vuonna 1790. Tämä Woltmannin siivikkona tunnettu laite on hieman muunneltuna edelleen käytössä, vaikkakin jo väistymässä uudempien menetelmien tieltä. Virta pyörittää potkuria ja pyörähdysten lukumäärä aikayksikössä voidaan muuntaa veden virtausnopeudeksi. Kun lisäksi mitataan uoman poikkileikkauksen ala, virtaama voidaan laskea. Woltmannin ’hydrometristä flyygeliä’ käytettiin Suomessa ensimmäisen kerran kesäkuun 25. päivänä vuonna 1862. Tuolloin Rokkalanjoen Patakoskessa, Viipurin läänin Johanneksen pitäjän Koskijärven kylässä virtasi vettä 80,0 kuutiojalkaa sekunnissa.

Purkautumiskäyrät – vedenkorkeuden ja virtaaman väliset suhdekäyrät – ovat virtaamatilastojen perusta. Käyrien avulla voidaan määrittää virtaamat vedenkorkeushavainnoista. Varhaisin säilynyt purkautumiskäyrä on Vuoksen virtaaman ja Saimaan vedenkorkeuden välille laadittu, vuodelta 1908. Virtaamatietojen määrittäminen purkautumiskäyrien avulla on säilynyt jokseenkin samanlaisena yli sata vuotta. Suomen jokien virtaamat tunnetaan keskimäärin vähintään viiden prosentin tarkkuudella, siis selvästi paremmin kuin vesitaseen muut tekijät.

Vertailualueen mittapato
Savijoen mittapadon avulla on joen yläjuoksun virtaamaa mitattu jo 1970-luvulta lähtien. Kuva: Eliisa Punttila

Purkautumiskäyristä päästään varsinaiseen aiheeseen eli virtaaman mittaukseen Savijoen alueella. Savijoen latvoilla on jo yli 40 vuotta ollut SYKEn tutkimusvaluma-alueiden verkkoon kuuluva mittapato, missä on virtaaman lisäksi mitattu monipuolisesti veden laatua. Mittapato on muodoltaan selkeä ja muuttumaton. Vedenpinnan korkeuden ja virtaaman välille on tällöin helppo muodostaa laskennallinen yhteys eli purkautumiskäyrä. Sen jälkeen tarvitsee vain mitata pinnankorkeutta padon yläpuolisessa patoaltaassa ja virtaama saadaan tästä reaaliajassa tietokantoihin. Kun lisäksi tiedetään mittapadon yläpuolisen valuma-alueen pinta-ala, voidaan virtaaman avulla helposti laskea valunta maa-alueilta (l/s/km2) eli se, kuinka paljon mittapadon yläpuoliselta alueelta valuu vettä uomaan aikayksikössä.

SAVE-hankkeen kahdessa muussa alempana uomassa sijaitsevassa mittauspisteessä (10-tie ja Bränikkälän silta) mitataan pinnankorkeutta, mutta virtaaman mittaaminen pelkästään pinnankorkeutta seuraamalla ei näissä kohteissa suoraan onnistu. Mittapato on kallis rakentaa eikä sen rakentamiseen saa helposti lupaa. Muutkaan yleisesti isommissa joissa käytetyt virtaamanmittausmenetelmät eivät ole tarkkoja näin pienessä uomassa. Purkautumiskäyrä, eli se, kuinka paljon vettä uomassa virtaa eri vedenkorkeuksilla, pitäisi silti määrittää ja sitä varten tarvitaan erilaisissa virtaamatilanteissa tehtyjä virtaamamittauksia.

Nykyaikainen virtaamanmittauslaitteisto
Modernilla laitteistolla mittaus onnistuu tarkasti ja nopeasti. Kuva: Samuli Puroila

Savijoen virtaamamittauksissa on käytetty suolapulssin etenemisen seurantaan perustuvaa virtaamamittausta. Menetelmän suurena etuna on se, että se soveltuu mainiosti pienille virtaamille sekä muodoltaan vaihteleville uomille. Lisäksi laitteisto on kevyt ja yhden tutkijan helposti käytettävissä.

Mittauksen idea ei ole uusi, mutta vasta nyt antureiden tarkkuus ja läppärin laskentateho on sillä tasolla, että tällainen nopea kenttämittaus on kustannuksiltaan järkevää. Idea on karkeasti seuraava: otetaan mittauspisteen kohdalta astiaan puoli litraa jokivettä ja mitataan sen sähkönjohtavuus. Sen jälkeen lisätään veteen pieniä annoksia suolaliuosta ja mitataan, mikä on sähkönjohtavuus kullakin pitoisuudella. Tällä tavoin muodostetaan yhtälö suolapitoisuuden ja sähkönjohtavuuden välille kyseisessä mittauspisteessä. Tämän jälkeen arvioidaan silmämääräisesti jokiuoman virtaama, otetaan virtaama-arvion mukainen, taulukon määrittelemä määrä suolaa ja liuotetaan se ämpärissä olevaan jokiveteen. Seuraavaksi laitetaan anturit veteen, mittaus käyntiin ja käydään kippaamassa suolaliuos ylävirran puolelle riittävän kauas.

Laitteisto mittaa sähkönjohtavuutta ja havaitsee heti kun suolapitoisuus alkaa vähänkin nousta. Suolapulssin edetessä mittauspisteen ohi sähkönjohtavuus ensin kasvaa ja sitten vähitellen palautuu mittausta edeltävään tasoon. Sähkönjohtavuuden muutoksen voimakkuuden ja suolapulssin pituuden ja etenemisnopeuden perusteella läppärillä oleva ohjelma laskee, mikä on ollut se vesimäärä, johon ylävirtaan kipattu suola on sekoittunut, jotta kyseinen johtavuuskäyrä toteutuu. Tämän perusteella saadaan virtaama.

Suolaa liuotetaan jokiveteen
Modernitkin menetelmät vaativat kuitenkin yksinkertaista kenttätyötä. Vasemmalla allekirjoittanut, oikealla Petri Ekholm. Kuva: Samuli Puroila

Tätä kirjoittaessani on ollut pitkään varsin kuivaa yhtä sadetta lukuun ottamatta. Tuo sade oli voimakkuudeltaan juuri sellainen, että virtaama Savijoessa ei mainittavasti noussut, mutta ravinteita kulkeutui peltojen pintakerroksista vesiin. Tällaisissa tilanteissa vesinäytteiden antamat tulokset saattavat olla varsin rajun näköisiä, kun pelloilta valuva väkevä vesi sekoittuu joen pieneen vesimäärään. Itämeren kannalta tällainen tilanne ei juuri huolestuta. Ravinnekuormitus on pitoisuuden ja virtaaman tulo, ja kun virtaama on pieni, kuormituskin pysyy pienenä. Toisaalta suuri virtaama yhdistettynä pieneenkin pitoisuuteen saattaa kuormittaa Itämerta aivan eri tavalla. Tätä varten on tässäkin hankkeessa välttämätöntä tietää virtaama tarkasti ja siinä suolapulssimittaus on osoittautunut oivalliseksi välineeksi.

Kiitokset Veli Hyväriselle ja Esko Kuusistolle virtaamanmittausten historiaan liittyvistä avuista!

Tutkimusinsinööri Jarmo Linjama
Suomen ympäristökeskus (SYKE)
Vesikeskus / Hydrologinen seuranta

Savijokea seurataan 24/7 – miltä näyttää?

Petri Ekholm, Erikoistutkija, Suomen ympäristökeskus

SAVE-hanke seuraa Savijoen vedenlaatua ja -määrää kolmella havaintopaikalla. Savijoen yläjuoksun vertailualueelta, jossa kipsiä ei käytetä, on otettu vesinäytteitä jo 1960-luvulta lähtien. Kipsinlevitysalueella sijaitsevien Yliskulman ja Parmanharjun asemat ovat SAVE-hankkeen varta vasta perustamia. Luode Consultingilta vuokratut automaattiset anturit ovat mitanneet kaikilla kolmella asemalla vedenlaatua kerran tunnissa aina tämän vuoden helmikuusta lähtien. Aineisto varastoidaan dataloggeriin ja siirretään verkkoon, josta veden pinnankorkeus sekä sameus, sähkönjohtavuus, lämpötila ja liuenneen orgaanisen hiilen pitoisuus on nähtävissä lähes välittömästi.

Mittapato talvella
Vertailualueen mittausasema talvella. Kuva: Mikko Kiirikki

Nyt seuraa tiivis opetustuokio vedenlaadun indikaattoreista. Sameus kuvaa valon sirontaa veden hiukkasista. Silmin havaittavan sameuden lisäksi se kuvaa veden kiintoaineen ja siihen sitoutuneen fosforin määrää. Kun sameusarvo on esimerkiksi 1000 FTU:a, niin vedessä on kiintoainetta noin 1 gramma litrassa ja kiintoaineeseen sitoutunutta fosforia 1,4 milligrammaa litrassa. Tällöin vesi on käytännössä läpinäkymätöntä. Sameuden yksikkö, FTU, viittaa sameaan yhdisteeseen, formatsiiniin, jonka avulla mittarit kalibroidaan (FTU = Formazin Turbidity Unit). Sähkönjohtavuus taas kertoo veteen liuenneiden ionien, ”suolojen”, määrän. Sen perusteella arvioidaan sulfaattipitoisuutta ja sitä kautta kipsin vähittäistä huuhtoutumista pelloilta. Lämpötila antaa viitteitä siitä, onko Savijoessa virtaava vesi pintavaluntavettä vai pohjavettä. Liuennut orgaaninen hiili kuvaa veden humusaineiden pitoisuutta. Anturit mittaavat myös Savijoen pinnankorkeuden, jonka perusteella määritetään veden valunta. SAVE-hankkeessa vedenlaatua tutkitaan suhteessa valuntaan, sillä pelloilta tuleva kuormitus riippuu ratkaisevasti valunnasta.

Eli: sameus, sähkönjohtavuus, lämpötila, orgaaninen hiili ja pinnankorkeus. Pysyitkö mukana? Hyvä!

Anturit tuottavat hyvin luotettavia tuloksia: ne on kalibroitu laboratoriossa erittäin tarkasti, ja maastossa mittareiden puhtauden takaa sensoreiden järeä harjaspuhdistus, joka poistaa optisilta pinnoilta roskat ja vedessä helposti muodostuvat biofilmit. Tämän lisäksi mittareita huolletaan parin viikon välein ja kalibroidaan kaksi kertaa vuodessa. Mittalaitteiden laadusta tutkimuksen onnistuminen ei siis jää kiinni!

Automaattinen sensori
Automaattiset sensorit mittaavat Savijoen vedenpinnan korkeutta sekä veden lämpötilaa, sameutta, suolaisuutta ja liuennutta orgaanisen aineksen pitoisuutta kerran tunnissa. Kuva: Mikko Kiirikki

Automaattisilla antureilla ei kuitenkaan saada vedenlaadusta kokonaiskuvaa. Siksi Savijoesta otetaan muutamia kertoja kuukaudessa myös vesinäytteitä, joista analysoidaan Rambollin Lahden laboratoriossa pitkä lista vedenlaatua kuvaavia muuttujia. Ehkä tärkein näistä on liuennut fosfori, jota ei – lukuisista yrityksistä huolimatta – edelleenkään voida määrittää automaattisilla sensoreilla. Liuennut fosfori on sataprosenttisesti leville käyttökelpoista, ts. täysin rehevöittävää fosforia. Maa-ainesfosforin sen sijaan on ensin vapauduttava liuenneeseen muotoon, jotta levät ja muut vesien perustuottajat voisivat sen käyttää hyväkseen. Kipsikäsittelyn toivotaan vähentävän niin liuenneen kuin maa-ainesfosforinkin kulkeutumista pelloilta vesiin. Myös liuenneen orgaanisen hiilen pitoisuuden odotetaan laskevan. Toive on, että pitoisuudet laskisivat erityisesti runsasvetisinä kausina, jolloin suurin osa ravinteista kulkeutuu vesiin.

Kun merkittävä osa kipsistä on nyt jo levitetty Savijoen pelloille, voidaanko kipsikäsittelyn tehosta sanoa jo jotakin?

Tämä syksy on ollut varsin kuiva ja Savijoen vesi on ollut melko kirkasta niin kipsin levitysalueella kuin vertailualueellakin. Lokakuun alussa saatiin kuitenkin jonkin verran sateita. Tulokset tuolta ajalta ovat rohkaisevia. Savijoen yläjuoksulla, jossa kipsiä ei siis ole käytetty, sameus nousi arvoon 68 FTU. Se ei toki ole paljon samealle Savijoelle, mutta kipsin levitysalueella sameus oli vieläkin matalampi: korkeimmillaan 31 FTU ja usein reilusti alle puolet siitä mitä yläjuoksun vertailualueella. Vesi vaikuttaa siis kirkastuneen ja myös orgaanisen hiilen pitoisuus on ollut kipsinlevitysalueella selvästi matalampi.

”Tulokset ovat rohkaisevia.”

Johtopäätelmiä kipsin tehosta joudutaan kuitenkin odottamaan pitkään, Savijokea seurataan vielä ainakin kaksi vuotta. Ensimmäisistä kunnon syyssateiden aiheuttamasta valuntapiikistä voidaan tosin päätellä jo paljon enemmän. Valuntapiikkiä voidaan kuitenkin joutua odottamaan, sillä seuraavatkin 10 vuorokautta ovat sääennusteen mukaan kuivia.

Pohja näkyvissä

Antti Iho
Antti Iho, Erikoistutkija, Luke

Unohduin nojaamaan otsallani kuivauskaapin oveen ja tuijottamaan tiskiallasta. Altaan pohjalla oli syvä lautanen täynnä vettä. Kippasin kädessäni olevan maitolasin jämät lautaselle. Vesi sameni ja valui reunojen yli. Täytin lasin kirkkaalla vedellä ja kaadoin perään, sameaa valui reunojen yli. Toisen lasillisen. Se, ettei kolmaskaan vesilasillinen tuonut pohjaa näkyviin, herätti minut siitä etunojahorteesta. Miksei se kirkastu?

Veden koettu sameus ei kulje käsi kädessä siinä olevien hippusten määrän kanssa. Savisamea vesi voi näyttää pitkään samealta, vaikka hippusten määrää litraa kohden leikkaisi paljonkin. Näkyvä vaikutus on kiven alla. Tämä tekee savisiin vesiin kohdistuvista suojeluponnisteluista turhauttavia.

Vantaankosken silta (editoitu)
Vanhankaupunginkosken pato ja Viikintien silta. Kuva: Samuli Puroila

Jos syksyllä on ollut pitkään sateetonta, näen Viikintien sillalta Vantaanjoen pohjan, virrassa heiluvat pohjan kasvit ja siinä liikkuvat kalat. Huomasin tämän ensimmäisen kerran elokuussa 1998. Olin kasvanut Vantaanjoen varrella enkä ollut koskaan aiemmin erottanut joen pohjaa – en tiennyt sen olevan mahdollista. Vimmaiselle kalamiehelle tämä oli vavahduttava kokemus. Tämähän on oikea joki!

Saattaa olla, että Vantaanjoki ja ensimmäinen outo kokemus kirkkaammasta joesta ajoivat minua tutkimusaiheeni pariin. Mutta tutkijana sitä lähinnä tekee tutkimuksia, joiden tulokset eivät paljon kulmakarvoja kohottele. Kolme vuotta derivointia – kannattaisi kohdistaa ympäristöohjaus maaperän fosforiin eikä lannoitteeseen. Check. Kaksi ja puoli vuotta mallinnusta ja Matlab-koodausta – korkean fosforitilan maita ei kannata lannoittaa niin paljon. Check. Ei hirveän dramaattista.

Pohja näkyvissä
Syyskuun vähäiset sateet ovat tuoneet Vantaanjoen pohjan esiin. Kuva: Samuli Puroila

2010 loppuneeseen Trap-hankkeeseen osallistuminen oli virkistävä poikkeus. Siinä levitettiin kipsiä sadalle hehtaarille ja katsottiin huolellisella koejärjestelyllä, mitä tapahtuu. Tapahtui ihmeen paljon. Samaan aikaa vedin Tarveke-hanketta, jossa päädyttiin niin ikään levittämään kipsiä. Hankkeessa tutkittiin tarjouskilpailumekanismia. Sen tulokset vahvistivat kuvaa, että kipsi saattaa olla paitsi toimiva, myös viljelijöiden laajasti hyväksymä toimenpide.

Jos kipsi kirkastaa savisia vesiä, ei maksa mielettömästi ja viljelijät ovat laajasti valmiita käyttämään sitä, niin voisiko sitä levittää kokonaiselle valuma-alueelle? Yhtäkkiä olin mukana jossain, joka oikeasti voisi tuottaa näkyviä vaikutuksia. Ja vaikka kohdealueeksi valikoitui Savijoki, ajattelin totta kai Vantaanjokea, josta paikallisten päättäväisyys on tehnyt Suomenlahden merkittävimmän taimenen kutujoen. Mitä jos se olisi vielä kirkkaampi? Harjaisiko kosken katsominen aivoista karstaa vielä tehokkaammin?

Vantaanjoen sakeaa vettä (editoitu)
Kovin hyvä näkyvyys ei kuitenkaan ole edes poutasäiden jälkeen. Kuva: Samuli Puroila

Kipsin levittäminen lisää veden sulfaattipitoisuutta. Sen vaikutukset kaloihin tai mätiin ovat lähinnä hypoteettisia, mutta SAVE-hankkeessa ei jätetä mitään tutkimatta. Hyvä niin. Mutta voiko veden kirkastuminen johtaa muutoksiin kalakannoissa: jäisikö taimenen poikasia enemmän petojen suuhun, vai olisiko petoja vähemmän? Entä kalastuspainetta? Latvapurot kuten Longinoja ovat jo nyt aika kirkkaita, eikä pääuoman kirkastuminen vaikuttaisi näiden poikasten ensimmäisiin elinvuosiin mitenkään. Ja entäpä sitten pääuoma? Mitä jos vesi kirkastuisi ja Vantaan kaupunki lopettaisi kirjolohien kaatamisen jokeen? Entä jos ikänsä Vantaanjoen varrella asuneet ovatkin muodostaneet maitokahvin väriseen veteen tunnesiteen? Niin että vaikka valitsisivat kirkkaan samean sijaan, kuitenkin kaipaisivat vanhaa?

Vanhankaupunginkoski
Vanhankaupunginkosken itäinen haara. Kenties muutaman vuoden kuluttua tässä voi tarkkailla taimenten nousua kirkkaassa vedessä kohti Vantaanjoen latvoja. Kuva: Samuli Puroila

SAVE-hankkeen yhteydessä ajatukseni karkaavat jatkuvasti kalastukseen. Ehkä haluan ajatella, että jokivesiä kirkastamalla teemme kaloille palveluksen. Että ikään kuin osaltani pyydän kaloilta anteeksi, että pyydystän niitä, kopautan nuijalla päähän ja syön. Tai ehkä haluan vain nähdä useammin pohjan ja kiven takana kallistelevan kalan, joka keräilee voimia seuraavaan parin metrin etappiin, ylös- ja eteenpäin.

Kipsipilotin vauhdikas alkutaival

Eliisa Punttila, Projektikoordinaattori
Eliisa Punttila,
Projekti-koordinaattori, Helsingin yliopisto

Kuulin kipsistä ensimmäisen kerran syyskuussa 2014 Lahdessa, kun professori Markku Ollikainen mainitsi Suomenlahden kustannustehokkaita suojelukeinoja käsittelevässä seminaarissa uuden lupaavan aineen nimeltä kipsi. Tuolloin peltojen kipsikäsittelyn vesistövaikutuksia ja kustannuksia tutkinut TraP-hanke oli päättynyt, ja kipsin tehokkuus oli käytännössäkin pystytty osoittamaan.

Vuotta myöhemmin löysin itseni perehtymästä tarkemmin kyseisen hankkeen tuloksiin sekä muihin aiempiin tutkimuksiin. Koska kipsi vaikutti niin lupaavalta keinolta, haluttiin sen käytöstä lisää kokemusta ja vaikutuksista entistäkin tarkempaa tietoa. Kipsipilotti oli myös saanut rahoitusta EU Central Baltic- ohjelmasta ja ympäristöministeriöltä ja valmis alkamaan. Olin päätynyt projektikoordinaattoriksi uuteen SAVE-hankkeeseen.

Ennen kuin kipsin käyttöä vesiensuojelussa lähdetään päätä pahkaa edistämään, pitää hankkia lisää tietoa sen soveltuvuudesta laajempaan käyttöön. Jos kipsiä toivotaan lopulta levitettävän koko Etelä-Suomen savimaille, tulee pilottialueenkin olla riittävän suuri. Tämän vuoksi SAVE-hankkeessa kipsin käyttöä testataan laajassa mittakaavassa.

Tutkimuksen edellyttämien kriteerien perusteella löytyi Savijoen valuma-alueelta Varsinais-Suomesta loistava kandidaatti pilottialueeksi. Alue pitää sisällään 2850 hehtaaria peltoalaa, jota viljelee reilu 100 viljelijää. Seuraavaksi tuli selvittää, olisiko alueen viljelijöillä kiinnostusta osallistua hankkeeseen. Laajamittaista pilottia kun on mahdotonta toteuttaa ilman viljelijöiden apua.

Savijoen valuma-alue Varsinais-Suomessa täytti tutkimuksen edellyttämät kriteerit. Kuva: Eliisa Punttila
Savijoen valuma-alue Varsinais-Suomessa täytti tutkimuksen edellyttämät kriteerit. Kuva: Eliisa Punttila

Päätimme aloittaa lähestymällä ensin kuntasektoria ja paikallisia maataloustuottajajärjestöjä. Hankkeeseen suhtauduttiin myönteisesti, joten uskalsimme seuraavaksi lähestyä alueen viljelijöitä. Kerroimme aikeistamme helmikuussa kirjeitse ja tämän jälkeen puhelimitse. Puhelinkeskustelujen lomassa saimme arvokasta tietoa viljelijöiden ensivaikutelmasta ja heitä askarruttavista kysymyksistä.

Kirjeet viljelijöille valmiina postiin. Kuva: Eliisa Punttila
Kirjeet viljelijöille valmiina postiin. Kuva: Eliisa Punttila

Maaliskuussa pidimme Liedon kunnantalolla viljelijätilaisuuden, jossa kerroimme hankkeesta tarkemmin. Kohtasimme upean 70 hengen yleisön ja annoimme vastauksia heitä askarruttaneisiin käytännön kysymyksiin. Lisää tietoa haluttiin muun muassa kipsin vaikutuksista, käytännön järjestelyistä ja viljelijöiltä edellytettävästä työstä. Puhelinhaastattelut jatkuivat vielä tilaisuuden jälkeen, jolloin useimmat päättivät osallistumisestaan.

Liedon kunnantalolle saapui 70 henkeä kuulemaan lisää kipsihankkeesta. Kuva: Samuli Puroila
Liedon kunnantalolle saapui 70 henkeä kuulemaan lisää kipsihankkeesta. Kuva: Samuli Puroila

Soittokierroksen tuloksena 60 % viljelijöistä ilmoitti olevansa kiinnostunut lähtemään mukaan kipsikokeiluun. Ulkopuolelle jättäytyneistä suurin osa ei voinut osallistua käytännön syistä, koska viljelystä oli luovuttu, tila oli luomuviljelysttä tai peltolohkot monivuotisella nurmella. Vain reilu kymmenen viljelijää päätti jättää kokeilun väliin, koska ei kokenut osallistumista kiinnostavaksi tai kannattavaksi. Kuutta viljelijää emme tavoittaneet puhelimitse. Kokonaisuudessaan hanke otettiin siis hyvin myönteisesti vastaan myös viljelijöiden suunnalta.

Muutama viikko Liedossa pidetyn tilaisuuden jälkeen tilaneuvottelijamme Terhi Ajosenpää ProAgriasta aloitti vierailut hankkeesta kiinnostuneiden viljelijöiden luona. Näiden tilakäyntien yhteydessä sovittiin peltolohkoista, joille kipsiä levitetään. Terhin seikkailut alueella tuottivat loistavan tuloksen: yli 50 viljelijää alueelta lähti mukaan kipsikokeiluun ja saimme kasaan 1550 hehtaaria. Nämä luvut mahdollistavat kattavan tutkimuksen tekemisen.

Olemme jo tässä vaiheessa todella kiitollisia kaikille alueen viljelijöille, Liedon kunnalle, Paimion kaupungille ja MTK:n paikallisjärjestöille sekä tietenkin Terhille siitä, että olette auttaneet meitä pääsemään pilotin toteutuksessa näin lupaavaan alkuun!

Tutkija kipsissä

Vanha keino vai pussillinen uusia?

Petri Ekholm, Erikoistutkija, Suomen ympäristökeskus

Maatalouden fosforipäästöt ovat laskeneet, mutta eivät riittävästi vesien kannalta. Tehokkaille fosforin vähennysmenetelmille on siis tarvetta. Maatalouden vesiensuojelutoimet voitaneen jakaa kolmeen ryhmään. Ensimmäiseen kuuluvat ikivanhat toimet, joilla parannetaan maan kasvukuntoa ja rakennetta, jolloin hyvän sadon mukana poistuu paljon ravinteita ja maa kestää eroosiota. Toinen ryhmä koostuu ympäristökorvausjärjestelmästä tutuista menetelmistä, esimerkiksi talviaikaisesta kasvipeitteisyydestä, tasapainoisesta lannoituksesta, kosteikoista ja suojavyöhykkeistä. Kolmas ryhmä voitaisiin nimetä nykyjargonin mukaisesti innovatiivisiksi menetelmiksi, joissa esimerkiksi teollisuuden sivuvirtojen avulla estetään ravinnepäästöjä.

Peltojen kipsikäsittely voisi kuulua kaikkiin kolmeen ryhmään. Kipsiä on käytetty iät ajat maan rakenteen parantajana, mutta sen käyttö fosforipäästöjen hillitsijänä on uutta, ja olisi suotavaa, että se kuuluisi ympäristökorvauksen piiriin. Vantaanjoen latvoilla sijaitsevan Nummenpään kylän pelloilla tehdyssä pilotissa[1] kipsi vähensi sekä liuenneen että maa-ainesfosforin kulkeutumista pelloilta vesiin ja sitoi maahan hiiltä. Se vaikutti soveltuvan tilalle kuin tilalle ja oli muihin fosforin vähentämismenetelmiin verrattuna ylivoimaisen kustannustehokas.

Kipsiä levitetään Nummenpään pelloilla tehdyssä pilotissa. Kuva: Sakari Alasuutari

Savijoesta Savejoki

Nummenpään lupaavia tuloksia koetellaan Lounais-Suomen Savijoella. SAVE-hankkeen perusidea on yksinkertainen: levitetään kipsiä pelloille niin laajalti, että tulokset kertovat luotettavasti kipsin tehon ja mahdolliset haittavaikutukset sekä antavat tietoa siitä, miten kipsin kuljetus ja levitys käytännössä onnistuvat ja miten viljelijät menetelmän kokevat.

Kipsin vaikutuksen arvioimiseksi Savijoen perusnäytteenottoa on täydennetty asentamalla jatkuvatoimiset vedenlaatuanturit Savijoen keskijuoksulle Yliskulmaan ja Parmanharjulle. Lisäksi joesta otetaan runsaasti vesinäytteitä, joista analysoidaan monenlaisia vedenlaatua kuvaavia muuttujia. Alueelle pyritään houkuttelemaan myös muuta tutkimusta synergiaetujen vuoksi, ja niinpä esimerkiksi torjunta-aineiden kulkeutumista tutkitaan tehostetusti Savijoella. Parhaillaan Savijoen seurannassa on menossa ennen kipsiä –jakso, johon kipsin levityksen jälkeisen ajan tuloksia tullaan vertaamaan.

Savijoen virtaamaa mitataan ns. pöytäsuolamenetelmällä Kuva: Petri Ekholm

Odotettavissa kirkastuvaa

Jos kipsin levitys toteutuu suunnitellusti syksyllä 2016, Savijoen keskijuoksun vesi lienee tulevana syksynä aiempaa kirkkaampaa, mutta yläjuoksun kipsitön vertailualue pysyy totutun sameana. Tutkimuksessa, joka tehdään säiden armoilla, voi sattua yllätyksiä. Syksy 2016 voi olla vaikkapa ennätyksellisen kuiva, mikä kyllä helpottaisi kipsin levitystä, mutta jokivesi olisi kirkasta ilman kipsiäkin. Päivästä, viikosta, kuukaudesta ja vuodesta toiseen vaihtelevat sääolot pyritään ottamaan huomioon tilastotieteellisellä mallilla. Perusideana on vedenlaadun suhteuttaminen veden virtaukseen ja oletuksena se, että tietyn suuruisella virtauksella jokivesi on kipsin levityksen jälkeen kirkkaampaa kuin se oli ennen kipsiä vastaavansuuruisella virtaamalla. Vedessä olisi vähemmän niin maahiukkasiin sitoutunutta kuin suoraan rehevöittävää liuennutta fosforia. Jos näin todella tapahtuu eivätkä esimerkiksi sulfaatin toksisuustestit paljasta epämiellyttäviä yllätyksiä, tulokset antavat hyvän tietopohjan vieläkin laajemman kipsikäsittelyn toteuttamiseen. Niin laajan, että rannikkovesiin päätyvän fosforin määrää saadaan kunnolla vähennettyä, ja ehkä Saaristomeren rannikkovedetkin vähitellen kirkastuvat.

[1] Kipsipohjaiset tuotteet maatilojen fosforikuormituksen vähentämiseen, TraP-hanke (2007–2013)