ASYMMETRIES IN HIATUS RESOLUTION ACROSS WORD BOUNDARIES IN SHINGAZIDJA

Kathleen M. O’Connor and Cédric Patin
INTRODUCTION
Objectives

• Provide an initial description of some data on hiatus across word boundaries

• Give a preliminary analysis of the hiatus data

• Investigate some aspects of the interaction of tone and hiatus resolution
Hiatus in Bantu

- A wide variety of strategies
 - Heterosyllabification
 - ciNsengo: Across a prosodic boundary (Kadenge & Simango 2014)
 - Diphthong formation
 - ciNsengo and chiShona: /u/ becomes “diphthongized” when preceded by a consonant (Kadenge & Simango 2014)
 - Epenthesis
 - isiNdebele: a+o → abo (Sabao 2012)
Hiatus in Bantu

• A wide variety of strategies
 • Elision
 • ciCewa: V1 is deleted between a prefix and a stem but V2 is deleted between a stem and a suffix (Casali 1996)
 • chiShona: V1 is always deleted (Mudzingwa & Kadenge 2011)
 • Cilungu: The vowel /a/ is always elided in hiatus (Bickmore 2007)
 • Gliding
 • ciNsengo and chiShona: High vowels glide when there is no onset (Kadenge & Simango 2014)
 • Cilungu: Gliding of high Vs with compensatory lengthening of V2 (Bickmore 2007)
 • Coalescence
 • Mushunguli: A high and low vowel fuse to form a mid vowel (Hout 2015)
Shingazidja

• Bantu language [G44a] spoken on the island of Grande Comore in Comoros

• One of 5 Comorian languages, alongside Shindzuani [G44b], Shimwali [G44c], Shimaore [G44d] and Shikombani [G44e]

• Data were collected in Lille from a speaker of the Washili dialect
HIATUS: BASIC PATTERN
Basic pattern

<table>
<thead>
<tr>
<th>V1</th>
<th>i</th>
<th>e</th>
<th>a</th>
<th>o</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
<td>e</td>
<td>a</td>
<td>o</td>
<td>u</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>we</td>
<td>we</td>
<td>wa</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>u</td>
<td>wi</td>
<td>we</td>
<td>wa</td>
<td>o</td>
<td>u</td>
</tr>
</tbody>
</table>
\textbf{V1 = V2}

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>o</td>
<td>we</td>
<td>we</td>
</tr>
<tr>
<td>u</td>
<td>wi</td>
<td>we</td>
</tr>
</tbody>
</table>

- Sometimes find compensatory lengthening in interaction with position of the tone
Examples V1=V2

(1) a. le=kudúme Elizá ha-li-wono
 ...
 Aug5=5.rooster Elisa 1.PER-OM5-see
 ‘The rooster, Elisa saw it’

b. Hamáda Abdalá ha-m-móno
 ...
 Hamida Abdala 1.PER-OM1-see
 ‘Hamada, Abdala saw him’

c. ye=m-fumátso Omarí ha-m-móno
 ...
 Aug1=1-blind man Omar 1.PER-OM1-see
 ‘The blind man, Omar saw him’
Strategy 1: Gliding

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>o</td>
<td>we</td>
</tr>
<tr>
<td>u</td>
<td>wi</td>
</tr>
</tbody>
</table>

- If V1 is [round] and V2 is not, then V1 \to w

- Note that the unround high V /i/ does not undergo gliding
Strategy 1: Gliding

(2)

a. ye=m-fumátso Iburwá ha-m-móno
...[we]...
AUG₁=1-blind man Iburwa 1.PER-OM₁-see
‘The blind man, Iburwa saw him’

b. ye=m-fumátso Abdalá ha-m-móno
...[wa]...
AUG₁=1-blind man Abdala 1.PER-OM₁-see
‘The blind man, Abdala saw him’

c. Hantsámbu Elizá ha-wú-wono
...[we]...
Hantsambou Elisa 1.PER-OM₃-see
‘Hantsambou*, Elisa saw it’

*Town
Strategy 2: Coalescence

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>i</td>
<td>e</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>o</td>
<td>we</td>
<td>we</td>
</tr>
<tr>
<td>u</td>
<td>wi</td>
<td>we</td>
</tr>
</tbody>
</table>

- Concerns mid and low Vs in V1 followed by a high V
- Result is a mid V with the front/back/round of V2
Examples for coalescence

(3) a. **Hamáda** Iburwá ha-m-móno

 ...[e]...

 Hamada Iburwa 1.PER-OM₁-see

 ‘Hamada, Iburwa saw him’

b. le=kudúme Useíní ha-lí-wono

 ...[o]...

 AUG₅=5.rooster Hussein 1.PER-OM₅-see

 ‘The rooster, Hussein saw it’

c. **Hamáda** Useíní ha-m-móno

 ...[o]...

 Hamada Hussein 1.PER-OM₁-see

 ‘Hamada, Hussein saw him’
Strategy 3: Deletion

<table>
<thead>
<tr>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i</td>
</tr>
<tr>
<td>i</td>
<td>i</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>o</td>
<td>we</td>
</tr>
<tr>
<td>u</td>
<td>wi</td>
</tr>
</tbody>
</table>

- If V2 is high, then delete V2 and preserve V1
- Elsewhere, preserve V2 and delete V1
- Exception is i+u, where u is preserved (preference for preserving round Vs)
Examples for deletion

(4) a. le=kudúme Abdalá ha-lí-wono
 ...
 AUG$_5$=5. rooster Abdala 1.PER-OM$_5$-see
 ‘The rooster, Abdala saw it’

 b. Hamáda Omarí ha-m-móno
 ...
 Hamada Omar 1.PER-OM$_1$-see
 ‘Hamada, Omar saw him’

 c. ye=m-fumátso Useiní ha-m-móno
 ...
 AUG$_1$=1-blind man Hussein 1.PER-OM$_1$-see
 ‘The blind man, Hussein saw him’
SKETCH OF AN ANALYSIS

unclear
Our analysis

- We adopt a representation using Element theory (Kaye et al. 1985, 1990)

- + ad hoc ‘constraint’ that preserves ‘U’
Our analysis

- ‘A’ shifts if the slot is available

<table>
<thead>
<tr>
<th>V1</th>
<th>i</th>
<th>e</th>
<th>a</th>
<th>o</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
<td>e</td>
<td>a</td>
<td>o</td>
<td>u</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>we</td>
<td>we</td>
<td>wa</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>u</td>
<td>wi</td>
<td>we</td>
<td>wa</td>
<td>o</td>
<td>u</td>
</tr>
</tbody>
</table>

+ deletion of the V1 slot (> and ‘I’)
Our analysis

- The “I/U slot” of an [a] is unavailable

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>i</th>
<th>e</th>
<th>a</th>
<th>o</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
<td>i</td>
<td>e</td>
<td>a</td>
<td>o</td>
<td>u</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>we</td>
<td>we</td>
<td>wa</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>u</td>
<td>wi</td>
<td>we</td>
<td>wa</td>
<td>o</td>
<td>u</td>
<td>o</td>
</tr>
</tbody>
</table>

+ deletion of the V1 slot (> and ‘I’)

T1: I
T2: A [a]
Our analysis

- So is an “I/U slot” that is occupied

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>o</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>I</td>
<td>U</td>
</tr>
<tr>
<td>T2</td>
<td>A</td>
<td>[o]</td>
</tr>
</tbody>
</table>

+ deletion of the V1 slot (> and ‘I’)
Our analysis

- Identical elements are subject to OCP
Our analysis

- ‘U’ is preserved (vs. ‘I’) – if *OCP

<table>
<thead>
<tr>
<th>V1</th>
<th>i</th>
<th>e</th>
<th>a</th>
<th>o</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
<td>e</td>
<td>a</td>
<td>o</td>
<td>u</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>e</td>
<td>a</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>a</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>we</td>
<td>we</td>
<td>wa</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>u</td>
<td>wi</td>
<td>we</td>
<td>wa</td>
<td>o</td>
<td>u</td>
</tr>
</tbody>
</table>

+ deletion of the V1 slot
+ ‘U’ associates to C1
HIATUS AND TONES

Background (Patin 2008)
Hiatus and tones – background

- ‘Classical scenario’: **stability** (a vowel is deleted but its tone remains)

(5) **Etsako** (Edoid, Nigeria – Elimelech 1976)

a. údzé ‘axe’ + òkpá ‘one’
 > údzôkpá ‘an axe’

èké ‘ram’ + òkpá ‘one’
 > èkêkpá ‘a ram’

b. ówà ‘house’
 > ówôwà ‘every house’
Hiatus and tones – background

- **Stability** > also follows *gliding*:

(6) **Etsako** (Edoid, Nigeria – Elimelech 1976)

ídù ‘lion’
ídwĩodù ‘every lion’

"We offer the post-hoc observation, grounded in the descriptive literature covering a variety of tone languages, that tones tend to not interact with other phonological features." (Liphola & Odden 2000 : 177)
Hiatus and tones – background

- However, tones may block deletion or gliding
- In some languages, the resolution of hiatus depends on the tones that are carried by the first and the second vowels
- Simakonde > the gliding of V1 is possible iff the tones of the two vowels involved are identical

(7) **Simakonde** (Bantu P23, Zanzibar – Manus 2003 : 304)

a. lìjèémbè ‘hoe’
 lìjémbj áålì ‘this hoe’
 lìjémbé àlììlá ‘that hoe’

b. síjúùlù ‘hat’
 síjúlw áásì ‘this hat’
 síjúlú àsììlá ‘that hat’
Hiatus and tones – background

- In many languages, a tone on one of the vowels is enough to prevent hiatus from happening
- Kimatuumbi > "Some morphemes [are exceptions] to glide formation. This exceptionality may be due to the fact that the vowels bear H-tone" (Odden 1996:112)

(8) **Kimatuumbi** (Bantu P13, Tanzania – Odden 1996:112)

a. mį-kaáte ‘4-leaf’
 mj-oótó ‘4-fire’

b. lũ-toóndwa ‘11-star’
 lw-aaté ‘11-banana’

c. kį-ũkũmũ ‘7-Ukumu family’
 *kjųũkũmũ
Hiatus and tones – Shingazidja

- Tones also prevent the deletion of vowels in Shingazidja

- E.g. a final vowel is deleted after a fricative (9)…

(9)	a.	/djapíso/	[djapís]	‘curse’
	b.	/puzi/	[púz̥]	‘feather’
		/ndovu/	[(n)dóy̥]	‘elephant’
		/ndevu/	[(n)déy̥]	‘beard’
(9b′) /ndɛvu/ [(n)déy] ‘beard’
Hiatus and tones – Shingazidja

- …except if the vowel bears a high tone:

(10)	a. /itasá/ [itasá] ‘lock’	*itas *itás
	b. /kofú/ [kofú] ‘sea snail’	*kof *kóf
	c. /mezá/ [mezá] ‘table’	*mez *méz
	d. /mleví/ [mleví] ‘drunkard’	*mlev *mléy
(10d') /mleví/ [mleví] *mley ‘drunkard’

NB. The H is lowered due to a L%
Hiatus and tones – Shingazidja

- Hiatus resolution at morpheme boundaries: V1 can be deleted (among other possible outputs)…

(11) a. /tsi-níka/ [tsiníka]
 1SG.PER-\textit{give} ‘I have given’

 b. /rí-níka/ [rínika]
 1PL.PER-\textit{give} ‘we have given’
Hiatus and tones – Shingazidja

- Hiatus resolution at morpheme boundaries: V1 is deleted

(12) /ríendá/

Tone shift riéndē*
Meeussen’s r. riéndē
V1 deletion r_éndē
[réndē]
1PL.PER-go ‘we have been’

*We will not discuss vowel harmony, r → r / [-back], etc.
Hiatus and tones – Shingazidja

- …but hiatus remains if V1 is high-toned (the first tone has no room to shift in (13)):

(13) /rí-éŋga/ [ríéŋge] 1PL.PER-hate *réŋge ‘we have hated’
 /rí-éla/ [ríele] 1PL.PER-wash *réle ‘we have washed’

Reminder
(11b’) /ríéndá/ [r_éndə] 1PL.PER-go *ríéndə ‘we have been’
Hiatus and tones – Shingazidja

- Tone also prevents gliding. Compare (14)…

(14) a. /ha-í-reŋá/ [ajréŋge] ?[airéŋge]
2.PER-OM₉\text{-}take
‘we have taken it (the ring)’

b. /ŋamu-ándzo /tʃaí/
[amwãdzo tʃáj]
1SG.IMP\text{-}take.IMP
9.tea
‘I like tea’
(14b’) [amwāzdzo tʃaj] ‘I like tea’

NB. The final rising results from a ‘list effect’
Hiatus and tones – Shingazidja

- Hiatus resolution at morpheme boundaries: V2 glides

(15) /ŋgamuándzo tʃáí/

Tone shift amwãdzo tʃáí
Meeussen’s r. amwãdzo tʃái
Gliding amwãdzo tʃáj
[amwãdzo tʃáj] 1SG.IMP-take.IMP 9.tea
‘I like tea’
Hiatus and tones – Shingazidja

- There is no gliding if the vowel is high-toned:

(16) a. /ha-í-níka/ [áînika] ??[ajníka]
 2.PER-OM9-give
 ‘he have given it (the ring)’

 b. /tʃaí/ [tʃaí] ‘tea’
(16b') /tʃaɪ/ [tʃaɪ] ‘tea’
Hiatus and tones

- Patin (2008):
 - No systematic exam of the V1/V2 combinations
 - Word boundaries were not discussed
 - OT account
Our study
Hiatus and tones

- Tone (from V0) stops on V2 = no effect on hiatus resolution

<table>
<thead>
<tr>
<th>V1</th>
<th>i</th>
<th>e</th>
<th>a</th>
<th>o</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>í</td>
<td>é</td>
<td>á</td>
<td>ó</td>
<td>ú</td>
</tr>
<tr>
<td>e</td>
<td>é</td>
<td>é</td>
<td>á</td>
<td>ó</td>
<td>ó</td>
</tr>
<tr>
<td>a</td>
<td>é</td>
<td>é</td>
<td>á</td>
<td>ó</td>
<td>ó</td>
</tr>
<tr>
<td>o</td>
<td>wé</td>
<td>wé</td>
<td>wá</td>
<td>ó</td>
<td>ó</td>
</tr>
<tr>
<td>u</td>
<td>wí</td>
<td>wé</td>
<td>wá</td>
<td>ó</td>
<td>ú</td>
</tr>
</tbody>
</table>

Example

(17) tsi-ono Íburwa → [tsionwébuwa]
1SG.PER-see Iburwa
‘I have seen Iburwa’
Hiatus and tones

- The failure of the tone to have an effect when it stops on V2 was expected

- What happens when the tone emerges on V1 after shifting?
 Prediction = V1 will be protected

- However = in casual speech (where hiatus resolution happens), postlexical phenomenon > the tone emerges on V2!

- Consequences on [o] + [-back] combinations. Two situations depending on the source of the tone.
Hiatus and tones

- Tone from $V0 + \phi$ = effect on $[o] + [i]$

<table>
<thead>
<tr>
<th>V1</th>
<th>i</th>
<th>e</th>
<th>a</th>
<th>o</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>í</td>
<td>é</td>
<td>á</td>
<td>ó</td>
<td>ú</td>
</tr>
<tr>
<td>e</td>
<td>é</td>
<td>é</td>
<td>á</td>
<td>ó</td>
<td>ó</td>
</tr>
<tr>
<td>a</td>
<td>é</td>
<td>é</td>
<td>á</td>
<td>ó</td>
<td>ó</td>
</tr>
<tr>
<td>o</td>
<td>wí</td>
<td>wé</td>
<td>wá</td>
<td>ó</td>
<td>ó</td>
</tr>
<tr>
<td>u</td>
<td>wí</td>
<td>wé</td>
<td>wá</td>
<td>ó</td>
<td>ú</td>
</tr>
</tbody>
</table>

Example

(18) $ze = n$-dra$bó \phi \ Iburwa… $ \rightarrow$ [zedra$wí$bwa$]

AUG_{10}=10-lie $Iburwa…$ *wé

‘The lies, Iburwa (told them).’
Hiatus and tones

- Despite the phonological phrase boundary, the tone stops on V2. How?
- 2 hypotheses =
 - A. a tone (can) cross through the ϕ boundaries in casual speech
 - B. the tone stops on V1 first, then shifts to V2 (derivation)
Hiatus and tones

- Evidence 1 against H1: the tone does not shift further than V2

(19)

a. Sît(i) | [h*]á-lími

Siti 1.PER-cultivate

‘Siti has cultivated’

b. i. *Sît(i) | [h]a-lími

ii. *Sît(i) | [h]a-lím'í

*The [h] only emerges in formal discourse
Hiatus and tones

- Evidence 2 against H1: the tone does not trigger the deletion of the even tone (see the figure on slide 49)

(20) a. Sīt(i) | [h]á-'bús(u)

\textit{Siti} 1.PER-\textit{kiss}

‘Siti has kissed’

a. *Sīt(i) | [h]á-\textit{b}ús(u)

- > The shift on the 1st syllable of the verb is a two-step process († Patin 2008’s OT analysis)
(20a') Sīt(i) | á-'bús(u)
Siti 1.PER-kiss
‘Siti has kissed’
Derivation

(19’) $\text{Siti} \mid \text{[h]á-limí}$

\begin{align*}
\text{Siti} & \quad \text{1.PER-cultivate} \\
\text{‘Siti has cultivated’}
\end{align*}

- 1. The first step of the shift does not prevent the deletion of V1
- 2. The tone is able to shift through the phrase boundary
Hiatus and tones

- Tone from \(V1 + \phi \)
 = effect on \([o] + [-back]\)
 No gliding

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>i</td>
<td>í</td>
</tr>
<tr>
<td>e</td>
<td>é</td>
<td>í</td>
</tr>
<tr>
<td>a</td>
<td>á</td>
<td>é</td>
</tr>
<tr>
<td>o</td>
<td>ó</td>
<td>é</td>
</tr>
<tr>
<td>u</td>
<td>ú</td>
<td>í</td>
</tr>
</tbody>
</table>

Example

(21) \(ze = \text{kaliʃó})_\phi \text{ Iburwa} \rightarrow \text{zekaliʃébura} \)

\(\text{AUG}_{10}=10.\text{pant} \quad \text{Iburwa...} \Rightarrow \text{*wé, *wi} \)

‘The pants, Iburwa (bought them).’
The gliding asymmetry

- How can the asymmetry be explained? [1]

(22) \(ze = n\text{-dr̥bo} \) | Elizá | ha-z(i)-ámba
AUG\(_{10}\) = 10-\(lie \) | 1.\(Elisa \) | 1.PER-OM\(_{10}\)-\(say \)
\‘The lies, Elisa has said them’

Formal \(\ldots\text{óe}\ldots \) \(\ldots\text{áa}\ldots \)
Informal \(\ldots\text{wé}\ldots \) \(\ldots\text{á}\ldots \)
The gliding asymmetry

- How can the asymmetry be explained? [2]

(23) \(\text{ze} = \text{kaliʃó} \quad | \quad \text{Elizá} \quad | \quad \text{ha-zí-wono} \)

\(\text{AUG}_10 = 10.\text{pants} \quad | \quad 1.\text{Elisa} \quad | \quad 1.\text{PER-OM}_{10}-\text{see} \)

‘The pants, Elisa has seen them’

Formal \(\ldots \text{óe} \ldots \quad \ldots \text{áá} \ldots \)

Informal \(\underline{\ldots \text{é} \ldots} \quad \ldots \text{á} \ldots \)
The gliding asymmetry

- Hypothesis: gliding precedes tone shift

Informal

/ze = n-drábo | Elizá…/

Gl. ze = n-drábw | Elizá…

Sh. ze = n-drábw | Élizá…
The gliding asymmetry

- When V1 bears a tone, gliding of the /o/ cannot occur:

 Informel

 /ze = kaliʃ̆o | Elizá…/

 *Gl. ze = kaliʃ̆o | Elizá…

 Sh. ze = kaliʃ̆o | Élizá…

 Del. ze = kaliʃ̆ | Élizá…
Hiatus and tones

- The hypothesis accounts for some of the examples, but does not explain ō + a = wá (instead of [á]) – role of ‘A’?

- We also cannot explain all the variations in the o + i combination:

 - (ṽ) o + i = we
 - (ṽ) ̃ + i = é
 - (v) o + i = wí
COMPLICATION
Complication

- We previously discussed this configuration:

(24) Sītī | ha-limi
 Siti 1.PER-cultivate

‘Siti has cultivated’

Formal …íá…
Informal …á…
Complication

- Reminder: if V1 is round, gliding occurs:

(25) Abuɗú | ha-limí
 Abudu 1.PER-cultivate
 ‘Abudu has cultivated’

Formal ...úa...
Informal ...wá...
Complication

But if the stem of the verb is monosyllabic:

(26) Siti | ha-lí

'Siti has eaten'

Formal ...ía...

Informal ...jâ'...
Complication

- There is no difference between front and back vowels in this configuration:

(27) Abudú | ha-lí
 Abudu 1.PER-eat

‘Abudu has eaten’

Formal ...úa...
Informal ...wâ'...
Complication

- We saw before that the postlexical shift of the tone is not affected by OCP (= why is Sít(i) [h]á-lí impossible?)

- Foot structure? Nothing in the language supports such a hypothesis.

- Special status of the final syllable? The superhigh tone that signals polar questions cannot emerge on the penult if the final syllable is high (Patin to appear) + nonfinality (a tone cannot shift to the final syllable of an utterance)
Thanks !