Tutki luonnon värejä

Monia biologiaan liittyviä aihepiirejä voi lähestyä myös visuaalisuuden kautta. Esimerkiksi luonnossa on paljon värejä, joilla on erilaisille eliöille tärkeä merkitys. Joitakin värejä taas ei esiinny luonnossa juuri lainkaan, vaan ne ovat ihmisen tuottamia.

Pohtikaa ryhmänne kanssa, mitä merkitystä esimerkiksi kukan värityksellä tai kasvin lehtien värillä on? Entä miksi osa eläimistä on kirkkaan värisiä, kun taas osa pyrkii maastoutumaan mahdollisimman hyvin muun luonnon väriseksi? Entä miksi jotkin eliöt, esimerkiksi vesikirput, ovat läpinäkyviä?

Lähiluonnon värejä voi tutkia maalivärikartan avulla. Näin luonnosta voidaan etsiä erilaisia värejä ja perehtyä niiden merkitykseen. Voit yhdistää tehtävään myös tieto- ja viestintäteknologiaa!

Luonnon värejä voi tutkia värikarttojen avulla.

Luonnon värejä voi tutkia värikarttojen avulla.

Lataa ohjeistus luonnon värien tutkimiseen tästä.

Bakteerien katalaasiaktiivisuuden tutkiminen

Oletteko viljelleet bakteereja biologian oppitunneilla? Itse maljojen valmistus ja bakteerien kasvatus on monille tuttua, mutta kasvatettuja bakteereja voidaan tutkia myös tarkemmin. Bakteereille voidaan esimerkiksi tehdä gram-värjäys ja tarkastella värjättyjä bakteereja mikroskoopilla.

Bakteereja voidaan myös tyypitellä niiden katalaasiaktiivisuuden mukaan. Tällä tarkoitetaan sitä, pystyvätkö bakteerit hajottamaan vetyperoksidia katalaasin avulla. Katalaasiaktiivisuuden tutkimiseksi tarvitset ainoastaan 3 % vetyperoksidia sekä viljeltyjä bakteereja.

Lataa työohje katalaasiaktiivisuuden tutkimiseksi tästä. Työohjeesta löytyy myös ohje agarmaljojen valmistukseen.

Rakenna proteiineja aminohapoista

Proteiineja ja proteiinisynteesiä voi tutkia myös itse rakentamalla! Tätä tarkoitusta varten tarvitse ainoastaan molekyylimallisarjan, joita löytyy useimpien koulujen kemianluokasta. Rakentamalla aminohappoja ja proteiineja itse myös proteiinisynteesin periaatteet ja proteiinien muodostuminen tulevat tutummiksi.

Molekyylimallisarjan lisäksi tarvitset lähetti-RNA:n kodonitaulukon sekä emäsnopan, jotka löydät oheisesta työohjeesta. Emäsnopan avulla selvitetään rakennettava aminohappo. Kun aminohappo on rakennettu, ne liitetään yhteen peptidisidoksilla.

Työtä voidaan soveltaan myös kemian oppitunneille, jos opiskeltavana aiheena ovat biomolekyylit, kondensaatioreaktiot tai isomeria (optinen isomeria). Aminohappoja voidaan rakentaan yksin tai pienissä ryhmissä.

Molekyylimallisarjalla rakennettuja aminohappoja.

Molekyylimallisarjalla rakennettuja aminohappoja.

Lataa työohje proteiinien rakentamiseen tästä.

Siemenet ja hedelmät kertovat kasvin toiminnasta

Oletko istuttanut pääsiäisenä rairuohoa? Voit huomata, että muutamassa viikossa pienestä rairuohon siemenestä kasvaa korkea ruoho. Siemenessä on kehittyvälle kasville vararavintoa, jotta se pystyy aloittamaan kasvunsa eli itämään. Kasvin taimi alkaa kuitenkin nopeasti tuottaa ravintoa itselleen yhteyttämällä. Yhteyttämiseen kasvi tarvitsee vettä, auringonvaloa sekä hiilidioksidia ilmasta.

Siemeniä on valtavan paljon erilaisia! Osa siemenistä on kuivia ja osa sijaitsee mehevän hedelmän sisällä tai pinnalla. Siemen voi olla iso ja kova, kuten luumulla. Jotkin siemenet ovat hyvin pieniä ja kevyitä ja ne saattavat levitä helposti tuulen mukana.

Siemenet ja hedelmät kertovat paljon myös itse kasvista. Voitte yhdessä pohtia, miksi joillakin kasveilla on mehukas hedelmä, mutta toisilla kuiva. Entä mitä hedelmän rakenne kertoo kasvin leviämisestä?

Lataa ohje siemenien tutkimiseen tästä.