
Solving Combined Configuration Problems:
A Heuristic Approach

Martin Gebser,
Aalto University, HIIT, Finland and Potsdam University, Germany

Anna Ryabokon,
Alpen-Adria-Universität Klagenfurt, Austria

Gottfried Schenner,
Siemens AG Österreich, Austria

funded by FFG, COIN and AoF (grants 840242 and 251170)

Outline

2

• Motivation

• Combined Configuration Problem (CCP)

• Solving framework for the CCP

• Heuristic approaches

• Benchmarks

• Evaluation

• Summary

Research projects

3

RECONCILE (Reconciling Legacy Instances with changed
Ontologies): 01.06.2010 – 31.05.2013b

HINT (Heuristic Intelligence): 01.06.2013 – 31.05.2016

AINF and Cognitive Psychology Unit

Reconcile results

4

Use cases: Partner Units Problem, House problem (Rack
configuration), Reviewer Assignment Problem

Approaches [Aschinger et al. 2011], [Friedrich et al. 2011], [Ryabokon et at. 2012],

[Teppan et al. 2012], [Ryabokon et al. 2013], [Ryabokon 2015]:
• Answer set programming and SAT

• Constraint programming

• Object-oriented programming

• Integer programming

Configuration problem is too hard! (without heuristics)
• different approaches have different issues

HINT goals

5

“Development of new methods for the efficient
generation of heuristics” http://isbi.aau.at/hint/

• Identify promising domain-specific heuristics and
express them within general purpose framework

• Combine different heuristics for different problems

• Create new heuristics out of existing ones

create + adapt + evolve heuristics
=

Heuristic INTelligence

Configuration problem

6

CCP instance

– A directed acyclic graph (edges, vertices)
– Type and size of a vertex
– Sets of vertices denoting paths in the graph
– Set of areas and their possible border elements
– Maximal number of selected border elements
– Number of available colors
– Number of bins and their capacity

Benchmarks

7

Instance Vertices Colors Bins MaxBinCapacity MaxBorder

tg_001004 1004 58 4 20 2

Combined Configuration Problem

Given a CCP instance, solve the following problems
separately or in combinations:

P1 Coloring
P2 Bin-Packing

P3 Disjoint Paths

P4 Matching

P5 Connectedness

8

[Mayer et al. 2009],
[Friedrich et al. 2011]}

} [Aschinger et al. 2011a],
[Aschinger et al. 2011b]

Coloring (P1)

9

b1 p1 b2 p2 b3 p3 s2 b4

b6e1b5

p4s3b7

s1

p5 b9 p6 s4b8 b10

b11 e2 b12

Bin-Packing (P2)

10

Bin capacity = 5

Vertex Size
b 1
e 2
s 3
p 4

Disjoint Paths (P3)

11

path1

path2

path1

path2

Matching requirements (P4)

12

Each area can have at most 2 border elements

a1
a2

The selected border elements of an area must have the same color

Matching solution (P4)

13

Each area has at most 2 border elements

a1

a2

The selected border elements of an area have the same color

Connectedness (P5)

14

Solving framework

15

Greedy Search

• Locally best decisions according to a heuristic
• Incomplete and do not guarantee optimality
• Fast computation of a solution

CCP greedy algorithms:
Algorithm 1: Matching (P4)

For each border element select an area with the minimum number of
already matched elements

Algorithm 2: Coloring_Bin-Packing_Connectedness (P1, P2, P5)
Select a subset of connected vertices, color them with a selected color and
place them to bins. Change the color and repeat until all vertices are
processed

16

CCP greedy methods

17

Heuristics in ASP
Gebser et al., Domain-specific Heuristics in ASP. AAAI 2013.

• Specified using atoms _heuristic(a,m,v,p)
– a – denotes an atom for which a heuristic value is defined
– m – one of the modifiers (init, factor, level and sign)
– v – a value
– p – a priority of the definition

• Activated using ‐‐heuristic=domain

• Shortcuts are used, for instance:
_heuristic(a,true,v) – assign true to an atom a at a level v

Atoms with higher levels are assigned true first
18

Example

Program
size(a,1). size(b,2). size(c,3).
1 {selected(V,S): size(V,S)} 1.
_heuristic(selected(V,S), true, S) :‐ size(V,S).

Grounding
size(a,1). size(b,2). size(c,3).
1<={selected(a,1), selected(b,2), selected(c,3)}<=1.
_heuristic(selected(a,1),true,1). _heuristic(selected(b,2),true,2).
_heuristic(selected(c,3),true,3).

Solving
selected(c,3)
Choices: 1 (Domain: 1)
Conflicts: 0 (Analyzed: 0)

19

Greedy vs. ASP

Greedy
 An implementation of a subproblem of the CCP can

be done easy and is usually efficient
 Designing a mixed greedy method for the problem is

difficult

ASP
 The addition of requirements in ASP is just a matter

of adding some rules to an encoding
 Generation of heuristics is “expensive”

Combine two “worlds” effectivelly!
20

Greedy & ASP architecture

21

Benchmarks

22

Set 1:
Bin-Packing instances converted to the CCP instances
http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm

Set 2 and Set 3:
• Moderate and hard CCP instances derived from

Siemens configurations
• Available from http://isbi.aau.at/hint/problems

• Submitted to the ASP competition 2015
http://aspcomp2015.dibris.unige.it/

Evaluation*

• Experiment 1:
− Instances Set 1
− P2 (Bin-Packing) must be solved
− Plain ASP encoding vs. ASP encodings extended with the BPP

heuristics (FF(D), BF(D) and NF(D))

• Experiment 2 and Experiment 3:
− Instances Set 2 and instances Set 3 resp.
− P1 - P5 (all subproblems) must be solved
− Plain ASP encoding vs. Greedy & ASP approach
(ASP FF(D), BF(D) and NF(D) heuristics do not work!)

23
* Gringo 4.4.0, Clasp 3.0.5; Intel i7-3930K CPU (3.20GHz), 64 GB RAM, timeout 900 sec

Experiment 2

24

• Set 2 (up to 500 vertices)
• 54/100 from 100 instances were solved using the

plain/combined methods, resp.
• The quality of solutions (#bins, #colors) is the same in the

instances solved by both approaches

Solving Solving
Median 0,521 3,474
Average 101,215 5,536
Total 5465,600 553,614
Min 0,001 0,001
Max 847,692 24,086

Plain ASP Greedy and ASPStatistics

0,001

0,01

0,1

1

10

100

1000

g0
1

g0
8

g1
5

g2
2

g2
9

g3
6

g4
3

g5
0

g5
7

g6
4

g7
1

g7
8

g8
5

g9
2

g9
9

TI
M
E,
 S
EC

Plain ASP Greedy & ASP

Experiment 3

25

• Set 3 (up to 1004 vertices)
• 36/38 from 48 instances were solved using plain/combined

methods, resp.
• The quality of solutions (#bins, #colors) is the same in the

instances solved by both approaches

Solving Solving
Median 1,571 0,040
Average 69,019 13,818
Total 2484,684 525,067
Min 0,003 0,003
Max 885,477 195,809

Statistics Plain ASP Greedy and ASP

0,001

0,01

0,1

1

10

100

1000

10000

t2
4

t4
0

t5
3

t6
4

t8
0

t9
8

t1
21

t1
38

t1
54

t2
17

t2
57

t4
64

TI
M
E,
 S
EC

Plain ASP Greedy & ASP

Summary

26

• Heuristic greedy algorithms can find a solution faster,
but the design of such algorithms is complicated

• ASP allows for combination of requirements in an
easier way, but has performance issues

• Combining different solving methods is possible and
seems to be promising!

• ~50% more instances can be solved and up to 18
times faster on average

Gebser, Ryabokon and Schenner, Combining Heuristics for Configuration Problems
Using Answer Set Programming. LPNMR 2015.

Thank you! Questions?

27
The images are taken from: http://psychstrike.com/ and http://www.dreamstime.com/

