
Formal Analysis of the Linux Kernel
Configuration with SAT Solving

Martin Walch
Rouven Walter

Wolfgang Küchlin
Symbolic Computation Group

WSI for Informatics
University of Tübingen, Germany

2015-09-11

17th International Configuration Workshop
Vienna, Austria 2015

Introduction

Kconfig Language

Zengler Model

Attributes Model

Tristate* POF

Propositional POF

Results

Motivation

Variability of the Linux Kernel:

I > 12, 300 features (Linux 4.1)
I 30 architectures
I Statically configurable at compile time
I > 23, 000 explicit constraints
I POF: ∼1, 000, 000 variables in ∼2, 000, 000 clauses

Hard questions:
I Are there inadmissible features?
I Are there necessary features? (Kaiser et Küchlin 2001 [1])
I Constraints violations possible?
I . . .

Motivation

Variability of the Linux Kernel:
I > 12, 300 features (Linux 4.1)

I 30 architectures
I Statically configurable at compile time
I > 23, 000 explicit constraints
I POF: ∼1, 000, 000 variables in ∼2, 000, 000 clauses

Hard questions:
I Are there inadmissible features?
I Are there necessary features? (Kaiser et Küchlin 2001 [1])
I Constraints violations possible?
I . . .

Motivation

Variability of the Linux Kernel:
I > 12, 300 features (Linux 4.1)
I 30 architectures

I Statically configurable at compile time
I > 23, 000 explicit constraints
I POF: ∼1, 000, 000 variables in ∼2, 000, 000 clauses

Hard questions:
I Are there inadmissible features?
I Are there necessary features? (Kaiser et Küchlin 2001 [1])
I Constraints violations possible?
I . . .

Motivation

Variability of the Linux Kernel:
I > 12, 300 features (Linux 4.1)
I 30 architectures
I Statically configurable at compile time

I > 23, 000 explicit constraints
I POF: ∼1, 000, 000 variables in ∼2, 000, 000 clauses

Hard questions:
I Are there inadmissible features?
I Are there necessary features? (Kaiser et Küchlin 2001 [1])
I Constraints violations possible?
I . . .

Motivation

Variability of the Linux Kernel:
I > 12, 300 features (Linux 4.1)
I 30 architectures
I Statically configurable at compile time
I > 23, 000 explicit constraints

I POF: ∼1, 000, 000 variables in ∼2, 000, 000 clauses
Hard questions:
I Are there inadmissible features?
I Are there necessary features? (Kaiser et Küchlin 2001 [1])
I Constraints violations possible?
I . . .

Motivation

Variability of the Linux Kernel:
I > 12, 300 features (Linux 4.1)
I 30 architectures
I Statically configurable at compile time
I > 23, 000 explicit constraints
I POF: ∼1, 000, 000 variables in ∼2, 000, 000 clauses

Hard questions:
I Are there inadmissible features?
I Are there necessary features? (Kaiser et Küchlin 2001 [1])
I Constraints violations possible?
I . . .

Motivation

Variability of the Linux Kernel:
I > 12, 300 features (Linux 4.1)
I 30 architectures
I Statically configurable at compile time
I > 23, 000 explicit constraints
I POF: ∼1, 000, 000 variables in ∼2, 000, 000 clauses

Hard questions:

I Are there inadmissible features?
I Are there necessary features? (Kaiser et Küchlin 2001 [1])
I Constraints violations possible?
I . . .

Motivation

Variability of the Linux Kernel:
I > 12, 300 features (Linux 4.1)
I 30 architectures
I Statically configurable at compile time
I > 23, 000 explicit constraints
I POF: ∼1, 000, 000 variables in ∼2, 000, 000 clauses

Hard questions:
I Are there inadmissible features?

I Are there necessary features? (Kaiser et Küchlin 2001 [1])
I Constraints violations possible?
I . . .

Motivation

Variability of the Linux Kernel:
I > 12, 300 features (Linux 4.1)
I 30 architectures
I Statically configurable at compile time
I > 23, 000 explicit constraints
I POF: ∼1, 000, 000 variables in ∼2, 000, 000 clauses

Hard questions:
I Are there inadmissible features?
I Are there necessary features? (Kaiser et Küchlin 2001 [1])

I Constraints violations possible?
I . . .

Motivation

Variability of the Linux Kernel:
I > 12, 300 features (Linux 4.1)
I 30 architectures
I Statically configurable at compile time
I > 23, 000 explicit constraints
I POF: ∼1, 000, 000 variables in ∼2, 000, 000 clauses

Hard questions:
I Are there inadmissible features?
I Are there necessary features? (Kaiser et Küchlin 2001 [1])
I Constraints violations possible?
I . . .

Approach

I Encoding in Propositional Logic: “POF”
(Küchlin et Sinz 2000 [2], Zengler et Küchlin 2010 [4])

I SAT-solving
I Similar project: VAMOS (Tartler et al. 2011 [3])
I Main task: translation Kconfig → POF
I Three intermediate representations

Approach

I Encoding in Propositional Logic: “POF”
(Küchlin et Sinz 2000 [2], Zengler et Küchlin 2010 [4])

I SAT-solving

I Similar project: VAMOS (Tartler et al. 2011 [3])
I Main task: translation Kconfig → POF
I Three intermediate representations

Approach

I Encoding in Propositional Logic: “POF”
(Küchlin et Sinz 2000 [2], Zengler et Küchlin 2010 [4])

I SAT-solving
I Similar project: VAMOS (Tartler et al. 2011 [3])

I Main task: translation Kconfig → POF
I Three intermediate representations

Approach

I Encoding in Propositional Logic: “POF”
(Küchlin et Sinz 2000 [2], Zengler et Küchlin 2010 [4])

I SAT-solving
I Similar project: VAMOS (Tartler et al. 2011 [3])
I Main task: translation Kconfig → POF

I Three intermediate representations

Approach

I Encoding in Propositional Logic: “POF”
(Küchlin et Sinz 2000 [2], Zengler et Küchlin 2010 [4])

I SAT-solving
I Similar project: VAMOS (Tartler et al. 2011 [3])
I Main task: translation Kconfig → POF
I Three intermediate representations

Kconfig Language

Kconfig
I describes features as symbols

I symbols carry attributes, attributes have dependencies
I most constraints are dependencies of attributes

Obstacles
I 1,195 files, hierarchically organized
I Constraints interweaved with interface data
I 1 symbol ↔ 1 or more configuration blocks
I Different types of dependencies
I Attributes: different types, interaction, non-local constraints
I Three-valued “Tristate Logic”

Kconfig Language

Kconfig
I describes features as symbols
I symbols carry attributes, attributes have dependencies

I most constraints are dependencies of attributes

Obstacles
I 1,195 files, hierarchically organized
I Constraints interweaved with interface data
I 1 symbol ↔ 1 or more configuration blocks
I Different types of dependencies
I Attributes: different types, interaction, non-local constraints
I Three-valued “Tristate Logic”

Kconfig Language

Kconfig
I describes features as symbols
I symbols carry attributes, attributes have dependencies
I most constraints are dependencies of attributes

Obstacles
I 1,195 files, hierarchically organized
I Constraints interweaved with interface data
I 1 symbol ↔ 1 or more configuration blocks
I Different types of dependencies
I Attributes: different types, interaction, non-local constraints
I Three-valued “Tristate Logic”

Kconfig Language

Kconfig
I describes features as symbols
I symbols carry attributes, attributes have dependencies
I most constraints are dependencies of attributes

Obstacles
I 1,195 files, hierarchically organized

I Constraints interweaved with interface data
I 1 symbol ↔ 1 or more configuration blocks
I Different types of dependencies
I Attributes: different types, interaction, non-local constraints
I Three-valued “Tristate Logic”

Kconfig Language

Kconfig
I describes features as symbols
I symbols carry attributes, attributes have dependencies
I most constraints are dependencies of attributes

Obstacles
I 1,195 files, hierarchically organized
I Constraints interweaved with interface data

I 1 symbol ↔ 1 or more configuration blocks
I Different types of dependencies
I Attributes: different types, interaction, non-local constraints
I Three-valued “Tristate Logic”

Kconfig Language

Kconfig
I describes features as symbols
I symbols carry attributes, attributes have dependencies
I most constraints are dependencies of attributes

Obstacles
I 1,195 files, hierarchically organized
I Constraints interweaved with interface data
I 1 symbol ↔ 1 or more configuration blocks

I Different types of dependencies
I Attributes: different types, interaction, non-local constraints
I Three-valued “Tristate Logic”

Kconfig Language

Kconfig
I describes features as symbols
I symbols carry attributes, attributes have dependencies
I most constraints are dependencies of attributes

Obstacles
I 1,195 files, hierarchically organized
I Constraints interweaved with interface data
I 1 symbol ↔ 1 or more configuration blocks
I Different types of dependencies

I Attributes: different types, interaction, non-local constraints
I Three-valued “Tristate Logic”

Kconfig Language

Kconfig
I describes features as symbols
I symbols carry attributes, attributes have dependencies
I most constraints are dependencies of attributes

Obstacles
I 1,195 files, hierarchically organized
I Constraints interweaved with interface data
I 1 symbol ↔ 1 or more configuration blocks
I Different types of dependencies
I Attributes: different types, interaction, non-local constraints

I Three-valued “Tristate Logic”

Kconfig Language

Kconfig
I describes features as symbols
I symbols carry attributes, attributes have dependencies
I most constraints are dependencies of attributes

Obstacles
I 1,195 files, hierarchically organized
I Constraints interweaved with interface data
I 1 symbol ↔ 1 or more configuration blocks
I Different types of dependencies
I Attributes: different types, interaction, non-local constraints
I Three-valued “Tristate Logic”

Listing 1: net/netfilter/Kconfig
83 . . .
84 config NF NAT IPV4
85 tristate ” IPv4 NAT”
86 depends on NF CONNTRACK IPV4
87 default m if NETFILTER ADVANCED=n
88 select NF NAT
89 help
90 The IPv4 NAT option a l l o w s masquerading , . . .
91 forms o f f u l l Network Address Port Trans . . .
92 c o n t r o l l e d by i p t a b l e s o r n f t .
93
94 if NF NAT IPV4
95 . . .

Translation into Zengler Model

Actions in this step:
I Abstract from underlying input files
I Strip configuration invariant data
I Group configuration blocks by symbols

Translation into Zengler Model

Actions in this step:

I Abstract from underlying input files
I Strip configuration invariant data
I Group configuration blocks by symbols

Translation into Zengler Model

Actions in this step:
I Abstract from underlying input files

I Strip configuration invariant data
I Group configuration blocks by symbols

Translation into Zengler Model

Actions in this step:
I Abstract from underlying input files
I Strip configuration invariant data

I Group configuration blocks by symbols

Translation into Zengler Model

Actions in this step:
I Abstract from underlying input files
I Strip configuration invariant data
I Group configuration blocks by symbols

The Zengler Model

Database:

Symbols as lists of configuration blocks
I dependencies as lists of Tristate expressions
I lists of attributes

I visibility
I default
I select
I range

The Zengler Model

Database: Symbols as lists of configuration blocks

I dependencies as lists of Tristate expressions
I lists of attributes

I visibility
I default
I select
I range

The Zengler Model

Database: Symbols as lists of configuration blocks
I dependencies as lists of Tristate expressions

I lists of attributes
I visibility
I default
I select
I range

The Zengler Model

Database: Symbols as lists of configuration blocks
I dependencies as lists of Tristate expressions
I lists of attributes

I visibility
I default
I select
I range

The Zengler Model

Database: Symbols as lists of configuration blocks
I dependencies as lists of Tristate expressions
I lists of attributes

I visibility
I default
I select
I range

Attributes Model

Actions in this step:
I Abstract from individual configuration blocks
I Collect dependencies for each attribute
I Store Kconfig “select” attributes with referenced symbols

Database:
I Symbols as sets of attributes
I Dependencies as lists of expressions in Tristate Logic

Attributes Model

Actions in this step:

I Abstract from individual configuration blocks
I Collect dependencies for each attribute
I Store Kconfig “select” attributes with referenced symbols

Database:
I Symbols as sets of attributes
I Dependencies as lists of expressions in Tristate Logic

Attributes Model

Actions in this step:
I Abstract from individual configuration blocks

I Collect dependencies for each attribute
I Store Kconfig “select” attributes with referenced symbols

Database:
I Symbols as sets of attributes
I Dependencies as lists of expressions in Tristate Logic

Attributes Model

Actions in this step:
I Abstract from individual configuration blocks
I Collect dependencies for each attribute

I Store Kconfig “select” attributes with referenced symbols
Database:
I Symbols as sets of attributes
I Dependencies as lists of expressions in Tristate Logic

Attributes Model

Actions in this step:
I Abstract from individual configuration blocks
I Collect dependencies for each attribute
I Store Kconfig “select” attributes with referenced symbols

Database:
I Symbols as sets of attributes
I Dependencies as lists of expressions in Tristate Logic

Attributes Model

Actions in this step:
I Abstract from individual configuration blocks
I Collect dependencies for each attribute
I Store Kconfig “select” attributes with referenced symbols

Database:
I Symbols as sets of attributes
I Dependencies as lists of expressions in Tristate Logic

What is Tristate Logic?

Tristate Logic is a three-valued logic – Why?
⇒ Features have three states of activation:
I Inactive
I Runtime loadable module
I Integration at compile time

What is Tristate Logic?

Tristate Logic is a three-valued logic

– Why?
⇒ Features have three states of activation:
I Inactive
I Runtime loadable module
I Integration at compile time

What is Tristate Logic?

Tristate Logic is a three-valued logic – Why?

⇒ Features have three states of activation:
I Inactive
I Runtime loadable module
I Integration at compile time

What is Tristate Logic?

Tristate Logic is a three-valued logic – Why?
⇒ Features have three states of activation:

I Inactive
I Runtime loadable module
I Integration at compile time

What is Tristate Logic?

Tristate Logic is a three-valued logic – Why?
⇒ Features have three states of activation:
I Inactive
I Runtime loadable module
I Integration at compile time

Tristate Logic

Domain: {0, 1, 2}

Three operators:

!

0 2
1 1
2 0

&& 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

|| 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

I Idea: First create POF in Tristate Logic
I Interpretation: Valid configuration 2, invalid configuration 0

⇒ Not possible: Functionally not complete.

Tristate Logic

Domain: {0, 1, 2}

Three operators:

!

0 2
1 1
2 0

&& 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

|| 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

I Idea: First create POF in Tristate Logic
I Interpretation: Valid configuration 2, invalid configuration 0

⇒ Not possible: Functionally not complete.

Tristate Logic

Domain: {0, 1, 2}

Three operators:

!

0 2
1 1
2 0

&& 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

|| 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

I Idea: First create POF in Tristate Logic
I Interpretation: Valid configuration 2, invalid configuration 0

⇒ Not possible: Functionally not complete.

Tristate Logic

Domain: {0, 1, 2}

Three operators:

!

0 2
1 1
2 0

&& 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

|| 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

I Idea: First create POF in Tristate Logic
I Interpretation: Valid configuration 2, invalid configuration 0

⇒ Not possible: Functionally not complete.

Tristate Logic

Domain: {0, 1, 2}

Three operators:

!

0 2
1 1
2 0

&& 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

|| 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

I Idea: First create POF in Tristate Logic

I Interpretation: Valid configuration 2, invalid configuration 0

⇒ Not possible: Functionally not complete.

Tristate Logic

Domain: {0, 1, 2}

Three operators:

!

0 2
1 1
2 0

&& 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

|| 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

I Idea: First create POF in Tristate Logic
I Interpretation: Valid configuration 2, invalid configuration 0

⇒ Not possible: Functionally not complete.

Tristate Logic

Domain: {0, 1, 2}

Three operators:

!

0 2
1 1
2 0

&& 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

|| 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

I Idea: First create POF in Tristate Logic
I Interpretation: Valid configuration 2, invalid configuration 0

⇒ Not possible: Functionally not complete.

Tristate* Extension

Solution: Define new operators

⇔ 0 1 2

0 2 0 0
1 0 2 0
2 0 0 2

⇒ 0 1 2

0 2 2 2
1 0 2 2
2 0 0 2

Tristate* Extension

Solution: Define new operators

⇔ 0 1 2

0 2 0 0
1 0 2 0
2 0 0 2

⇒ 0 1 2

0 2 2 2
1 0 2 2
2 0 0 2

Tristate* Extension

Solution: Define new operators

⇔ 0 1 2

0 2 0 0
1 0 2 0
2 0 0 2

⇒ 0 1 2

0 2 2 2
1 0 2 2
2 0 0 2

POF Creation

I Symbols remain as variables
I Auxiliary variables for attributes
I Auxiliary variables for upper and lower bound
I Fixed correlation between a symbol and its auxiliary variables
I Dependencies are expressions consisting of symbols and affect

auxiliary variables
I ⇒ POF creation straightforward as each symbol can be

considered separately

POF Creation

I Symbols remain as variables

I Auxiliary variables for attributes
I Auxiliary variables for upper and lower bound
I Fixed correlation between a symbol and its auxiliary variables
I Dependencies are expressions consisting of symbols and affect

auxiliary variables
I ⇒ POF creation straightforward as each symbol can be

considered separately

POF Creation

I Symbols remain as variables
I Auxiliary variables for attributes

I Auxiliary variables for upper and lower bound
I Fixed correlation between a symbol and its auxiliary variables
I Dependencies are expressions consisting of symbols and affect

auxiliary variables
I ⇒ POF creation straightforward as each symbol can be

considered separately

POF Creation

I Symbols remain as variables
I Auxiliary variables for attributes
I Auxiliary variables for upper and lower bound

I Fixed correlation between a symbol and its auxiliary variables
I Dependencies are expressions consisting of symbols and affect

auxiliary variables
I ⇒ POF creation straightforward as each symbol can be

considered separately

POF Creation

I Symbols remain as variables
I Auxiliary variables for attributes
I Auxiliary variables for upper and lower bound
I Fixed correlation between a symbol and its auxiliary variables

I Dependencies are expressions consisting of symbols and affect
auxiliary variables

I ⇒ POF creation straightforward as each symbol can be
considered separately

POF Creation

I Symbols remain as variables
I Auxiliary variables for attributes
I Auxiliary variables for upper and lower bound
I Fixed correlation between a symbol and its auxiliary variables
I Dependencies are expressions consisting of symbols and affect

auxiliary variables

I ⇒ POF creation straightforward as each symbol can be
considered separately

POF Creation

I Symbols remain as variables
I Auxiliary variables for attributes
I Auxiliary variables for upper and lower bound
I Fixed correlation between a symbol and its auxiliary variables
I Dependencies are expressions consisting of symbols and affect

auxiliary variables
I ⇒ POF creation straightforward as each symbol can be

considered separately

Translation into Propositional POF

Translation from Tristate* Logic into Propositional Logic:

I Tristate Variable A 2 Propositional Variables p0(A), p1(A)
I Tristate Formula e 2 projections π0 (e) , π1 (e) to

Propositional Logic
Translation rules:

e′ π0 (e′) π1 (e′)

A p0(A) p1(A)
!e ¬π0 (e)∧¬π1 (e) π1 (e)
e0 && · · · && en π0 (e0)∧ · · · ∧π0 (en)

∧
i∈{0,...,n} (π0 (ei)∨π1 (ei))∧

∨
i∈{0,...,n} π1 (ei)

e0 || · · · || en π0 (e0)∨ · · · ∨π0 (en)
∧

i∈{0,...,n}(¬π0 (ei))∧
∨

i∈{0,...,n} π1 (ei)
e1 ⇔ e2 (π0 (e1)↔π0 (e2))∧ (π1 (e1)↔π1 (e2)) ⊥
e1 ⇒ e2 π0 (e2)∨¬π0 (e1)∧ (¬π1 (e1)∨π1 (e2)) ⊥

⇒ Tristate* POF ΦT π0
(

ΦT
)

, Plaisted-Greenbaum for CNF
⇒ Same methods as in automotive industry

Translation into Propositional POF

Translation from Tristate* Logic into Propositional Logic:
I Tristate Variable A 2 Propositional Variables p0(A), p1(A)

I Tristate Formula e 2 projections π0 (e) , π1 (e) to
Propositional Logic

Translation rules:

e′ π0 (e′) π1 (e′)

A p0(A) p1(A)
!e ¬π0 (e)∧¬π1 (e) π1 (e)
e0 && · · · && en π0 (e0)∧ · · · ∧π0 (en)

∧
i∈{0,...,n} (π0 (ei)∨π1 (ei))∧

∨
i∈{0,...,n} π1 (ei)

e0 || · · · || en π0 (e0)∨ · · · ∨π0 (en)
∧

i∈{0,...,n}(¬π0 (ei))∧
∨

i∈{0,...,n} π1 (ei)
e1 ⇔ e2 (π0 (e1)↔π0 (e2))∧ (π1 (e1)↔π1 (e2)) ⊥
e1 ⇒ e2 π0 (e2)∨¬π0 (e1)∧ (¬π1 (e1)∨π1 (e2)) ⊥

⇒ Tristate* POF ΦT π0
(

ΦT
)

, Plaisted-Greenbaum for CNF
⇒ Same methods as in automotive industry

Translation into Propositional POF

Translation from Tristate* Logic into Propositional Logic:
I Tristate Variable A 2 Propositional Variables p0(A), p1(A)
I Tristate Formula e 2 projections π0 (e) , π1 (e) to

Propositional Logic

Translation rules:

e′ π0 (e′) π1 (e′)

A p0(A) p1(A)
!e ¬π0 (e)∧¬π1 (e) π1 (e)
e0 && · · · && en π0 (e0)∧ · · · ∧π0 (en)

∧
i∈{0,...,n} (π0 (ei)∨π1 (ei))∧

∨
i∈{0,...,n} π1 (ei)

e0 || · · · || en π0 (e0)∨ · · · ∨π0 (en)
∧

i∈{0,...,n}(¬π0 (ei))∧
∨

i∈{0,...,n} π1 (ei)
e1 ⇔ e2 (π0 (e1)↔π0 (e2))∧ (π1 (e1)↔π1 (e2)) ⊥
e1 ⇒ e2 π0 (e2)∨¬π0 (e1)∧ (¬π1 (e1)∨π1 (e2)) ⊥

⇒ Tristate* POF ΦT π0
(

ΦT
)

, Plaisted-Greenbaum for CNF
⇒ Same methods as in automotive industry

Translation into Propositional POF

Translation from Tristate* Logic into Propositional Logic:
I Tristate Variable A 2 Propositional Variables p0(A), p1(A)
I Tristate Formula e 2 projections π0 (e) , π1 (e) to

Propositional Logic
Translation rules:

e′ π0 (e′) π1 (e′)

A p0(A) p1(A)
!e ¬π0 (e)∧¬π1 (e) π1 (e)
e0 && · · · && en π0 (e0)∧ · · · ∧π0 (en)

∧
i∈{0,...,n} (π0 (ei)∨π1 (ei))∧

∨
i∈{0,...,n} π1 (ei)

e0 || · · · || en π0 (e0)∨ · · · ∨π0 (en)
∧

i∈{0,...,n}(¬π0 (ei))∧
∨

i∈{0,...,n} π1 (ei)
e1 ⇔ e2 (π0 (e1)↔π0 (e2))∧ (π1 (e1)↔π1 (e2)) ⊥
e1 ⇒ e2 π0 (e2)∨¬π0 (e1)∧ (¬π1 (e1)∨π1 (e2)) ⊥

⇒ Tristate* POF ΦT π0
(

ΦT
)

, Plaisted-Greenbaum for CNF
⇒ Same methods as in automotive industry

Translation into Propositional POF

Translation from Tristate* Logic into Propositional Logic:
I Tristate Variable A 2 Propositional Variables p0(A), p1(A)
I Tristate Formula e 2 projections π0 (e) , π1 (e) to

Propositional Logic
Translation rules:

e′ π0 (e′) π1 (e′)

A p0(A) p1(A)
!e ¬π0 (e)∧¬π1 (e) π1 (e)
e0 && · · · && en π0 (e0)∧ · · · ∧π0 (en)

∧
i∈{0,...,n} (π0 (ei)∨π1 (ei))∧

∨
i∈{0,...,n} π1 (ei)

e0 || · · · || en π0 (e0)∨ · · · ∨π0 (en)
∧

i∈{0,...,n}(¬π0 (ei))∧
∨

i∈{0,...,n} π1 (ei)
e1 ⇔ e2 (π0 (e1)↔π0 (e2))∧ (π1 (e1)↔π1 (e2)) ⊥
e1 ⇒ e2 π0 (e2)∨¬π0 (e1)∧ (¬π1 (e1)∨π1 (e2)) ⊥

⇒ Tristate* POF ΦT π0
(

ΦT
)

, Plaisted-Greenbaum for CNF
⇒ Same methods as in automotive industry

Translation into Propositional POF

Translation from Tristate* Logic into Propositional Logic:
I Tristate Variable A 2 Propositional Variables p0(A), p1(A)
I Tristate Formula e 2 projections π0 (e) , π1 (e) to

Propositional Logic
Translation rules:

e′ π0 (e′) π1 (e′)

A p0(A) p1(A)
!e ¬π0 (e)∧¬π1 (e) π1 (e)
e0 && · · · && en π0 (e0)∧ · · · ∧π0 (en)

∧
i∈{0,...,n} (π0 (ei)∨π1 (ei))∧

∨
i∈{0,...,n} π1 (ei)

e0 || · · · || en π0 (e0)∨ · · · ∨π0 (en)
∧

i∈{0,...,n}(¬π0 (ei))∧
∨

i∈{0,...,n} π1 (ei)
e1 ⇔ e2 (π0 (e1)↔π0 (e2))∧ (π1 (e1)↔π1 (e2)) ⊥
e1 ⇒ e2 π0 (e2)∨¬π0 (e1)∧ (¬π1 (e1)∨π1 (e2)) ⊥

⇒ Tristate* POF ΦT π0
(

ΦT
)

, Plaisted-Greenbaum for CNF
⇒ Same methods as in automotive industry

Translation into Propositional POF

Translation from Tristate* Logic into Propositional Logic:
I Tristate Variable A 2 Propositional Variables p0(A), p1(A)
I Tristate Formula e 2 projections π0 (e) , π1 (e) to

Propositional Logic
Translation rules:

e′ π0 (e′) π1 (e′)

A p0(A) p1(A)
!e ¬π0 (e)∧¬π1 (e) π1 (e)
e0 && · · · && en π0 (e0)∧ · · · ∧π0 (en)

∧
i∈{0,...,n} (π0 (ei)∨π1 (ei))∧

∨
i∈{0,...,n} π1 (ei)

e0 || · · · || en π0 (e0)∨ · · · ∨π0 (en)
∧

i∈{0,...,n}(¬π0 (ei))∧
∨

i∈{0,...,n} π1 (ei)
e1 ⇔ e2 (π0 (e1)↔π0 (e2))∧ (π1 (e1)↔π1 (e2)) ⊥
e1 ⇒ e2 π0 (e2)∨¬π0 (e1)∧ (¬π1 (e1)∨π1 (e2)) ⊥

⇒ Tristate* POF ΦT π0
(

ΦT
)

, Plaisted-Greenbaum for CNF
⇒ Same methods as in automotive industry

Sizes of Formulae

Table: Sizes of POFs for Linux 4.0

arch variables
TPOF

aux
TPOF

total
TPOF

variables
L-POF

variables
CNF

clauses
CNF

arm 11976 55760 67736 134270 1299812 2849653
c6x 10548 48174 58722 115799 949031 1708805
ia64 10866 49850 60716 119837 1010856 1834072
m68k 10717 49136 59853 118115 1008800 1836987

mips 11249 52034 63283 125090 1048937 1909971
powerpc 11247 51964 63211 124935 1055822 1917736
s390 10699 49084 59783 117997 998901 1813210
score 10539 48168 58707 115783 949788 1710461

sh 10955 50336 61291 121037 1020515 1854779
sparc 10774 49327 60101 118582 1004762 1823946
x86 11135 51280 62415 123314 1051478 1913811

Analysis Results

Table: Redundant or necessary symbols in Linux 4.0

arch inadmissible necessary

arm 1691 75
c6x 4644 42
ia64 3454 74
m68k 3741 32

mips 2773 64
powerpc 2652 94
s390 4149 107
score 7068 36

sh 3297 67
sparc 3201 51
x86 2301 138

Using unmodified picosat: < 0.3s in > 99 % of the cases

Outlook

I Re-configuration
I List possible constraints violations
I Incorporate Linux 4.2 Updates (<=, >=, <, >)
I Design new configuration language?
I SATCOUNT?
I Configuration Lifting
I . . .

Questions?

Andreas Kaiser and Wolfgang Küchlin, ‘Detecting inadmissible
and necessary variables in large propositional formulae’,
Technical report, University of Siena, (2001).

Wolfgang Küchlin and Carsten Sinz, ‘Proving consistency
assertions for automotive product data management’, Journal
of Automated Reasoning, 24(1–2), 145–163, (2000).

Reinhard Tartler, Daniel Lohmann, Julio Sincero, and
Wolfgang Schröder-Preikschat, ‘Feature Consistency in
Compile-Time Configurable System Software’, in Proceedings
of the EuroSys 2011 Conference (EuroSys ’11), eds., Gernoth
Heiser and Christoph Kirsch, pp. 47–60, New York, NY, USA,
(2011).

Christoph Zengler and Wolfgang Küchlin, ‘Encoding the Linux
Kernel Configuration in Propositional Logic’, in Proceedings of
the 19th European Conference on Artificial Intelligence (ECAI
2010) Workshop on Configuration, eds., Lothar Hotz and Alois
Haselböck, pp. 51–56, (2010).

	Introduction
	Kconfig Language
	Zengler Model
	Attributes Model
	Tristate* POF
	Propositional POF
	Results

