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Listing 1: net/netfilter/Kconfig
83 . . .
84 config NF NAT IPV4
85 tristate ” IPv4 NAT”
86 depends on NF CONNTRACK IPV4
87 default m if NETFILTER ADVANCED=n
88 select NF NAT
89 help
90 The IPv4 NAT option a l l o w s masquerading , . . .
91 forms o f f u l l Network Address Port Trans . . .
92 c o n t r o l l e d by i p t a b l e s o r n f t .
93
94 if NF NAT IPV4
95 . . .
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Tristate Logic

Domain: {0, 1, 2}

Three operators:

!

0 2
1 1
2 0

&& 0 1 2

0 0 0 0
1 0 1 1
2 0 1 2

|| 0 1 2

0 0 1 2
1 1 1 2
2 2 2 2

I Idea: First create POF in Tristate Logic
I Interpretation: Valid configuration 2, invalid configuration 0

⇒ Not possible: Functionally not complete.
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Translation into Propositional POF

Translation from Tristate* Logic into Propositional Logic:

I Tristate Variable A  2 Propositional Variables p0(A), p1(A)
I Tristate Formula e  2 projections π0 (e) , π1 (e) to

Propositional Logic
Translation rules:

e′ π0 (e′) π1 (e′)

A p0(A) p1(A)
!e ¬π0 (e)∧¬π1 (e) π1 (e)
e0 && · · · && en π0 (e0)∧ · · · ∧π0 (en)

∧
i∈{0,...,n} (π0 (ei )∨π1 (ei ))∧

∨
i∈{0,...,n} π1 (ei )

e0 || · · · || en π0 (e0)∨ · · · ∨π0 (en)
∧

i∈{0,...,n}(¬π0 (ei ))∧
∨

i∈{0,...,n} π1 (ei )
e1 ⇔ e2 (π0 (e1)↔π0 (e2))∧ (π1 (e1)↔π1 (e2)) ⊥
e1 ⇒ e2 π0 (e2)∨¬π0 (e1)∧ (¬π1 (e1)∨π1 (e2)) ⊥

⇒ Tristate* POF ΦT  π0
(

ΦT
)

, Plaisted-Greenbaum for CNF
⇒ Same methods as in automotive industry
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, Plaisted-Greenbaum for CNF
⇒ Same methods as in automotive industry



Sizes of Formulae

Table: Sizes of POFs for Linux 4.0

arch variables
TPOF

aux
TPOF

total
TPOF

variables
L-POF

variables
CNF

clauses
CNF

arm 11976 55760 67736 134270 1299812 2849653
c6x 10548 48174 58722 115799 949031 1708805
ia64 10866 49850 60716 119837 1010856 1834072
m68k 10717 49136 59853 118115 1008800 1836987

mips 11249 52034 63283 125090 1048937 1909971
powerpc 11247 51964 63211 124935 1055822 1917736
s390 10699 49084 59783 117997 998901 1813210
score 10539 48168 58707 115783 949788 1710461

sh 10955 50336 61291 121037 1020515 1854779
sparc 10774 49327 60101 118582 1004762 1823946
x86 11135 51280 62415 123314 1051478 1913811



Analysis Results

Table: Redundant or necessary symbols in Linux 4.0

arch inadmissible necessary

arm 1691 75
c6x 4644 42
ia64 3454 74
m68k 3741 32

mips 2773 64
powerpc 2652 94
s390 4149 107
score 7068 36

sh 3297 67
sparc 3201 51
x86 2301 138

Using unmodified picosat: < 0.3s in > 99 % of the cases



Outlook

I Re-configuration
I List possible constraints violations
I Incorporate Linux 4.2 Updates (<=, >=, <, >)
I Design new configuration language?
I SATCOUNT?
I Configuration Lifting
I . . .



Questions?
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