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Abstract
This work explores the use of various Deep Neural Network
(DNN) architectures for an end-to-end language identification
(LID) task. The approach has been proven to significantly im-
prove the state-of-art in many domains include speech recogni-
tion, computer vision and genomics. As an end-to-end system,
deep learning removes the burden of hand crafting the feature
extraction is conventional approach in LID. This versatility is
achieved by training a very deep network to learn distributed
representations of speech features with multiple levels of ab-
straction. In this paper, we show that an end-to-end deep learn-
ing system can be used to recognize language from speech ut-
terances with various lengths. Our results show that a combi-
nation of three deep architectures: feed-forward network, con-
volutional network and recurrent network can achieve the best
performance compared to other network designs. Addition-
ally, we compare our network performance to state-of-the-art
BNF-based i-vector system on NIST 2015 Language Recogni-
tion Evaluation corpus. Key to our approach is that we effec-
tively address computational and regularization issues into the
network structure to build deeper architecture compare to any
previous DNN approaches to language recognition task.

1. Introduction
Spoken language identification (LID) [1] is the process of iden-
tifying the language spoken in test utterance. Ideally, the speech
segment is assumed to contain only one language, and the
recording environment is different among utterances, which can
be phone call, interview or public speech with diverse ambi-
ent noises. The task attracts increasing attention in the speech
community because of potential real world applications. One
typical application of LID is language-oriented user interaction,
the system acts as a gateway to the service, recognizes user
language preference and intelligently customizes the interface
[2]. A more challenging task is language diarization [3] which
segments and tags a speech utterances based on its language
information. This system not only enhances the performance
of other speech processing systems include speaker identifica-
tion and automatic speech recognition (ASR), but also advance
the development of universal communication system which can
classify and process multilingual audio data.

Many state-of-the-art LID systems still heavily rely on
acoustic modeling [4], which requires building a pipeline of
handcrafted feature extraction and applicable classifier. One
drawback of this design is that the feature representation might
not be optimized for the classification objective. Taken into

account the issue, deep neural network (DNN) [5], which is
a computational model, composes multiple nonlinear layers to
capture the complex representations of data with multiple levels
of abstraction. The impressive performance of DNN achieved in
many domains included image recognition, genomics, and espe-
cially ASR [6] has motivated similar approaches to LID [7, 8].
In practice, there are two major deep learning approaches to
LID. The first one is “indirect” approach introduced in [7] using
deep bottleneck features (BNF) to extract frame-level features
for i-vector systems. This approach has proven to give state-of-
the-art results in both speaker and language recognition [7].

On the other hand, the “direct” approach constructs an end-
to-end classifiers which are trained using spectral information.
End-to-end learning allows the network optimized to handle
wide range of speech diversity including ambient noise, speak-
ers’ variation and recording devices. In [8], it was found that a
deep learning system surpassed i-vector based approaches with
lower number of parameters when large amount of training data
was available. However, the paper only stop at using a single
network architecture. Conversely, it was reported in [9] that
a combination of many deep architectures outperform conven-
tional deep learning approach to ASR.

In this study, we present the first large scale analysis of
various DNN architectures for LID tasks. The key to our ap-
proach is recurrent architecture of DNN, a model has recently
been shown to outperform the state-of-the art DNN systems for
acoustic modeling in speech domain [6, 10]. The central idea
behind recurrent neural network (RNN) is its feedback connec-
tion which creates an internal state to model temporal depen-
dency in data which is essential in speech. Inspired by the work
in [9], we conduct a series of experiments using NIST LRE’15
corpus for a systematic study of the best network design for LID
task. Our final network is compared to the most recent state-of-
the-art BNF i-vector on the same dataset. The results indicate
a new potential approach to LID and open a field of research to
tackle the challenge of end-to-end LID.

2. Recurrent neural network
A recurrent neural network (RNN) is a variant of artificial neu-
ral network where connections between hidden units form a di-
rected cycle. For every time-step t, RNN combines the input
vector xt with their state vector ht−1 to produce a next state
vector ht by using a learn-able function with parameters θ.

ht = F (xt,ht−1, θ) (1)
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Figure 1: Design for an end-to-end LID system using RNN.

This internal state allows it to exhibit dynamic temporal patterns
and process arbitrary sequences of inputs. As the network struc-
ture reflects strong characteristic of speech signal, it has been
widely introduced into speech recognition fields with state-of-
the-art performance [10, 11, 12].

2.1. End-to-end RNN for LID

A general approach to end-to-end RNN for language recogni-
tion system is described in Figure 1. The system contains three
main modules. First, the features preprocessor extracts repre-
sentative features from raw signal. An RNN network encodes
a sequence of speech frames into its hidden states. Finally, a
probability decoder projects hidden states of RNN into inter-
pretable probability vector of target languages by using softmax
activation function,

ϕ(y)j =
eyj∑K

k=1 e
yk

(2)

whereK is the total number of classes, vector yj is affine trans-
form of stacked RNN’s hidden states, and ϕ(y) is posterior
distribution of target languages. A hard decision can be made
by selecting the most probable class. Moreover, another ap-
proach transforms the posterior probability into log-likelihood
ratio (LLR), which allows more flexible decision making pro-
cess.

2.2. Tackling long range dependency

Ordinary RNN has convergence issues. In practice, training the
network often confront the problem of vanishing gradient and
exploding gradient problems as described in [13]. Several ar-
chitectures were proposed to address this issue. One of the
most popular variants uses Gate units to control information
flow into or out from the internal state. This is well-known as
long-short term memory (LSTM) recurrent network [14]. The
key to LSTM is memory cell which is regulated by gating units
to update its state over time. As a result, LSTM networks are
capable of learning long-term dependencies, and was proven to
work tremendously well on a large variety of tasks [14].

The modern architecture of LSTM is illustrated in Figure 2.
The whole process can be interpreted as a flow of information
vectors from left to right, which includes:

• Xt: input vector at time-step t.

• ht−1: vector represents previous hidden state at time-
step t− 1.
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Figure 2: A LSTM architecture, as a flow of information through
memory block which controlled by input gate it, forget gate f t

and output gate ot

• ct−1: previous memory cell state from time-step t − 1
encoded as a vector.

The cell state acts like a “conveyor belt”, it runs straight down
the entire information chain to create precise timing signal, also
known as peephole [14]. Additionally, the three vectors form
3 gating units as a “throttle” of information, these units regu-
late data vectors allowing modification of cell state to capture
long-term temporal patterns. The modification includes: store
(i.e input gate it), remove (i.e forget gate f t) and response (i.e
output gate ot),

it = σi(xtW xi + ht−1W hi +wci � ct−1 + bi)

f t = σf (xtW xf + ht−1W hf +wcf � ct−1 + bf )

ct = f t � ct−1 + it � σc(xtW xc + ht−1W hc + bc)

ot = σo(xtW xo + ht−1W ho +wco � ct + bo)
ht = ot � σh(ct)

(3)

where � represents element-wise operator, and W− denotes
weights matrices (e.gW xi is the matrix of parameters mapping
input xt to input gate dimension). The b− term denotes bias
vectors, σ is activation functions which often are sigmoid for
gate units and tanh for hidden activation.

According to [14], many variants of LSTM have been pro-
posed since its inception in 1995. Each with their own merits
and drawbacks perform differently in various tasks, however,
the most remarkable variant is the Gated Recurrent Unit (GRU)
[15], it simplifies the LSTM architecture by coupling the input
and the forget gate into update gate (ut), together with reset gate
(rt) to schedule the update of hidden state. The performance of
GRU can be comparable to LSTM, however, its design signif-
icantly reduces the number of parameters to be estimated, as
follows:

rt = σr(xtW xr + ht−1W hr + br)

ut = σu(xtW xu + ht−1W hu + bu)

ct = σc(xtW xc + rt � (ht−1W hc) + bc)

ht = (1− ut)� ht−1 + ut � ct

(4)

In this paper, we investigate the use of both LSTM and GRU to
select the best architecture for language recognition task.

3. Language identification corpus
In this study, we experiment with NIST LRE15 training and
evaluation corpora. We decided to leave out French cluster as it
has inconsistency between training and evaluation partitions. 1

1In NIST LRE15 workshop, NIST also excluded the French cluster
from the analysis of results
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Figure 3: Distribution of each language in training set and eval-
uation set

3.1. Data distribution

The dataset contains ≈ 796 hours of speech. The speech was
recorded in various conditions, from phone conversation with
ambient noise to a formal interview. There is large difference
between the language distribution of training and evaluation
data as shown in Figure 3. Furthermore, our inspection on
three random speech utterances from 3 clusters suggests diverse
structures in the audio clips, some utterances contain very long
silences mixed with noise and the speech activities are occa-
sionally short and meaningless.

This observation implies the importance of robustness in
learning speech utterances representation, a distributed repre-
sentation obtained by deep network can learn many interme-
diate concepts that are useful to capture the statistical depen-
dencies of input signal and output language. Since the primary
cost function of NIST LRE’ 15 is applied separately for each
language cluster [16], we decided to train different network for
each cluster, and the finalCavg is average of all clusters’ scores.

3.2. Performance measurement

Output of our system is a (20 dimensional) vector of log likeli-
hood ratio (LLR) scores for each test segment. The objectives
of LRE15 is minimizing the criterion in Eq. (5), which apply
for each cluster and its pairs of target/non-target languages (LT ,
LN ):

Cavg =
1

NL
{[Cmiss ∗ PTarget ∗

∑
LT

PMiss(LT )] +
1

NL − 1

[CFA ∗ (1− PTarget) ∗
∑
LT

∑
LN

PFA(LT , LN )]}

(5)
where NL is the number of language in the cluster, Cmiss, CFA

and PTarget are application-specific parameters represent the
weights of detection miss and false alarm probabilities. For
LRE15, the application parameters will be: Cmiss = CFA = 1,
and PTarget = 0.5. Additionally, the average of this value
across six clusters will be the criterion to judge final perfor-
mance of our system.

In practice, we trained our model using cross-entropy loss
(Eq. (6) to categorize each training frames to its true language
label.

L = −
∑
i

tilog(pi) (6)

where ti is one-hot-encoded true class label, and pi is our pre-
dicted probabilities. Acknowledge the nontrivial difference be-
tween distribution of training and evaluating dataset, we pro-

pose a dataset partition strategy specified in Table 1. Note that
all dataset are randomly splitted and completely non-overlap.

Table 1: Splitting scheme for training and evaluation corpora

Alias Corpus Partition Purpose
Set01 Dev. 20% Validating training results

on training dataset
Set02 Dev. 80% all networks were trained using

this data set
Set03 Eval. 20% Tuning, features selection,

model selection
Set04 Eval. 80% Evaluate overall

performance of system

We also use accuracy score (Eq. (7)) as our criterion for
Section 3.3 and 4, because the measurement is faster to calculate
and the value also reflect actual LRE15 evaluation score

accuracyper sequences =

∑
i I(ti = argmax(pi))

n
, (7)

where: I is identity function and n is the number of samples. It
is notable that we compute this score for each example and one
utterance can be segmented into many examples with the same
label. Further study in Section 5 and 6 will average softmax
probabilities from all samples of each utterance as final score,
and Cavg on these scores are used for evaluation as we need
more precise criterion to compare our network to baseline i-
vector approach.

3.3. Feature selection

In all of our experiments, the audio data was preprocessed into
25 ms frames, overlapped by 10 ms. The extracted coefficients
were individually normalized using local mean and standard de-
viation of each utterance to be centered at 0 with variance equal
to 1. For feature selection, we separately train a network for
each feature configuration, the network has 3 stacked LSTM
layers with 250 units per layer.

We initially use 40 filter banks in log-Mel scale feature and
propose 4 schemes to process speech utterance into relevant fea-
ture vectors. The length of input sequences is critical parame-
ters, as a sufficiently long input should contain all important
temporal patterns for RNN. Consequently, frames from each
utterance are grouped into fixed-length sequences, and the ut-
terances, which are shorter, are padded by zeros. We also intro-
duce masks (i.e indicator vectors of 0 and 1, 0 - for not used in
training frames and 1 - otherwise) for each training examples to
carefully leave out these padded frames during recurrent steps.
Subsequently, VAD can be used inclusively with mask indices,
however, our approach using Signal to Noise Ratio threshold
cannot exclude long silences, so we didn’t introduce VAD in
our experiments.

Table 2: Accuracy (Eq. (7)) on Set03 using different schemes

Length Overlap zho qsl spa Avg.
(Frames) (Frames)

20 0 0.32 0.68 0.35 0.45
500 0 0.39 0.74 0.53 0.557
500 100 0.38 0.73 0.53 0.547
800 0 0.32 0.67 0.49 0.493

For short input sequences (i.e. 20 frames), we miss impor-
tant temporal information, and there exist cases that the input



only contain long silent signal which bias the network to wrong
structure. Furthermore, longer sequences (i.e. 800 frames) also
hurt the overall performance. Consequently, we use the second
configuration in Table 2 for further experiments.

Given that the most popular features to train DNNs and
their variants are log-Mel filter bank features, some ASR sys-
tems used Mel-frequency cepstral coefficients (MFCCs) fea-
tures and achieved reasonable results on NIST LRE 2009
dataset [6]. In our experiment, the average performance in Ta-
ble 3 indicates more advantages of using filter bank features. As
we are going to add convolutional layers, log-Mel features are
known to be more friendly to the convolution operators [17, 18].
The convolutional layers will reduce the spectral variation and
model the correlation among different frequency banks. Hence,
for the rest of the paper, we use log-Mel filter banks features
rolled into sequences of 500 frames without overlap.

Table 3: Accuracy on Set03 using different type of features

Features zho qsl spa Avg.
MFCC 0.40 0.68 0.51 0.530

Logmel filter banks 0.39 0.74 0.53 0.557

4. Augmenting Network Architecture
In this section, we investigate a relevant deep learning approach
to LID. The optimal design is selected by planning experiments
to augment the network structure. We start with the proposed
architecture with 1 LSTM of 512 memory cells in [8] as the
baseline for augmenting the network.

All networks are initialized using the same random seed
to remove randomness on the results. Unless otherwise indi-
cated, we use 40 dimensional log-Mel filter-banks + delta +
double delta coefficients to train our networks. Furthermore,
each speech utterances’ features are rolled into many sequences
of 500 frames without any overlap as specified in Section 3.2.

To optimize the network, we use Rmsprop optimizer [19]
(Eq. (8)), the algorithm scale the learning rates (η) by dividing
with the moving average of the root mean squared gradients
which controlled by a decay factor (ρ). Hence, the learning rate
is adapted to current convergent speed of the network,

rt = ρrt−1 + (1− ρ) ∗ g2

ηt =
η√
rt + ε

,
(8)

where g is gradients’ matrix of network parameters. We choose
ρ = 0.9 and η = 0.0001 − 0.001 depend on the number of
parameters, the number of layers of the network and our exper-
iments. All the networks are first trained to convergence with
batch size 128 and dropout (p = 0.5) enabled, then we do fine-
tuning by adding Gaussian noise to activation of each layer to
slightly perturb the network converge to a better region.

4.1. The power of depth network

As suggested in [20], a thin deep recurrent neural network can
significantly outperform shallow version with the same number
of parameters. It is also mentioned in [21] that there are sim-
ple functions expressible by small 3-layer feed-forward neural
networks which cannot be approximated by a 2-layer network.
Furthermore, our results in Table 4 also emphasize the impor-
tance of depth when constructing neural network. The first net-

work with depth one is our baseline LSTM. The next two net-
work designs contain only 250 units per layer, as a result, they
have lower number of parameters, but achieved greater perfor-
mance on most of the clusters.

Table 4: Accuracy on Set03 with various network depth (units∗

are the number of units for each layer)

Depth × units∗ 1 × 512 2 × 250 3 × 250
# Param. 2.8× 106 1.6× 106 2.1× 106

ara 0.44 0.48 0.48
eng 0.43 0.45 0.43
zho 0.37 0.35 0.39
qsl 0.67 0.73 0.74
spa 0.53 0.49 0.53

Avg. 0.488 0.500 0.514

4.2. RNN variants

As proposed in Section 2, we conduct our experiments on three
different variants of RNN to select the most appropriate archi-
tecture for language recognition task. The three variants are
vanilla RNN, LSTM and GRU. We use the network design from
previous section with 3 layers of 250 hidden units for each layer.

Table 5: Accuracy on Set03 of 3 RNN variants

Variants RNN LSTM GRU
ara - 0.48 0.46
eng - 0.43 0.43
zho - 0.39 0.39
qsl - 0.74 0.76
spa 0.42 0.53 0.50

Avg. - 0.514 0.508

The RNN network is difficult to train properly on long se-
quences, the training took longer time to converge and we have
to use gradient clipping with maximum norm of 50 [22]. RNN
also result very poor performance on spa clusters, and we skip
its training process for other clusters since it showed no im-
provement compared to previous approaches. Conversely, GRU
and LSTM converge without gradient clipping and achieve
comparable results. For the overall performance, LSTM outper-
forms GRU with relative 1.2% improvement, however, GRU is
more computationally efficient, since LSTM uses 45.8% more
parameters but only results in 0.6% improved accuracy. As a re-
sult, we use GRU to build deeper architecture due to this merit.

4.3. Multiple architecture design

Feedfoward neural network (FNN), convolutional neural net-
work (CNN), and recurrent neural network (RNN) are comple-
mentary in their learning capabilities to capture different pat-
terns. While FNN, with multiple processing layers, is able to
extract hierarchical representations that benefit the discrimina-
tive objective, CNN has ability to extract local invariant features
in both time and frequency domain [17]. Since the learned rep-
resentation from CNN is heavily relied on internal structure of
data, stacking multiple convolutional layers after the input can
capture robust low-level features of the signal, and was reported
in [9, 17] to boost the network overall performance. We propose
an architecture that leverages the merits of three different vari-
ants.

Our first two layers are convolutional layers with 128 fea-
ture maps for each layer. The first layer convolve both in time



and frequency domain with filter size of 9 × 9 to extract in-
variant local representation of spectral information. The second
layer use 3 × 5 filter with 1 × 2 stride to keep time dimension
unchanged. A pooling size of 3 on frequency axis was used for
the first layer, and no pooling was done in the second layer.

The dimension of the last layer of our CNN is large, because
of the increasing in number of feature maps. As suggested in
[9], adding a linear layer to perform dimensional reduction pro-
vides more compact representation without any accuracy trade-
off. Therefore, we form a linear projection to map output of
CNN to 256 dimensions before feeding these features to the
next 2 GRU layers of 250 units each.

In the final state, we add 1 fully connected layer of size 512
before the softmax layer. Our network has depth of 5 layers, as
the depth increase we need strong regularization methods. We
adopted two well-known techniques dropout [23] and batch nor-
malization [24]. However, implementing batch normalization
effectively for RNN is a difficult task as we have a sequence of
input, we only introduce batch normalization to the first 2 con-
volutional layers and compare its result to the dropout version
of the network.

Table 6: Accuracy on Set03 of 3 design

LSTM CGFNN1 CGFNN2

ara 0.48 0.49 0.49
eng 0.43 0.44 0.55
zho 0.39 0.43 0.51
qsl 0.74 0.78 0.84
spa 0.53 0.57 0.53

Avg. 0.514 0.542 0.584

CGFNN is our proposed architecture, a combination of
CNN, GRU and FNN. CGFNN1 is the design using dropout
for convolution layers, vice versa, CGFNN2 is same design
but using batch normalization. The results indicate improve-
ment by using combined architecture, and batch normalization
has proved its indisputable efficiency in regularizing CNN. One
of the feasible explanations is that the gradients of convolu-
tion layers are averaged over the spatial extent of the feature
maps. Since dropout stochastically removes activation, hence,
their gradients, the backpropagation end up having many corre-
lated terms in the averaged gradient, each with different dropout
patterns. As a results, the network converges slower and the
learned local patterns become unstable.

4.4. Recurrent pooling in time

As GRU returns a full sequence of 250 frames rolling in time
(sub-sampled from 500 to 250 by CNN), the dimension is enor-
mous (i.e 250 ∗ 250 = 62500). A projection from RNN output
to feed-forward layer can have 32 ∗ 106 parameters which con-
sumes huge amount of memory and computational resources.

In [25], the authors argue that such high dimensional rep-
resentation is overly precise and contain much redundant infor-
mation, and they suggest a pooling over time strategy which is
illustrated in Figure 4. The pooling modules can be max or aver-
age pooling, however, they have different interpretations when
we apply pooling for time axis. Therefore, we perform an em-
pirical comparison of two approaches on overall performance.
The tests are performed on 3 clusters: zho, qsl and spa because
of the computational cost.

Table 7 shows promising result of using average pooling
over max pooling. A reasonable explanation is that obtaining

Figure 4: A pooling over time dimension of RNN

Table 7: Accuracy on Set03 of different pooling function

GRU avr. pooling max pooling
zho 0.39 0.43 0.31
qsl 0.76 0.76 0.62
spa 0.50 0.49 0.49

an invariant representation by selecting maximum between 2
high-dimensional vectors of 250 dimensions is difficult, hence,
the network drops its temporal information after every pooling
step. Since this issue doesn’t appear to average pooling, it is
good practice to add time pooling layer before we project RNN
output to fully connected layers.

In summary, the final architecture is a combination of CNN,
RNN, FNN with addition of batch normalization for CNN and
time pooling for RNN. As we scale up the network for NIST
LRE’15, we will further investigate deeper architecture based
on these analysis in the next section.

5. Deep Language Network
5.1. Network design

As the number of GRU layers increase, placing time pooling
after each layer becomes inefficient, we are confronted perfor-
mance degradation as we continue training. Since pooling is a
dimension reduction technique, this means an amount of infor-
mation along time axis is diminished after each GRU layer. To
address this issue, we only do pooling in time for the last two
GRU layers. Since the first two layers are responsible for learn-
ing more primitive and robust representation, dropping frames
at higher layers forces the network to learn more compact and
abstract features. As a result, this strategy reduces the number
of projection parameters by 4 times without performance trade-
off.

Regardless a small amount of parameters added by intro-
ducing convolutional layers, the size of the tensor during con-
volutional computation is multiplied by the number of feature
maps which consumes significant amount of memory. Hence,
we decided to keep 128 feature maps for each CNN layer which
leads to our final architecture illustrated in Figure 5.

5.2. Training

Generally, we apply the same training strategy in Section 4.
However, as the network scales up, we make some modifica-
tions to the strategy. We choose appropriate learning rate by
Eq. (9), the equation adapts the number of parameters and the
depth of network to choose an initial learning rate that guaran-
tees the network will converge at a reasonable speed.

λ = nparams ∗
√

nlayers

η = 10
log10

(
1

λ1/2.03

) (9)
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Figure 5: Deep Language: deep neural network for language
recognition

where λ is an estimation of network complexity, the value 2.03
is a heuristic value, if this value is greater than 2 the initial learn-
ing step increase significantly, however, it increase the risk that
the gradients might explode or vanish during training. Our ob-
servation showed that a sufficiently small initial learning rate
is more important for adaptive optimization algorithm like rm-
sprop [19], especially for deep RNN network, as the gradients
rolled back in time, they grow very fast for the first few steps.

The network is first trained to converge in 10 epochs with
dropout enabled and Gaussian noise turned off. Conversely, the
fine tuning process turns on Gaussian noise without dropout
to perturb the weights for better generalization. We use gen-
eralization loss (GL) as early stopping criterion [26] and de-
crease learning rate by 1.5 whenever the network drops its tun-
ing score.

The regularizing effect of L2-norm isn’t clear for small net-
work. However, we figure out that including L2 regularization
for training a big network not only improve the result, but also
speed up the convergence, since it constraints the weights in ac-
ceptable range and doesn’t allow the optimizing process go too
far from the best generalization region. Unlike high probabil-
ity dropout, adding small fraction of dropout before the input to

convolutional layers helps CNN learn more robust local repre-
sentation of spectrogram.

5.3. Compare to previous DNN

We compare Deep Language to CGFNN2 network specified
in Section 4.3. The overall performance was improved by us-
ing deeper architecture. It is notable that keep increasing the
depth exposes our network to strong over-fitting, hence, we stop
augmenting the network and compare proposed model with the
BNF baseline.

Table 8: Cavg on Set04 of CGFNN2 and Deep Language

CGFNN2 DeepLang
ara 30.16 30.51
eng 32.84 32.95
zho 29.87 29.39
qsl 19.23 18.95
spa 39.72 36.38

Avg. 30.364 29.636

6. Experiments
6.1. Bottleneck feature based classifier

We compare our system performance on the bottleneck DNN
(BNF) feature [7]. We represent each stream of BNF’s in one
utterance by an i-vector. Final classification is performed by
multi-class logistic regression (MCLR).

A bottleneck DNN was trained using the 40-dimensional
filter bank features with the first and second order derivatives
extracted from the switchboard landline data. The features were
then applied a global mean and variance normalization followed
by a per utterance mean and variance normalization before feed-
ing to the DNN. Random weight initialization is used to start
the DNN training. The DNN input contains 21 stacked frames
rending an input layer with 2520 units. Seven hidden layers in-
cluding one bottleneck layer were trained. Each hidden layer
except the bottleneck layer has 1024 hidden units and uses the
rectified linear unit (ReLU) activation function. The second to
last hidden layer is the bottleneck layer with 64 output units
and linear outputs are extracted as the bottleneck features. The
output layer has 6111 units corresponding to 6111 senones ob-
tained from the baseline speaker-independent GMM-HMM sys-
tem trained with 39-dimensional MFCC features (13 static fea-
tures plus first and second order derivatives) extracted from the
switchboard landline data.

The 64-dimensional bottleneck features are used for ex-
tracting the i-vectors. An energy-based voice activity detection
(VAD) technique was applied to the raw bottleneck features to
exclude the silence frames. The voiced frames were then used
to train a universal background model with 1024 Gaussians with
diagonal covariances. The diagonal UBM was then used as an
initial point to train a full-covariance UBM with 1024 Gaus-
sians. The full-covariance UBM is then used to train the total
variability matrix and extract the i-vectors.

The MCLR system is based on the multi-class cross-
entropy discriminative training in the score vector space. To
this end, i-vectors were transformed into log-likelihood score
vectors through a set of Gaussian distributions, each represent-
ing the distribution of the language class in the i-vector space.
As the amount of data is extremely imbalance among classes,



Figure 6: Confusion matrix of our prediction on zho Set01 (left)
and Set04 (right)

with some languages limited to less than an hour of speech, we
trained a global covariance matrix where language-specific co-
variance could be derived with a smoothing factor of 0.1. Given
a test i-vector, a score vector is obtained by concatenating the
log-likelihood scores from these Gaussian distribution. Dis-
criminative training is further applied on the score vector.

6.2. Results

Table 9 summarizes the results of the two systems on valida-
tion set. We highlight two major results. First, the proposed
architecture outperformed BNF i-vector approach on tuning set
which has similar distribution as training data. Second, The
distribution of Cavg is significantly different between 2 ap-
proaches, which indicates that the two algorithms exploiting
different discriminative information which can benefit comple-
mentary tasks.

Table 9: Cavg on Set01, BNF i-vector baseline, Deep Language

BNF i-vector DeepLang
ara 1.23 4.36
eng 1.46 0.26
zho 3.56 2.28
qsl 1.74 1.81
spa 11.01 6.28

Avg. 3.798 2.998

Conversely, our network shows its drawback in generaliz-
ing to different data distribution. The performance rapidly drops
according to the divergence between the 2 distribution. Table 10
emphasizes the weakness of strong nonlinear model compared
to BNF i-vector approach.

Table 10: Cavg on Set04, i-vector baseline, Deep Language

BNF i-vector CGFNN DeepLang
ara 22.08 30.16 30.51
eng 11.52 32.84 32.95
zho 16.91 29.87 29.39
qsl 6.46 19.23 18.95
spa 22.27 39.72 36.38

Avg. 15.848 30.364 29.636

Our further analysis shows that the degradation effect is
mostly created by dominant classes, Figure 6. In the case of
zho cluster, zho-cmn language has ≈ 87% of training data,

Figure 7: Visualization of learned representation after 3 GRU
layers

hence, most of the gradients will be backpropagated by exam-
ples from this class and the network is optimized to predict the
given language with > 90% accuracy. Contradictory, the side-
effect of dominant classes is that they prevent over-fitting of
other classes, with lower amount of data, zho-cdo, zho-wuu and
zho-yue are thus better generalized.

6.3. Interpretation of learned representation

A distributed temporal representation learned by deep RNN can
be visualized by feeding the spectral input to the network and
plotting the activation after each layer. We used a simple model
of 3 GRU layers with 250 cell units each layer to interpret the
learning process of RNN, illustrated in Figure 7.

At a first glance, we can see the time dependency of original
spectral data is reserved after each layer. However, the represen-
tation is significantly simplified and abstracted after every depth
of the network. The first GRU learns a very noisy structure of
the spectra, this is low level representation as the network is
searching and remembering all fundamental temporal patterns
of input. The activation of second layer was smoothed showing
that the network is learning more abstract representation by con-
centrating on stronger temporal dependency of the input signal
(i.e the vertical line of the image on bottom left corner). The last
layer shows more smooth pattern with clear focus point which
is highlighted by the network.

7. Conclusions
In this work, we investigate a comprehensive deep learning ap-
proach to end-to-end automatic language identification (LID).
Motivated by the recent success of DNN to speech recognition
task, we explored a combination of the most advanced network
architectures including: CNN, RNN and FNN to replace the
pipeline of handcrafted features with BNF and i-vector. Our ar-
chitecture has taken into account the computational issues and
regularization effect to construct deeper network in order to ad-
dress large scale LID task.

Even though our proposed architecture hasn’t surpassed the
recent state-of-the-art BNF i-vector system, the trained model
shows a very promising results when combine multiple archi-
tecture for LID. Our Deep Language system can outperform the
shallow and single architecture approach. An initial good result
on validation set with a moderate performance on evaluation
data suggests that the network was able to capture long-term
temporal dependency of speech utterances which is relevant for



language recognition task.
On the other hand, the degradation of the system on evalu-

ation copra leaves plenty of room for further improvement. The
authors from [27] emphasizes that imbalanced training data po-
tentially has negative impact on overall performance in deep
networks. As a result, the paper suggests oversampling the
training dataset to reduce this pessimistic effect. Additionally,
one of the reasonable explanations for the bad generalization of
the network is the effect of majority class on cross-entropy ob-
jective function. Because of hard decision labels, cross-entropy
function only backpropagates gradients of target class regard-
less all other output information. Two feasible solutions are
using Bayesian cross-entropy cost function to normalize the er-
rors based on class priors [27], and leveraging large amount of
evaluation data by proportionally fitting the model on pseudo-
labeled test data [28]. It is also notable that BNF of baseline
approach was trained using external dataset (i.e Switchboard
corpus). Hence, a strategy, involves pretraining the network to
capture the essence of speech, then, fine-tunes it using LRE’15
corpus for language discrimination, might be explored.
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