Publications

2024

[117] “Assessing the importance of nitric acid and ammonia for particle growth in the polluted boundary layer”
Marten, R. , Xiao, M., Wang, M.,  Kong, W., He X.C. et al.
Environmental Science: Atmospheres, 2024

[116] “Temperature, humidity, and ionisation effect of iodine oxoacid nucleation”
Rörup B.,  He X.C, Shen J., Baalbaki R.,  Dada L. et al.
Environmental Science: Atmospheres, 2024
DOI: 10.1039/d4ea00013g

[115] “Nitrate Radicals Suppress Biogenic New Particle Formation from Monoterpene Oxidation”
Li, D., Huang, W., Wang, D., Wang D.Y. , Wang M.Y., Thornton J.A. et al.
Environmental science & technology, 2024
https://doi.org/10.1021/acs.est.3c07958

2023

[114] Iodine oxoacids enhance nucleation of sulfuric acid
particles in the atmosphere”
He X-C,Simon M., Iyer S., Xie H-B, Rörup B. et al.
Sciences, 2023
DOI : 10.1126/science.adh2526

[113] “Role of sesquiterpenes in biogenic new particle formation”
Dada L., Stolsenburg D., Simon M., Fisher L., Heinritzi M. et al.
Science advance, 2023
DOI: 10.1126/sciadv.adi5297

[112] “Development and characterization of the Portable Ice Nucleation Chamber 2 (PINCii)
Castarède D., Brasseur Z, Wu Y., …Duplissy J and Thomson E.
Atmospheric Measurement Techniques, 2023
https://doi.org/10.5194/amt-16-3881-2023

[111] “The synergistic role of sulfuric acid, ammonia and organics in particle formation over an agricultural land”
Dada, L ; Okuljar, M ; Shen, JL ; Olin, M  ; Wu, YS et al.
Environmentat Science: Atmosphere, 2023
DOI10.1039/d3ea00065f

[110]An intercomparison study of four different techniques for
measuring the chemical composition of nanoparticles”
Caudillo, L., Surdu, M., Lopez, B., Wang, M., Thoma et al.
Atmospheric Chemistry and Physics , 2023
https://doi.org/10.5194/acp-23-6613-2023

[109] “NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere”
Nie W., Yan C., Yang L., Roldin P., Liu Y., Vogel A.L. et al.
Nature Communications, 2023
https://doi.org/10.1038/s41467-023-39066-4

[108] “Molecular Understanding of the Enhancement in Organic Aerosol Mass at High Relative Humidity”
Surdu, M., Lamkaddam, H., Wang, D.S , Bell, D.M., Xiao, M et al.
Environment Science and Technology, 2023
DOI: 10.1021/acs.est.2c04587

2022

[ 107] The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source”
Finkenzeller, H; Iyer, S ; He, XC ; Simon, M ; Koenig, TK et al.
Nature Chemistry, 2022
DOI10.1038/s41557-022-01067-z

[ 106 ] “High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures”
Shen, J., Scholz, W., He, XC., Zhou, PT, Marie, G et al.
Environmental Science Technology, 2022

[ 105 ] “Effects of temperature and salinity on bubble-bursting aerosol formation simulated with a bubble-generating chambers
Sofieva S., Asmi E., Atanasova N. , Heikkinen A., Vidal E., Duplissy J. et al. Atmospheric Measurement Techniques , 2022

[ 104 ] « Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere»
Beck LJ, Schobesberger S., Junninen H., Lampilahti J., …. and J. Duplissy
Atmospheric Chemistry and Physics , 2022

[ 103 ] « Measurement report: Atmospheric new particle formation in a coastal agricultural site explained with binPMF analysis of nitrate CI-APi-TOF spectra»
Olin M., Okuljar, M., Rissanen MP, Kalliokoski J., Shen J. et al.
Atmospheric Chemistry and Physics , 2022

[ 102 ] “Synergistic HNO3–H2SO4–NH3 upper
tropospheric particle formation”

Wang M., Xiao M.,Bertozzi B., Marie G., Rorup B., et al.
Nature , 2022

[ 101 ] « Survival of newly formed particles in haze
conditions
»
Marten R., Xiao M., Rörup B., Kong W., He X., Pfeifer J. et al.
Environmental Science: Atmospheres, 2022

[ 100 ] “Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiälä boreal forest”
Brasseur Z, Castarède D. , Thomson E.,… et J, Duplissy
Atmospheric Chemistry and Physics , 2022

[99] “Overview: Recent advances on the understanding of the Northern Eurasian environments and of the urban air quality in China – Pan Eurasian Experiment (PEEX) program perspective”
Lappalainen H., Petäjä T., Vihma T., Räisänen J., Baklanov A., Chalov S. et al.
Atmospheric Chemistry and Physics, 2022

[98] “The Standard Operating Procedure for Airmodus Particle Size Magnifier and nano-Condensation Nucleus Counter
Lehtipalo, K., Ahonen, L., Baalbaki, R., Sulo, J., Chan, T et al.
Journal of Aerosol Science, Volume 159, 2022, 105896

[97] Modelling the gas–particle partitioning and water uptake of isoprene-derived secondary organic aerosol at high and low relative humidity
Amaladhasan D. A., Heyn C., Hoyle C.R. , Haddad I., Elser M.,
Atmospheric Chemistry and Physics , 2022

2021

[96] “Chemical composition of nanoparticles from α-pinene nucleation and the influence of isoprene and relative humidity at low temperature”
Caudillo L., Rörup B., Heinritzi M., Marie G., Simon M,,  Wagner A.C. et al.
Atmospheric Chemistry and Physics, 2021

[95] “Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry”
Surdu, V. Pospisilova, M. Xiao, M. Wang, B. Mentler et al.
Environmental Science: Atmospheres, 2021, 1, 434-448
DOI: 10.1039/d1ea00050k

[94] “The driving factors of new particle formation and growth in the polluted boundary layer”
Xiao M., Hoyle C. R., Dada L., Stolzenburg D., Kürten A. et al.
Atmospheric Chemistry and Physics, 2021, 21, 14275–14291

[93] “Ice nucleation by viruses and their potential for cloud glaciation”
Adams, M. P., Atanasova, N. S., Sofieva, S., Ravantti, J., Heikkinen, A., Brasseur, Z., Duplissy, J., Bamford, D. H., and Murray, B. J.
Biogeosciences, 18, 4431–4444, , 2021

[92] “The seasonal cycle of ice-nucleating particles linked to the abundance of biogenic aerosol in boreal forests”
Schneider J., Höhler K., Heikkilä P., Keskinen J., Bertozzi B., et al.
Atmospheric Chemistry and Physics, 2021, 21, 3899–3918,

[91] “Investigation of several proxies to estimate sulfuric acid concentration in volcanic plume conditions”
Rose C., M.P. Rissanen, S. Iyer, J. Duplissy, C. Yan et al.
Atmospheric Chemistry and Physics, 2021, 4541–4560

[90] “Role of iodine oxoacids in atmospheric aerosol nucleation”
He, XC; Tham, YJ; Dada, L; Wang, MY; Finkenzeller, H et al.
Science, 2021, Volume: 371 Issue: 6529 Pages: 589-+
DOI: 10.1126/science.abe0298

[89] “Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method”
He XC, S. Iyer, M. Sipilä, A. Ylisirniö, M. Peltola et al.
Aerosol Science and Technology, 2020, 55:2, 231-242
DOI: 10.1080/02786826.2020.1839013
https://doi.org/10.1080/02786826.2020.1839013 

2020

[88] “Molecular understanding of the suppression of new-particle formation by isoprene”
Heinritzi M., L. Dada, M. Simon, D. Stolzenburg, A. C. Wagner et al.
Atmospheric Chemistry and Physics, 2020, 20, 11809–11821
https://doi.org/10.5194/acp-20-11809-2020, 2020

[87] “Comparing plastic foils for dew collection: Preparatory laboratory-scale method and field experiment in Kenya”
Tuure, J; Korpela, A; Hautala, M; Rautkoski, H; Hakojarvi et al.
Biosystems Engineering, 2020, Volume: 196 Pages: 145-158
DOI: 10.1016/j.biosystemseng.2020.05.016

[86] “Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds”
Wang M., D. Chen, M. Xiao, Q. Ye, D. Stolzenburg et al.
Environmental Science & Technology, 2020, 54, 13, 7911–7921
https://doi.org/10.1021/acs.est.0c02100

[85] “Molecular understanding of new-particle formation from α-pinene between −50 and +25 °C”
Simon M., L. Dada, M. Heinritzi, W. Scholz, D. Stolzenburg et al.
Atmospheric Chemistry and Physics, 2020, 20, 9183–9207
https://doi.org/10.5194/acp-20-9183-2020, 2020 

[84] “Enhanced growth rate of atmospheric particles from sulfuric acid”
Stolzenburg D., M. Simon, A. Ranjithkumar, A. Kürten, K. Lehtipalo et al.
Atmospheric Chemistry and Physics,2020, 20, 7359–7372
https://doi.org/10.5194/acp-20-7359-2020, 2020 

[83] “Rapid growth of new atmospheric particles by nitric acid and ammonia condensation”
Wang, MY ; Kong, WM ; Marten, R; He, XC; Chen, DX et al.
Nature, 2020, Volume: 581 Issue: 7807 Pages: 184-+
DOI: 10.1038/s41586-020-2270-4 

[82] “Size-dependent influence of NOx on the growth rates of organic aerosol particles”
Yan, C  ; Nie, W ; Vogel, AL; Dada, L; Lehtipalo, K et al.
Science Advances, 2020, Volume: 6 Issue: 22
DOI: 10.1126/sciadv.aay4945

[81] “Formation and growth of sub-3-nm aerosol particles in experimental chambers”
Dada, L., Lehtipalo, K  ; Kontkanen, J ; Nieminen, T; Baalbaki, R; Ahonen, L; Duplissy, J et al.
Nature Protocols,  2020, Volume: 15 Issue: 3 Pages: 1013-1040
DOI: 10.1038/s41596-019-0274-z

2019

[80] “Comparison of surface foil materials and dew collectors location in an arid area: a one-year field experiment in Kenya”
Tuure J., Korpela A., Hautala M., Hakojärvi M., Mikkola H., Räsänen M.,Duplissy J. et al.
Agricultural and Forest Meteorology, Volume: 276
DOI: 10.1016/j.agrformet.2019.06.012

[79] “Spatial and Temporal Investigation of Dew Potential based on Long-Term Model Simulations in Iran”
Atashi N., Rahimi D., Goortani B, Duplissy J., Vuollekoski H. et al.
Water,11, 2463
https://doi.org/10.3390/w11122463

[78] “Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between -50 °C and +25 °C”
Y. Qing, M. Wang, V. Hofbauer, D. Stolzenburg, D. Chen et al.
Environmental Science & Technology, Volume 53, Issue 21, pages 12357-12365
ISSN0013-936X

[77] “Evidence of New Particle Formation Within Etna and Stromboli Volcanic Plumes and Its Parameterization From Airborne In Situ Measurements”
Sahyoun, M, Freney, E; Brito, Duplissy, J; Gouhier, M et al.
Journal of Geophysical Research: Atmospheres Volume: 124 Issue: 10 Pages: 5650-5668
DOI: 10.1029/2018JD028882

[76] “Formation of Highly Oxygenated Organic Molecules from alpha-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development”
Molteni, U ; Simon, M; Heinritzi, M; Hoyle, CR; Bernhammer et al.
ACS Earth and space chemistry, Volume: 3 Issue: 5 Pages: 873-883
DOI: 10.1021/acsearthspacechem.9b00035

[75] “Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes”
Boy, M., Thomson, E. S., Acosta Navarro, J.-C., Arnalds, O., Batchvarova et al.
Atmospheric Chemistry and Physics, 19, 2015–2061
https://doi.org/10.5194/acp-19-2015-2019

2018

[74] “Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors”
Lehtipalo, K; Yan, C; Dada, L; Bianchi, F; Xiao, M et al.
Science Advances Volume: 4 Issue: 12
DOI: 10.1126/sciadv.aau5363

[73] “Aerosol distribution in the northern Gulf of Guinea: local anthropogenic sources, long-range transport, and the role of coastal shallow circulations“
Flamant, C., Deroubaix, A., Chazette, P., Brito, J., Gaetan et al.
Atmospheric Chemistry and Physics, 18, 16, 12363-12389
DOI: 10.5194/acp-18-12363-2018
https://www.atmos-chem-phys.net/18/12363/2018/

[72] “Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range”
Stolzenburg, D., L. Fischer, A. L. Vogel, M. Heinritzi, M. Schervish et al.
Proceedings of the National Academy of Sciences 2018
DOI: 10.1073/pnas.1807604115
http://www.pnas.org/content/pnas/early/2018/08/27/1807604115.full.pdf

[71] “New particle formation in the sulfuric acid-dimethylamine-water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model”
Kurten, A., Li, C. X., Bianchi, F., Curtius, J., Dias, A., Donahue, N. M., Duplissy J. et al.
Atmospheric Chemistry and Physics 18,2, 845-863
DOI: 10.5194/acp-18-845-2018
https://www.atmos-chem-phys.net/18/845/2018/acp-18-845-2018.pdf

[70] “New parameterizations for neutral and ion-induced sulfuric acid-water particle formation in nucleation and kinetic regimes”
Määttänen, A., J. Merikanto, H. Henschel, J. Duplissy, R. Makkonen et al.
Journal of Geophysical Research: Atmospheres 123, 1269–1296, 2018
DOI: 10.1002/2017JD027429
http://onlinelibrary.wiley.com/doi/10.1002/2017JD027429/epdf

[69] “Measurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber
Sarnela, N., T. Jokinen, J. Duplissy, C. Yan, T. Nieminen et al.
Atmospheric Chemistry and Physics. 18(4): 2363-2380, 2018
https://www.atmos-chem-phys.net/18/2363/2018/acp-18-2363-2018.pdf

[68] “Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation”
Frege, C., I. K. Ortega, M. P. Rissanen, A. P. Praplan, G. Steiner et al.
Atmospheric Chemistry and Physics 18(1): 65-79, 2017
https://www.atmos-chem-phys.net/18/65/2018/acp-18-65-2018.pdf

2017

[67] “The role of ions in new particle formation in the CLOUD chamber”
Wagner, R., C. Yan, K. Lehtipalo, J. Duplissy, T. Nieminen et al.
Atmospheric Chemistry and Physics 17(24): 15181-15197, 2017.
https://www.atmos-chem-phys.net/17/15181/2017/acp-17-15181-2017.pdf 

[66] “Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment”
Nichman, L., E. Jarvinen, J. Dorsey, P. Connolly, J. Duplissy et al.
Atmospheric Measurement Techniques 10(9): 3231-3248, 2017
https://www.atmos-meas-tech.net/10/3231/2017/amt-10-3231-2017.pdf

[65] “Causes and importance of new particle formation in the present-day and preindustrial atmospheres”
Gordon, H., J. Kirkby, U. Baltensperger, F. Bianchi, M. Breitenlechner et al.
Journal of Geophysical Research-Atmospheres 122(16): 8739-8760, 2017
doi:10.1002/2017JD026844.
http://onlinelibrary.wiley.com/doi/10.1002/2017JD026844/epdf 

[64] “Solar eclipse demonstrating the importance of photochemistry in new particle formation”
Jokinen, T  ; Kontkanen, J; Lehtipalo, K; Manninen, HE ; Aalto, J et al.
Scientific reports: 7, 45707, 2017
doi: 10.1038/srep45707
https://www.nature.com/articles/srep45707.pdf

[63] “Evaporation of sulfate aerosols at low relative humidity”
Tsagkogeorgas, G ; Roldin, P ; Duplissy, J; Rondo, L  ; Trostl, J et al
Atmospheric Chemistry and Physics,17, 8923-8938, 2017
doi: 10.5194/acp-17-8923-2017
https://www.atmos-chem-phys.net/17/8923/2017/acp-17-8923-2017.pdf

[62] “Estimates of the organic aerosol volatility in a boreal forest using two independent methods”
Hong, J; Aijala, M; Hame, SAK; Hao, LQ; Duplissy, J et al.
Atmospheric Chemistry and Physics,17, 4387-4399, 2017
doi: 10.5194/acp-17-4387-2017
https://www.atmos-chem-phys.net/17/4387/2017/acp-17-4387-2017.pdf

[61]“Chemical investigation and quality of urban dew collections with dust precipitates”
Odeh, I ; Arar, S; Al-Hunaiti, A; Sa’aydeh, H; Hammad, G ; Duplissy, J et al.
Environmental Science and pollution research, 24, 12312-12318, 2017
DOI: 10.1007/s11356-017-8870-3
https://link.springer.com/article/10.1007%2Fs11356-017-8870-3

2016

[60]“Effect of ions on sulfuric acid-water binary particle formation II: Experimental data and comparison with QC-normalized classical nucleation theory”
Duplissy, J., Merikanto, J., Franchin, A., Tsagkogeorgas, G., Kangasluoma, J. et al.
Journal of Geophysical Research-Atmospheres, 121(4): 1752-1775, 2016
doi:10.1002/2015JD023539
http://onlinelibrary.wiley.com/doi/10.1002/2015JD023539/full

[59] “Effect of ions on sulfuric acid-water binary particle formation: 1. Theory for kinetic- and nucleation-type particle formation and atmospheric implications”
Merikanto, J., J. Duplissy, A. Maattanen, H. Henschel, N. M. Donahue et al.
Journal of Geophysical Research-Atmospheres, 121(4): 1736-1751, 2016
doi: 10.1002/2015JD023538
http://onlinelibrary.wiley.com/doi/10.1002/2015JD023538/full

[58]“Ion-induced nucleation of pure biogenic particles”
Kirkby, J., J. Duplissy, K. Sengupta, C. Frege, H. Gordon et al.
Nature, 533(7604): 521-+, 2016
doi: 10.1038/nature17953
http://www.nature.com/nature/journal/v533/n7604/full/nature17953.html

[57] “Global atmospheric particle formation from CERN CLOUD measurements”
Dunne, E. M., H. Gordon, A. Kürten, J. Almeida, J. Duplissy et al.
Science, 2016
http://science.sciencemag.org/content/early/2016/10/26/science.aaf2649 

[56]“The role of low-volatility organic compounds in initial particle growth in the atmosphere”
Trostl, J., W. K. Chuang, H. Gordon, M. Heinritzi, C. Yan et al.
Nature, 533(7604): 527-+, 2016
doi: 10.1038/nature18271
http://www.nature.com/nature/journal/v533/n7604/full/nature18271.html

[55] “New particle formation in the free troposphere: A question of chemistry and timing”
Bianchi, F., J. Trostl, H. Junninen, C. Frege, S. Henne et al.
Science, 352(6289): 1109-1112, 2016.
doi: 10.1126/science.aad5456
http://science.sciencemag.org/content/early/2016/05/24/science.aad5456

[54] “The effect of acid-base clustering and ions on the growth of atmospheric nano-particles”
Lehtipalo, K., L. Rondo, J. Kontkanen, S. Schobesberger, T. Jokinen et al.
Nature Communications, 7, 2016
doi: 10.1038/ncomms11594
http://www.nature.com/ncomms/2016/160520/ncomms11594/full/ncomms11594.html

[53] “Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
Gordon, H., K. Sengupta, A. Rap, J. Duplissy, C. Frege et al.
Proceedings of the National Academy of Sciences 113(43): 12053-12058, 2016
http://www.pnas.org/content/early/2016/10/05/1602360113?trendmd-shared=0

[52] “Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD”
Lawler M.J. , P. M. Winkler, J. Kim, L. Ahlm, J. Tröst et al.
Atmospheric Chemistry and Physics,16, 13601-13618
doi:10.5194/acp-16-13601-2016, 2016
http://www.atmos-chem-phys.net/16/13601/2016/acp-16-13601-2016.pdf

[51] “Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid-water nucleation”
Ehrhart, S., L. Ickes, J. Almeida, A. Amorim, P. Barmet et al.
Journal of Geophysical Research: Atmospheres: n/a-n/a, 2016
http://onlinelibrary.wiley.com/doi/10.1002/2015JD023723/full

[50] “Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber”
Ahlm L., Yli-Juuti T. ,Schobesberger S.,Praplan A. P. ,Kim J. et al.
Aerosol Science and Technology, 2016 50:10, 1017-1032
DOI: 10.1080/02786826.2016.1223268

[49] “Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures”
Kürten, A., F. Bianchi, J. Almeida, O. Kupiainen-Määttä, E. M. Dunne, J. Duplissy et al.
Journal of Geophysical Research: Atmospheres: n/a-n/a., 2016
http://onlinelibrary.wiley.com/doi/10.1002/2015JD023908/full

[48] “Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets”
Hoyle, C. R., C. Fuchs, E. Jarvinen, H. Saathoff, A. Dias et al.
Atmospheric Chemistry and Physics, 16(3): 1693-1712, 2016.
doi: 10.5194/acp-16-1693-2016
http://www.atmos-chem-phys.net/16/1693/2016/

[47] “Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of alpha-pinene”
Ignatius, K., T. B. Kristensen, E. Jarvinen, L. Nichman, C. Fuchs et al.
Atmospheric Chemistry and Physics, 16(10): 6495-6509, 2016
doi: 10.5194/acp-16-6495-2016
http://www.atmos-chem-phys.net/16/6495/2016/acp-16-6495-2016.html

[46] “Observation of viscosity transition in alpha-pinene secondary organic aerosol”
Jarvinen, E., K. Ignatius, L. Nichman, T. B. Kristensen, C. Fuchs et al.
Atmospheric Chemistry and Physics, 16(7): 4423-4438, 2016
doi: 10.5194/acp-16-4423-2016
http://www.atmos-chem-phys-discuss.net/acp-2015-694/

[45] “Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments”
Nichman, L., C. Fuchs, E. Jarvinen, K. Ignatius, N. F. Hoppe et al.
Atmospheric Chemistry and Physics, 16(5): 3651-3664, 2016
doi: 10.5194/acp-16-3651-2016
http://www.atmos-chem-phys.net/16/3651/2016/

 [44] “Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments”
Kim, J., L. Ahlm, T. Yli-Juuti, M. Lawler, H. Keskinen et al.
Atmospheric Chemistry and Physics, 16(1): 293-304, 2016.
doi: 10.5194/acp-16-293-2016
http://www.atmos-chem-phys.net/16/293/2016/acp-16-293-2016.pdf

[43] “Measuring atmospheric ion bursts and their dynamics using mass spectrometry”
Junninen, H., J. Duplissy, M. Ehnl, M. Sipila, J. Kangasluoma et al.
Boreal Environment Research, 21(3-4): 207-220, 2016
http://www.borenv.net/BER/pdfs/ber21/ber21-207.pdf

[42] “Operation of the Airmodus A11 nano Condensation Nucleus Counter at various inlet pressures and various operation temperatures, and design of a new inlet system”
Kangasluoma, J., A. Franchin, J. Duplissy, L. Ahonen, F. Korhonen et al.
Atmospheric Measurement Techniques, 9(7): 2977-2988, 2016
doi: 10.5194/amt-9-2977-2016
http://www.atmos-meas-tech.net/9/2977/2016/

[41] “Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry”
Rondo, L., S. Ehrhart, A. Kuerten, A. Adamov, F. Bianchi et al.
Journal of Geophysical Research-Atmospheres 121(6): 3036-3049. 2016
doi: 10.1002/2015JD023868
http://onlinelibrary.wiley.com/doi/10.1002/2015JD023868/full

2015

[40] “Experimental investigation of ion-ion recombination under atmospheric conditions”
Franchin, A., S. Ehrhart, J. Leppa, T. Nieminen, S. Gagne et al.
Atmospheric Chemistry and Physics, 15(13): 7203-7216, 2015
doi:10.5194/acp-15-7203-2015
www.atmos-chem-phys.net/15/7203/2015/ 

[39] “Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment”
Hong, J., J. Kim, T. Nieminen, J. Duplissy, M. Ehn et al.
Atmospheric Chemistry and Physics 15(20): 11999-12009, 2015
doi:10.5194/acp-15-11999-2015
www.atmos-chem-phys.net/15/11999/2015/

[38] “Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4-H2O) and ternary (H2SO4-H2O-NH3) system”
Kuerten, A., S. Munch, L. Rondo, F. Bianchi, J. Duplissy et al.
Atmospheric Chemistry and Physics, 15(18): 10701-10721, 2015
doi:10.5194/acp-15-10701-2015
www.atmos-chem-phys.net/15/10701/2015/

[37] “Technical Note: Using DEG-CPCs at upper tropospheric temperatures”
Wimmer, D., K. Lehtipalo, T. Nieminen, J. Duplissy, S. Ehrhar et al.
Atmospheric Chemistry and Physics, 15(13): 7547-7555, 2015
doi:10.5194/acp-15-7547-2015
www.atmos-chem-phys.net/15/7547/2015/

[36] “Elemental composition and clustering of α-pinene oxidation products for different oxidation conditions”
A. P. Praplan, S. Schobesberger, F. Bianchi, M. P. Rissanen, M. Ehn et al.
Atmospheric Chemistry and Physics, 15, 4145-4159, 2015
doi:10.5194/acp-15-4145-2015
www.atmos-chem-phys.net/15/4145/2015/

[35] “Major contribution of neutral clusters to new particle formation at the interface between the boundary layer and the free troposphere”
Rose, K. Sellegri, E. Asmi, M. Hervo, E. Frene et al.
doi:10.5194/acp-15-3413-2015
Atmospheric Chemistry and Physics, 15, 3413–3428, 2015
www.atmos-chem-phys.net/15/3413/2015/ 

[34] “Estimates of global dew collection potential on artificial surfaces”
Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen et al.
Hydrology and Earth System Sciences, 19, 601–613, 2015
doi:10.5194/hess-19-601-2015
www.hydrol-earth-syst-sci.net/19/601/2015/

[33] “On the composition of ammonia-sulfuric acid clusters during aerosol particle formation”
S. Schobesberger, A. Franchin, F. Bianchi, L. Rondo, J. Duplissy et al
doi:10.5194/acp-15-55-2015
Atmospheric Chemistry and Physics, 15, 55–78, 2015
http://www.atmos-chem-phys.net/15/55/2015/acp-15-55-2015.html

2014

[32] “Insight into AcidBase Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters”
Bianchi, A. P. Praplan, N. Sarnela, J. Dommen, A. Kurten et al.
Environmental Science and Technology, 2014, 48 (23), pp 13675–13684
DOI: 10.1021/es502380b
http://pubs.acs.org/doi/abs/10.1021/es502380b

[31] Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions”
Kürten, T. Jokinen, M. Simon, M. Sipilä, N. Sarnela et al.
Proceedings of the National Academy of Sciences of United State of America, 2014
www.pnas.org/cgi/doi/10.1073/pnas.1404853111

[30] “Characterisation of organic contaminants in the CLOUD chamber at CERN”
R. Schnitzhofer, A. Metzger, M. Breitenlechner, W. Jud, M. Heinritz et al.
Atmospheric Measurement Technic, 7, 2159-2168, 2014
doi:10.5194/amt-7-2159-2014
http://www.atmos-meas-tech.net/7/2159/2014/amt-7-2159-2014.html

[29] “Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles”
F., Riccobono, S. Schobesberger, C. E. Scott ,J. Dommen, I. K. Ortega et al.
Science, 344, 61855, p. 717-721, 2014
DOI: 10.1126/science.1243527

2013

[28] “Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules”
Schobesberger, H. Junninen, F. Bianchib, G. Lönn, M. Ehn et al.
Proceedings of the National Academy of Sciences of United State of America, 2013
DOI: 10.1073/pnas.1306973110
www.pnas.org/cgi/doi/10.1073/pnas.1306973110

[27] “Direct observations of atmospheric nucleation”
Kulmala, J. Kontkanen, H. Junninen, K. Lehtipalo, H. E. Manninen et al.
Science, 339, 6122, p 943-946, 2013
DOI: 10.1126/science.1227385

[26] “Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere”
Almeida, S. Schobesberger, A. Kuerten, I. K. Ortega, O. Kupiainen-Maatta et al.
Nature, 502, 7471, 359-365, 2013
DOI: 10.1038/nature12663
http://www.nature.com/nature/journal/v502/n7471/full/nature12663.html

[25] “Evolution of particle composition in CLOUD nucleation experiments”
H. Keskinen, A. Virtanen, J. Joutsensaari, G. Tsagkogeorgas, J. Duplissy et al.
Atmospheric Chemistry and Physics, 13, 5587-5600, 2013
doi:10.5194/acp-13-5587-2013, 2013
http://www.atmos-chem-phys.net/13/5587/2013/acp-13-5587-2013.pdf

2012

[24] “Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber”
Voigtlander, J. Duplissy, L. Rondo, A. Kurten, and F. Stratmann
Atmospheric Chemistry and Physics, 12, 2205–2214, 2012
doi:10.5194/acp-12-2205-2012
www.atmos-chem-phys.net/12/2205/2012/

2011 

[23] Relating hygroscopicity and composition of organic aerosol particulate matter
Duplissy, P.F. DeCarlo, J. Dommen, M.R. Alfarra, A. Metzger et al.
Atmospheric Chemistry and Physics, 11, 1155-1165, 2011
doi:10.5194/acp-11-1155-2011
www.atmos-chem-phys.net/11/1155/2011/

[22] Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation”
Kirkby, J. Curtius, J. Almeida, E. Dunne, J. Duplissy et al.
Nature, 476 , 429-433,  2011
doi:10.1038/nature10343
http://www.nature.com/nature/journal/v476/n7361/full/nature10343.html

[21] “Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest”
S.-L. Sihto, J. Mikkilä, J. Vanhanen,  M. Ehn, L. Liao et al.
Atmospheric Chemistry and Physics, 11, 13269-13285, 2011
doi:10.5194/acp-11-13269-2011
www.atmos-chem-phys.net/11/13269/2011/

[20] “A fibre-optic UV system for H2SO4 production in aerosol chambers causing minimal thermal effects”
Kupc, A. Amorim, J. Curtius, A. Danielczok, J. Duplissy et al.
Journal of Aerosol Science, 42, 532–543, 2011
doi:10.1016/j.jaerosci.2011.05.001
http://www.sciencedirect.com/science/article/pii/S0021850211000632

2010

[19] “Widening the gap between measurement and modelling of secondary organic aerosol properties?”
Good, D.O. Topping, J. Duplissy, M. Gysel, N.K. Meyer et al.
Atmospheric Chemistry and Physics, 10, 2577–2593, 2010
doi:10.5194/acp-10-2577-2010
www.atmos-chem-phys.net/10/2577/2010/ 

[18] “The role of sulphates and organic vapours in growth of newly formed particles in a eucalypt forest”
Z.D. Ristovski, T. Suni, M. Kulmala, M. Boy, N. K. Meyer, J. Duplissy et al.
Atmospheric Chemistry and Physics, 10, 2919-2926, 2010
doi:10.5194/acp-10-2919-2010
www.atmos-chem-phys.net/10/2919/2010/

[17] “Results from the CERN pilot CLOUD experiment”
Duplissy J., M. B. Enghoff, K. L. Aplin, F. Arnold, H. Aufmhoff et al.
Atmospheric Chemistry and Physics, 10, 1635-1647, 2010
doi:10.5194/acp-10-1635-2010
www.atmos-chem-phys.net/10/1635/2010/

[16] “Evidence for the role of organics in aerosol particle formation under atmospheric conditions”
Metzger, B. Verheggen, J. Dommen, J. Duplissy, A.S.H. Prevot et al.
Proceedings of the National Academy of Sciences of United State of America, 2010
doi: 10.1073/pnas.0911330107
www.pnas.org/cgi/doi/10.1073/pnas.0911330107

2009

[15] “Evolution of Organic Aerosols in the Atmosphere”
J.L. Jimenez, M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang et al.
Science, Vol. 326 no. 5959, 1525-1529, 2009
DOI: 10.1126/science.1180353
http://www.sciencemag.org/cgi/content/full/326/5959/1525

[14] “Intercomparison study of six HTDMAs: results and general recommendations for HTDMA operation”
Duplissy, M. Gysel, S. Sjogren, N. Meyer, N. Good et al.
Atmospheric Measurement and Techniques, 2, 363-378, 2009
doi:10.5194/amt-2-363-2009
www.atmos-meas-tech.net/2/363/2009/

[13] “Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and un-seeded SOA particles”
N.K. Meyer, J. Duplissy, M. Gysel, A. Metzger, E. Weingartner et al.
Atmospheric Chemistry and Physics, 9, 721–732, 2009
doi:10.5194/acp-9-721-2009
www.atmos-chem-phys.net/9/721/2009/

[12] “Determination of the Aerosol Yield of Isoprene in the Presence of an Organic Seed with Carbon Isotope Analysis”
Dommen, H. Hellen, M. Saurer, M. Jaeggi, R. Siegwolf, A. Metzger, J. Duplissy et al.
Environment Science & Technology, 43, 6697–6702, 2009
doi: 10.1021/es9006959
http://pubs.acs.org/doi/abs/10.1021/es9006959

[11] “Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of α-pinene secondary organic aerosol”
Juranyi, M. Gysel, J. Duplissy, E. Weingartner, T. Tritscher et al.
Physical Chemistry Chemical Physics, 11, 8091–8097, 2009

[10] “
Gas Phase Precursors to Secondary Organic Aerosol Formation during the Photooxidation of 1,3,5-trimethylbenzene”
Wyche K.P., P.S. Monks, A.M. Ellis, R.L. Cordell, A.E. Parker et al.
Atmospheric Chemistry and Physics, 9, 635-665, 2009

2008

[9] “Cloud forming potential of secondary organic aerosol under near atmospheric conditions”
Duplissy, M. Gysel, M. R. Alfarra, J. Dommen, A. Metzger et al.
Geophysical Research Letters, 35, L03818, 2008

[8] “Using Proton Transfer Reaction Mass Spectrometry for Online Analysis of Secondary Organic Aerosols”
Hellén, J. Dommen, A. Gascho, A. Metzger, J. Duplissy et al.
Environment Science & Technology, 42, 7347–7353, 2008

[7]“Evaluation of the 1,3,5 trimethylbenzene degradation in the detailed tropospheric chemistry mechanism, MCMv3.1, using environmental chamber data”
Metzger, J. Dommen, K Gaeggeler, J. Duplissy, A.S.H. Prevot, J. Kleffmann et al.
Atmospheric Chemistry and Physics, 8, 6453-6468, 2008

[6] “Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580m a.s.l., Switzerland”
Sjogren S., M. Gysel, E. Weingartner, M. R. Alfarra, J. Duplissy et al.
Atmospheric Chemistry and Physics, 8, 5715–5729, 2008

[5] “Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene”
Healy R.M.,  J.C. Wenger, A. Metzger, J. Duplissy, M. Kalberer, and J. Dommen
Atmospheric Chemistry and Physics, 8, 3215–3230, 2008

[4] “Combined Determination of the Chemical Composition and of Health Effects of Secondary Organic Aerosols: The POLYSOA Project”
Baltensperger, J. Dommen, MR. Alfarra, J. Duplissy, K. Gaeggeler et al.
Journal of Aerosol Medicine and Pulmonary Drug Delivery, V. 21, N. 1, 145–154, 2008

[3] “O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High Resolution Time-of-Flight Aerosol Mass Spectrometry”
Aiken, P. DeCarlo, J. Kroll, D. Worsnop, J. Huffman et al.
Environment Science & Technology, 42, 4478–4485, 2008

2006

[2] “Laboratory observation of oligomers in the aerosol from isoprene/NOx photooxidation”
Dommen, A. Metzger, J. Duplissy, M. Kalberer, M.R. Alfarra et al.
Geophysical Research Letters, 43, 6697–6702, 2006

[1] “Real-time measurement of oligomeric species in secondary organic aerosol with the aerosol time-of-flight mass spectrometer
Gross, D.S., M.E. Galli, M. Kalberer, A.S.H. Prevot, J. Dommen et al.
Analytical Chemistry, 78, 2130–2137, 2006