[108] “Molecular Understanding of the Enhancement in Organic Aerosol Mass at High Relative Humidity”
Surdu, M., Lamkaddam, H., Wang, D.S , Bell, D.M., Xiao, M et al.
Environment Science and Technology, 2023
DOI: 10.1021/acs.est.2c04587

[ 107] The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source”
Finkenzeller, H; Iyer, S ; He, XC ; Simon, M ; Koenig, TK et al.
Nature Chemistry, 2022


[ 106 ] “High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures”
Shen, J., Scholz, W., He, XC., Zhou, PT, Marie, G et al.
Environmental Science Technology, 2022

[ 105 ] “Effects of temperature and salinity on bubble-bursting aerosol formation simulated with a bubble-generating chambers
Sofieva S., Asmi E., Atanasova N. , Heikkinen A., Vidal E., Duplissy J. et al. Atmospheric Measurement Techniques , 2022

[ 104 ] « Diurnal evolution of negative atmospheric ions above the boreal forest: from ground level to the free troposphere»
Beck LJ, Schobesberger S., Junninen H., Lampilahti J., …. and J. Duplissy
Atmospheric Chemistry and Physics , 2022

[ 103 ] « Measurement report: Atmospheric new particle formation in a coastal agricultural site explained with binPMF analysis of nitrate CI-APi-TOF spectra»
Olin M., Okuljar, M., Rissanen MP, Kalliokoski J., Shen J. et al.
Atmospheric Chemistry and Physics , 2022

[ 102 ] “Synergistic HNO3–H2SO4–NH3 upper
tropospheric particle formation”

Wang M., Xiao M.,Bertozzi B., Marie G., Rorup B., et al.
Nature , 2022

[ 101 ] « Survival of newly formed particles in haze
Marten R., Xiao M., Rörup B., Kong W., He X., Pfeifer J. et al.
Environmental Science: Atmospheres, 2022

[ 100 ] “Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiälä boreal forest”
Brasseur Z, Castarède D. , Thomson E.,… et J, Duplissy
Atmospheric Chemistry and Physics , 2022

[99] “Overview: Recent advances on the understanding of the Northern Eurasian environments and of the urban air quality in China – Pan Eurasian Experiment (PEEX) program perspective”
Lappalainen H., Petäjä T., Vihma T., Räisänen J., Baklanov A., Chalov S. et al.
Atmospheric Chemistry and Physics, 2022

[98] “The Standard Operating Procedure for Airmodus Particle Size Magnifier and nano-Condensation Nucleus Counter
Lehtipalo, K., Ahonen, L., Baalbaki, R., Sulo, J., Chan, T et al.
Journal of Aerosol Science, Volume 159, 2022, 105896

[97] Modelling the gas–particle partitioning and water uptake of isoprene-derived secondary organic aerosol at high and low relative humidity
Amaladhasan D. A., Heyn C., Hoyle C.R. , Haddad I., Elser M.,
Atmospheric Chemistry and Physics , 2022


[96] “Chemical composition of nanoparticles from α-pinene nucleation and the influence of isoprene and relative humidity at low temperature”
Caudillo L., Rörup B., Heinritzi M., Marie G., Simon M,,  Wagner A.C. et al.
Atmospheric Chemistry and Physics, 2021

[95] “Molecular characterization of ultrafine particles using extractive electrospray time-of-flight mass spectrometry”
Surdu, V. Pospisilova, M. Xiao, M. Wang, B. Mentler et al.
Environmental Science: Atmospheres, 2021, 1, 434-448
DOI: 10.1039/d1ea00050k

[94] “The driving factors of new particle formation and growth in the polluted boundary layer”
Xiao M., Hoyle C. R., Dada L., Stolzenburg D., Kürten A. et al.
Atmospheric Chemistry and Physics, 2021, 21, 14275–14291

[93] “Ice nucleation by viruses and their potential for cloud glaciation”
Adams, M. P., Atanasova, N. S., Sofieva, S., Ravantti, J., Heikkinen, A., Brasseur, Z., Duplissy, J., Bamford, D. H., and Murray, B. J.
Biogeosciences, 18, 4431–4444, , 2021

[92] “The seasonal cycle of ice-nucleating particles linked to the abundance of biogenic aerosol in boreal forests”
Schneider J., Höhler K., Heikkilä P., Keskinen J., Bertozzi B., et al.
Atmospheric Chemistry and Physics, 2021, 21, 3899–3918,

[91] “Investigation of several proxies to estimate sulfuric acid concentration in volcanic plume conditions”
Rose C., M.P. Rissanen, S. Iyer, J. Duplissy, C. Yan et al.
Atmospheric Chemistry and Physics, 2021, 4541–4560

[90] “Role of iodine oxoacids in atmospheric aerosol nucleation”
He, XC; Tham, YJ; Dada, L; Wang, MY; Finkenzeller, H et al.
Science, 2021, Volume: 371 Issue: 6529 Pages: 589-+
DOI: 10.1126/science.abe0298

[89] “Determination of the collision rate coefficient between charged iodic acid clusters and iodic acid using the appearance time method”
He XC, S. Iyer, M. Sipilä, A. Ylisirniö, M. Peltola et al.
Aerosol Science and Technology, 2020, 55:2, 231-242
DOI: 10.1080/02786826.2020.1839013 


[88] “Molecular understanding of the suppression of new-particle formation by isoprene”
Heinritzi M., L. Dada, M. Simon, D. Stolzenburg, A. C. Wagner et al.
Atmospheric Chemistry and Physics, 2020, 20, 11809–11821, 2020

[87] “Comparing plastic foils for dew collection: Preparatory laboratory-scale method and field experiment in Kenya”
Tuure, J; Korpela, A; Hautala, M; Rautkoski, H; Hakojarvi et al.
Biosystems Engineering, 2020, Volume: 196 Pages: 145-158
DOI: 10.1016/j.biosystemseng.2020.05.016

[86] “Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic Compounds”
Wang M., D. Chen, M. Xiao, Q. Ye, D. Stolzenburg et al.
Environmental Science & Technology, 2020, 54, 13, 7911–7921

[85] “Molecular understanding of new-particle formation from α-pinene between −50 and +25 °C”
Simon M., L. Dada, M. Heinritzi, W. Scholz, D. Stolzenburg et al.
Atmospheric Chemistry and Physics, 2020, 20, 9183–9207, 2020 

[84] “Enhanced growth rate of atmospheric particles from sulfuric acid”
Stolzenburg D., M. Simon, A. Ranjithkumar, A. Kürten, K. Lehtipalo et al.
Atmospheric Chemistry and Physics,2020, 20, 7359–7372, 2020 

[83] “Rapid growth of new atmospheric particles by nitric acid and ammonia condensation”
Wang, MY ; Kong, WM ; Marten, R; He, XC; Chen, DX et al.
Nature, 2020, Volume: 581 Issue: 7807 Pages: 184-+
DOI: 10.1038/s41586-020-2270-4 

[82] “Size-dependent influence of NOx on the growth rates of organic aerosol particles”
Yan, C  ; Nie, W ; Vogel, AL; Dada, L; Lehtipalo, K et al.
Science Advances, 2020, Volume: 6 Issue: 22
DOI: 10.1126/sciadv.aay4945

[81] “Formation and growth of sub-3-nm aerosol particles in experimental chambers”
Dada, L., Lehtipalo, K  ; Kontkanen, J ; Nieminen, T; Baalbaki, R; Ahonen, L; Duplissy, J et al.
Nature Protocols,  2020, Volume: 15 Issue: 3 Pages: 1013-1040
DOI: 10.1038/s41596-019-0274-z


[80] “Comparison of surface foil materials and dew collectors location in an arid area: a one-year field experiment in Kenya”
Tuure J., Korpela A., Hautala M., Hakojärvi M., Mikkola H., Räsänen M.,Duplissy J. et al.
Agricultural and Forest Meteorology, Volume: 276
DOI: 10.1016/j.agrformet.2019.06.012

[79] “Spatial and Temporal Investigation of Dew Potential based on Long-Term Model Simulations in Iran”
Atashi N., Rahimi D., Goortani B, Duplissy J., Vuollekoski H. et al.
Water,11, 2463

[78] “Molecular Composition and Volatility of Nucleated Particles from α-Pinene Oxidation between -50 °C and +25 °C”
Y. Qing, M. Wang, V. Hofbauer, D. Stolzenburg, D. Chen et al.
Environmental Science & Technology, Volume 53, Issue 21, pages 12357-12365

[77] “Evidence of New Particle Formation Within Etna and Stromboli Volcanic Plumes and Its Parameterization From Airborne In Situ Measurements”
Sahyoun, M, Freney, E; Brito, Duplissy, J; Gouhier, M et al.
Journal of Geophysical Research: Atmospheres Volume: 124 Issue: 10 Pages: 5650-5668
DOI: 10.1029/2018JD028882

[76] “Formation of Highly Oxygenated Organic Molecules from alpha-Pinene Ozonolysis: Chemical Characteristics, Mechanism, and Kinetic Model Development”
Molteni, U ; Simon, M; Heinritzi, M; Hoyle, CR; Bernhammer et al.
ACS Earth and space chemistry, Volume: 3 Issue: 5 Pages: 873-883
DOI: 10.1021/acsearthspacechem.9b00035

[75] “Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes”
Boy, M., Thomson, E. S., Acosta Navarro, J.-C., Arnalds, O., Batchvarova et al.
Atmospheric Chemistry and Physics, 19, 2015–2061


[74] “Multicomponent new particle formation from sulfuric acid, ammonia, and biogenic vapors”
Lehtipalo, K; Yan, C; Dada, L; Bianchi, F; Xiao, M et al.
Science Advances Volume: 4 Issue: 12
DOI: 10.1126/sciadv.aau5363

[73] “Aerosol distribution in the northern Gulf of Guinea: local anthropogenic sources, long-range transport, and the role of coastal shallow circulations“
Flamant, C., Deroubaix, A., Chazette, P., Brito, J., Gaetan et al.
Atmospheric Chemistry and Physics, 18, 16, 12363-12389
DOI: 10.5194/acp-18-12363-2018

[72] “Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range”
Stolzenburg, D., L. Fischer, A. L. Vogel, M. Heinritzi, M. Schervish et al.
Proceedings of the National Academy of Sciences 2018
DOI: 10.1073/pnas.1807604115

[71] “New particle formation in the sulfuric acid-dimethylamine-water system: reevaluation of CLOUD chamber measurements and comparison to an aerosol nucleation and growth model”
Kurten, A., Li, C. X., Bianchi, F., Curtius, J., Dias, A., Donahue, N. M., Duplissy J. et al.
Atmospheric Chemistry and Physics 18,2, 845-863
DOI: 10.5194/acp-18-845-2018

[70] “New parameterizations for neutral and ion-induced sulfuric acid-water particle formation in nucleation and kinetic regimes”
Määttänen, A., J. Merikanto, H. Henschel, J. Duplissy, R. Makkonen et al.
Journal of Geophysical Research: Atmospheres 123, 1269–1296, 2018
DOI: 10.1002/2017JD027429

[69] “Measurement–model comparison of stabilized Criegee intermediate and highly oxygenated molecule production in the CLOUD chamber
Sarnela, N., T. Jokinen, J. Duplissy, C. Yan, T. Nieminen et al.
Atmospheric Chemistry and Physics. 18(4): 2363-2380, 2018

[68] “Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation”
Frege, C., I. K. Ortega, M. P. Rissanen, A. P. Praplan, G. Steiner et al.
Atmospheric Chemistry and Physics 18(1): 65-79, 2017


[67] “The role of ions in new particle formation in the CLOUD chamber”
Wagner, R., C. Yan, K. Lehtipalo, J. Duplissy, T. Nieminen et al.
Atmospheric Chemistry and Physics 17(24): 15181-15197, 2017. 

[66] “Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment”
Nichman, L., E. Jarvinen, J. Dorsey, P. Connolly, J. Duplissy et al.
Atmospheric Measurement Techniques 10(9): 3231-3248, 2017

[65] “Causes and importance of new particle formation in the present-day and preindustrial atmospheres”
Gordon, H., J. Kirkby, U. Baltensperger, F. Bianchi, M. Breitenlechner et al.
Journal of Geophysical Research-Atmospheres 122(16): 8739-8760, 2017

[64] “Solar eclipse demonstrating the importance of photochemistry in new particle formation”
Jokinen, T  ; Kontkanen, J; Lehtipalo, K; Manninen, HE ; Aalto, J et al.
Scientific reports: 7, 45707, 2017
doi: 10.1038/srep45707

[63] “Evaporation of sulfate aerosols at low relative humidity”
Tsagkogeorgas, G ; Roldin, P ; Duplissy, J; Rondo, L  ; Trostl, J et al
Atmospheric Chemistry and Physics,17, 8923-8938, 2017
doi: 10.5194/acp-17-8923-2017

[62] “Estimates of the organic aerosol volatility in a boreal forest using two independent methods”
Hong, J; Aijala, M; Hame, SAK; Hao, LQ; Duplissy, J et al.
Atmospheric Chemistry and Physics,17, 4387-4399, 2017
doi: 10.5194/acp-17-4387-2017

[61]“Chemical investigation and quality of urban dew collections with dust precipitates”
Odeh, I ; Arar, S; Al-Hunaiti, A; Sa’aydeh, H; Hammad, G ; Duplissy, J et al.
Environmental Science and pollution research, 24, 12312-12318, 2017
DOI: 10.1007/s11356-017-8870-3


[60]“Effect of ions on sulfuric acid-water binary particle formation II: Experimental data and comparison with QC-normalized classical nucleation theory”
Duplissy, J., Merikanto, J., Franchin, A., Tsagkogeorgas, G., Kangasluoma, J. et al.
Journal of Geophysical Research-Atmospheres, 121(4): 1752-1775, 2016

[59] “Effect of ions on sulfuric acid-water binary particle formation: 1. Theory for kinetic- and nucleation-type particle formation and atmospheric implications”
Merikanto, J., J. Duplissy, A. Maattanen, H. Henschel, N. M. Donahue et al.
Journal of Geophysical Research-Atmospheres, 121(4): 1736-1751, 2016
doi: 10.1002/2015JD023538

[58]“Ion-induced nucleation of pure biogenic particles”
Kirkby, J., J. Duplissy, K. Sengupta, C. Frege, H. Gordon et al.
Nature, 533(7604): 521-+, 2016
doi: 10.1038/nature17953

[57] “Global atmospheric particle formation from CERN CLOUD measurements”
Dunne, E. M., H. Gordon, A. Kürten, J. Almeida, J. Duplissy et al.
Science, 2016 

[56]“The role of low-volatility organic compounds in initial particle growth in the atmosphere”
Trostl, J., W. K. Chuang, H. Gordon, M. Heinritzi, C. Yan et al.
Nature, 533(7604): 527-+, 2016
doi: 10.1038/nature18271

[55] “New particle formation in the free troposphere: A question of chemistry and timing”
Bianchi, F., J. Trostl, H. Junninen, C. Frege, S. Henne et al.
Science, 352(6289): 1109-1112, 2016.
doi: 10.1126/science.aad5456

[54] “The effect of acid-base clustering and ions on the growth of atmospheric nano-particles”
Lehtipalo, K., L. Rondo, J. Kontkanen, S. Schobesberger, T. Jokinen et al.
Nature Communications, 7, 2016
doi: 10.1038/ncomms11594

[53] “Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation
Gordon, H., K. Sengupta, A. Rap, J. Duplissy, C. Frege et al.
Proceedings of the National Academy of Sciences 113(43): 12053-12058, 2016

[52] “Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD”
Lawler M.J. , P. M. Winkler, J. Kim, L. Ahlm, J. Tröst et al.
Atmospheric Chemistry and Physics,16, 13601-13618
doi:10.5194/acp-16-13601-2016, 2016

[51] “Comparison of the SAWNUC model with CLOUD measurements of sulphuric acid-water nucleation”
Ehrhart, S., L. Ickes, J. Almeida, A. Amorim, P. Barmet et al.
Journal of Geophysical Research: Atmospheres: n/a-n/a, 2016

[50] “Modeling the thermodynamics and kinetics of sulfuric acid-dimethylamine-water nanoparticle growth in the CLOUD chamber”
Ahlm L., Yli-Juuti T. ,Schobesberger S.,Praplan A. P. ,Kim J. et al.
Aerosol Science and Technology, 2016 50:10, 1017-1032
DOI: 10.1080/02786826.2016.1223268

[49] “Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures”
Kürten, A., F. Bianchi, J. Almeida, O. Kupiainen-Määttä, E. M. Dunne, J. Duplissy et al.
Journal of Geophysical Research: Atmospheres: n/a-n/a., 2016

[48] “Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets”
Hoyle, C. R., C. Fuchs, E. Jarvinen, H. Saathoff, A. Dias et al.
Atmospheric Chemistry and Physics, 16(3): 1693-1712, 2016.
doi: 10.5194/acp-16-1693-2016

[47] “Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of alpha-pinene”
Ignatius, K., T. B. Kristensen, E. Jarvinen, L. Nichman, C. Fuchs et al.
Atmospheric Chemistry and Physics, 16(10): 6495-6509, 2016
doi: 10.5194/acp-16-6495-2016

[46] “Observation of viscosity transition in alpha-pinene secondary organic aerosol”
Jarvinen, E., K. Ignatius, L. Nichman, T. B. Kristensen, C. Fuchs et al.
Atmospheric Chemistry and Physics, 16(7): 4423-4438, 2016
doi: 10.5194/acp-16-4423-2016

[45] “Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments”
Nichman, L., C. Fuchs, E. Jarvinen, K. Ignatius, N. F. Hoppe et al.
Atmospheric Chemistry and Physics, 16(5): 3651-3664, 2016
doi: 10.5194/acp-16-3651-2016

 [44] “Hygroscopicity of nanoparticles produced from homogeneous nucleation in the CLOUD experiments”
Kim, J., L. Ahlm, T. Yli-Juuti, M. Lawler, H. Keskinen et al.
Atmospheric Chemistry and Physics, 16(1): 293-304, 2016.
doi: 10.5194/acp-16-293-2016

[43] “Measuring atmospheric ion bursts and their dynamics using mass spectrometry”
Junninen, H., J. Duplissy, M. Ehnl, M. Sipila, J. Kangasluoma et al.
Boreal Environment Research, 21(3-4): 207-220, 2016

[42] “Operation of the Airmodus A11 nano Condensation Nucleus Counter at various inlet pressures and various operation temperatures, and design of a new inlet system”
Kangasluoma, J., A. Franchin, J. Duplissy, L. Ahonen, F. Korhonen et al.
Atmospheric Measurement Techniques, 9(7): 2977-2988, 2016
doi: 10.5194/amt-9-2977-2016

[41] “Effect of dimethylamine on the gas phase sulfuric acid concentration measured by Chemical Ionization Mass Spectrometry”
Rondo, L., S. Ehrhart, A. Kuerten, A. Adamov, F. Bianchi et al.
Journal of Geophysical Research-Atmospheres 121(6): 3036-3049. 2016
doi: 10.1002/2015JD023868


[40] “Experimental investigation of ion-ion recombination under atmospheric conditions”
Franchin, A., S. Ehrhart, J. Leppa, T. Nieminen, S. Gagne et al.
Atmospheric Chemistry and Physics, 15(13): 7203-7216, 2015

[39] “Relating the hygroscopic properties of submicron aerosol to both gas- and particle-phase chemical composition in a boreal forest environment”
Hong, J., J. Kim, T. Nieminen, J. Duplissy, M. Ehn et al.
Atmospheric Chemistry and Physics 15(20): 11999-12009, 2015

[38] “Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4-H2O) and ternary (H2SO4-H2O-NH3) system”
Kuerten, A., S. Munch, L. Rondo, F. Bianchi, J. Duplissy et al.
Atmospheric Chemistry and Physics, 15(18): 10701-10721, 2015

[37] “Technical Note: Using DEG-CPCs at upper tropospheric temperatures”
Wimmer, D., K. Lehtipalo, T. Nieminen, J. Duplissy, S. Ehrhar et al.
Atmospheric Chemistry and Physics, 15(13): 7547-7555, 2015

[36] “Elemental composition and clustering of α-pinene oxidation products for different oxidation conditions”
A. P. Praplan, S. Schobesberger, F. Bianchi, M. P. Rissanen, M. Ehn et al.
Atmospheric Chemistry and Physics, 15, 4145-4159, 2015

[35] “Major contribution of neutral clusters to new particle formation at the interface between the boundary layer and the free troposphere”
Rose, K. Sellegri, E. Asmi, M. Hervo, E. Frene et al.
Atmospheric Chemistry and Physics, 15, 3413–3428, 2015 

[34] “Estimates of global dew collection potential on artificial surfaces”
Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen et al.
Hydrology and Earth System Sciences, 19, 601–613, 2015

[33] “On the composition of ammonia-sulfuric acid clusters during aerosol particle formation”
S. Schobesberger, A. Franchin, F. Bianchi, L. Rondo, J. Duplissy et al
Atmospheric Chemistry and Physics, 15, 55–78, 2015


[32] “Insight into AcidBase Nucleation Experiments by Comparison of the Chemical Composition of Positive, Negative, and Neutral Clusters”
Bianchi, A. P. Praplan, N. Sarnela, J. Dommen, A. Kurten et al.
Environmental Science and Technology, 2014, 48 (23), pp 13675–13684
DOI: 10.1021/es502380b

[31] Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions”
Kürten, T. Jokinen, M. Simon, M. Sipilä, N. Sarnela et al.
Proceedings of the National Academy of Sciences of United State of America, 2014

[30] “Characterisation of organic contaminants in the CLOUD chamber at CERN”
R. Schnitzhofer, A. Metzger, M. Breitenlechner, W. Jud, M. Heinritz et al.
Atmospheric Measurement Technic, 7, 2159-2168, 2014

[29] “Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles”
F., Riccobono, S. Schobesberger, C. E. Scott ,J. Dommen, I. K. Ortega et al.
Science, 344, 61855, p. 717-721, 2014
DOI: 10.1126/science.1243527


[28] “Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules”
Schobesberger, H. Junninen, F. Bianchib, G. Lönn, M. Ehn et al.
Proceedings of the National Academy of Sciences of United State of America, 2013
DOI: 10.1073/pnas.1306973110

[27] “Direct observations of atmospheric nucleation”
Kulmala, J. Kontkanen, H. Junninen, K. Lehtipalo, H. E. Manninen et al.
Science, 339, 6122, p 943-946, 2013
DOI: 10.1126/science.1227385

[26] “Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere”
Almeida, S. Schobesberger, A. Kuerten, I. K. Ortega, O. Kupiainen-Maatta et al.
Nature, 502, 7471, 359-365, 2013
DOI: 10.1038/nature12663

[25] “Evolution of particle composition in CLOUD nucleation experiments”
H. Keskinen, A. Virtanen, J. Joutsensaari, G. Tsagkogeorgas, J. Duplissy et al.
Atmospheric Chemistry and Physics, 13, 5587-5600, 2013
doi:10.5194/acp-13-5587-2013, 2013


[24] “Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber”
Voigtlander, J. Duplissy, L. Rondo, A. Kurten, and F. Stratmann
Atmospheric Chemistry and Physics, 12, 2205–2214, 2012


[23] Relating hygroscopicity and composition of organic aerosol particulate matter
Duplissy, P.F. DeCarlo, J. Dommen, M.R. Alfarra, A. Metzger et al.
Atmospheric Chemistry and Physics, 11, 1155-1165, 2011

[22] Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation”
Kirkby, J. Curtius, J. Almeida, E. Dunne, J. Duplissy et al.
Nature, 476 , 429-433,  2011

[21] “Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest”
S.-L. Sihto, J. Mikkilä, J. Vanhanen,  M. Ehn, L. Liao et al.
Atmospheric Chemistry and Physics, 11, 13269-13285, 2011

[20] “A fibre-optic UV system for H2SO4 production in aerosol chambers causing minimal thermal effects”
Kupc, A. Amorim, J. Curtius, A. Danielczok, J. Duplissy et al.
Journal of Aerosol Science, 42, 532–543, 2011


[19] “Widening the gap between measurement and modelling of secondary organic aerosol properties?”
Good, D.O. Topping, J. Duplissy, M. Gysel, N.K. Meyer et al.
Atmospheric Chemistry and Physics, 10, 2577–2593, 2010

[18] “The role of sulphates and organic vapours in growth of newly formed particles in a eucalypt forest”
Z.D. Ristovski, T. Suni, M. Kulmala, M. Boy, N. K. Meyer, J. Duplissy et al.
Atmospheric Chemistry and Physics, 10, 2919-2926, 2010

[17] “Results from the CERN pilot CLOUD experiment”
Duplissy J., M. B. Enghoff, K. L. Aplin, F. Arnold, H. Aufmhoff et al.
Atmospheric Chemistry and Physics, 10, 1635-1647, 2010

[16] “Evidence for the role of organics in aerosol particle formation under atmospheric conditions”
Metzger, B. Verheggen, J. Dommen, J. Duplissy, A.S.H. Prevot et al.
Proceedings of the National Academy of Sciences of United State of America, 2010
doi: 10.1073/pnas.0911330107


[15] “Evolution of Organic Aerosols in the Atmosphere”
J.L. Jimenez, M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang et al.
Science, Vol. 326 no. 5959, 1525-1529, 2009
DOI: 10.1126/science.1180353

[14] “Intercomparison study of six HTDMAs: results and general recommendations for HTDMA operation”
Duplissy, M. Gysel, S. Sjogren, N. Meyer, N. Good et al.
Atmospheric Measurement and Techniques, 2, 363-378, 2009

[13] “Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and un-seeded SOA particles”
N.K. Meyer, J. Duplissy, M. Gysel, A. Metzger, E. Weingartner et al.
Atmospheric Chemistry and Physics, 9, 721–732, 2009

[12] “Determination of the Aerosol Yield of Isoprene in the Presence of an Organic Seed with Carbon Isotope Analysis”
Dommen, H. Hellen, M. Saurer, M. Jaeggi, R. Siegwolf, A. Metzger, J. Duplissy et al.
Environment Science & Technology, 43, 6697–6702, 2009
doi: 10.1021/es9006959

[11] “Influence of gas-to-particle partitioning on the hygroscopic and droplet activation behaviour of α-pinene secondary organic aerosol”
Juranyi, M. Gysel, J. Duplissy, E. Weingartner, T. Tritscher et al.
Physical Chemistry Chemical Physics, 11, 8091–8097, 2009

[10] “
Gas Phase Precursors to Secondary Organic Aerosol Formation during the Photooxidation of 1,3,5-trimethylbenzene”
Wyche K.P., P.S. Monks, A.M. Ellis, R.L. Cordell, A.E. Parker et al.
Atmospheric Chemistry and Physics, 9, 635-665, 2009


[9] “Cloud forming potential of secondary organic aerosol under near atmospheric conditions”
Duplissy, M. Gysel, M. R. Alfarra, J. Dommen, A. Metzger et al.
Geophysical Research Letters, 35, L03818, 2008

[8] “Using Proton Transfer Reaction Mass Spectrometry for Online Analysis of Secondary Organic Aerosols”
Hellén, J. Dommen, A. Gascho, A. Metzger, J. Duplissy et al.
Environment Science & Technology, 42, 7347–7353, 2008

[7]“Evaluation of the 1,3,5 trimethylbenzene degradation in the detailed tropospheric chemistry mechanism, MCMv3.1, using environmental chamber data”
Metzger, J. Dommen, K Gaeggeler, J. Duplissy, A.S.H. Prevot, J. Kleffmann et al.
Atmospheric Chemistry and Physics, 8, 6453-6468, 2008

[6] “Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580m a.s.l., Switzerland”
Sjogren S., M. Gysel, E. Weingartner, M. R. Alfarra, J. Duplissy et al.
Atmospheric Chemistry and Physics, 8, 5715–5729, 2008

[5] “Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene”
Healy R.M.,  J.C. Wenger, A. Metzger, J. Duplissy, M. Kalberer, and J. Dommen
Atmospheric Chemistry and Physics, 8, 3215–3230, 2008

[4] “Combined Determination of the Chemical Composition and of Health Effects of Secondary Organic Aerosols: The POLYSOA Project”
Baltensperger, J. Dommen, MR. Alfarra, J. Duplissy, K. Gaeggeler et al.
Journal of Aerosol Medicine and Pulmonary Drug Delivery, V. 21, N. 1, 145–154, 2008

[3] “O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High Resolution Time-of-Flight Aerosol Mass Spectrometry”
Aiken, P. DeCarlo, J. Kroll, D. Worsnop, J. Huffman et al.
Environment Science & Technology, 42, 4478–4485, 2008


[2] “Laboratory observation of oligomers in the aerosol from isoprene/NOx photooxidation”
Dommen, A. Metzger, J. Duplissy, M. Kalberer, M.R. Alfarra et al.
Geophysical Research Letters, 43, 6697–6702, 2006

[1] “Real-time measurement of oligomeric species in secondary organic aerosol with the aerosol time-of-flight mass spectrometer
Gross, D.S., M.E. Galli, M. Kalberer, A.S.H. Prevot, J. Dommen et al.
Analytical Chemistry, 78, 2130–2137, 2006

—Under review/final stage—



[]”Une étude comparative de quatre techniques différentes pour mesurer la composition chimique des nanoparticules”
Caudillo, L., Surdu, M., Lopez, B., Wang, M., Thoma et al.
En cours d’examen ACPD