
Roadmap to the Programmable World:

Software Challenges in the IoT Era

Antero Taivalsaari
Nokia Technologies

FI-33100 Tampere, Finland
Email: antero.taivalsaari@nokia.com

Tommi Mikkonen
Tampere University of Technology

FI-33720 Tampere, Finland
Email: tommi.mikkonen@tut.fi

February 8, 2017

Abstract

The Internet of Things (IoT) represents the next significant step
in the evolution of the Internet and software development. Although
the majority of current work in the IoT area focuses on data acqui-
sition, analytics and visualization, there is a more subtle but equally
important transition underway. Advances in hardware development
are making it possible to embed full-fledged virtual machines and dy-
namic language runtimes virtually everywhere, thus leading us to a
Programmable World in which all the everyday things around us will
become connected and programmable dynamically.

The emergence of millions of remotely programmable devices in our
surroundings will pose significant challenges for software development.
In this paper we present a roadmap from today’s cloud-centric, data-
centric IoT systems to the Programmable World, highlighting technical
challenges that deserve developer education and deeper investigation
above and beyond those topics that receive the most attention in the
IoT area today.

1



1 Introduction

The Internet of Things (IoT) represents the next significant step in the evo-
lution of the Internet. In the early days in the 1970’s and 1980’s, the Internet
was primarily about connecting computers. In the 1990’s and 2000’s, the In-
ternet was all about connecting people. In contrast, in the 2010’s and 2020’s
the focus shifts towards connecting everything (or literally every thing) to
the Internet.

Today, the majority of research work in the IoT area revolves around
data acquisition, real-time and offline analytics, machine learning, data vi-
sualization and other big data topics [1]. The focus on these topics is not
surprising, given the massive business potential arising from the ability to
collect data from millions of sensing devices, and then digest and combine
the data to provide new insights into people’s behavior and other real-world
phenomena.

However, there is an equally important but more subtle and tranquil dis-
ruption underway. Advances in hardware development and the general avail-
ability of powerful but very inexpensive integrated chips will make it pos-
sible to embed connectivity and full-fledged virtual machines and dynamic
language runtimes virtually everywhere – or literally everywhere. As a con-
sequence, everyday things in our surroundings – light bulbs, door knobs, air
conditioning systems, lawn sprinklers, vacuum cleaners, toothbrushes and
the kitchen sink – will become connected and programmable dynamically.
The future potential of this disruption will be every bit as significant as
the mobile application revolution that was sparked when similar technolog-
ical advances made it possible to open up mobile phones for third-party
application developers in the early 2000’s.

In this paper we present a roadmap from today’s cloud-centric, data-
centric IoT systems to a world where everyday objects are connected and
where the edge of the network becomes truly programmable. The Pro-
grammable World – programmable in a very literal sense – will pose new
challenges for software developers. We argue that today’s software develop-
ment methods, languages and tools – or at least those that are in widespread
use today – are poorly suited to the emergence of millions of programmable
things in our surroundings. We highlight open issues and technical chal-
lenges that deserve deeper study above and beyond those topics that receive
the most attention in the IoT area today.

Since this is a forward-looking paper, the roadmap presented in this
paper is to some extent subjective. The viewpoints presented in this paper
stem from our own projects and collaboration efforts in the IoT area [2,
3, 4, 5] as well as from our past experiences in predicting and partaking
in the evolution of mobile and web computing over the past twenty years.
For instance, the emergence of virtual machines in mobile phones in the
late 1990’s – while technically not a dramatic achievement – opened up

2



mobile phones for the vast masses of developers, creating today’s multi-
billion mobile application industry. Although history rarely repeats itself,
it often rhymes; in this case parallels with the past seem especially obvious
as we are just reaching a point in which it will become possible to embed
dynamic programming capabilities virtually everywhere.

2 The Emerging Common E2E IoT Architecture

The term Internet of Things is not new. Over twenty years ago, MIT pro-
fessors described a world in which things (devices or sensors) are connected
and can share data [6]. At the beginning, IoT concepts started emerging
around enabling technologies such as RFID and wireless sensor networks [7].
However, in recent years the usage of the concepts has spread rapidly into
various new domains, including healthcare, transportation, energy, retail,
building management and process automation. Hundreds of startup com-
panies have been created in this area, and most major corporations have
announced IoT platform and component offerings. A recent Postscapes.com
study listed 115 IoT cloud platforms (http://postscapes.com/internet-
of-things-platforms/). We are currently witnessing a classic “crossing
the chasm” period in which the ultimate winners have not been determined
yet [8]. Most likely, by 2025 there will be only a handful of dominant IoT
platforms and platform vendors left.

What is interesting about these IoT offerings is how similar they are at
the conceptual level. In spite of the apparent diversity and the huge number
of vendors targeting the IoT market, there is a common end-to-end (E2E)
architecture emerging for IoT solutions, with a number of elements that are
pretty much the same in all the systems [1, 9, 10]. The basic concepts are
depicted in Fig. 1 and summarized below.

Figure 1: The Emerging Common E2E IoT Architecture.

3



Devices or peripherals are the physical hardware elements that collect
sensor data and/or perform actuation, with built-in communication capa-
bilities to submit the collected data to the broader IoT ecosystem. From a
functional point of view, devices can be divided broadly into two categories:

1. Sensors provide information about the physical entity they monitor.
Collected information may range from the identity of the physical en-
tity to measurable qualities such as temperature, humidity, pressure,
luminosity, sound level, fluid flow, vibration, abrasion, and so on. Sen-
sors whose sole purpose is to facilitate an identification process are
commonly known as tags.

2. Actuators are components that modify the state of a physical entity
by taking energy, usually transported by air, electric current or liquid,
and converting that energy into a state change, thus affecting one or
more physical real-world entities.

Gateways or hubs are devices for collecting, preprocessing and trans-
ferring data from peripheral IoT devices and their sensors, utilizing differ-
ent (usually wireless) communication protocols such as Wi-Fi or Bluetooth
Smart. Gateways provide secure protocol translation between peripheral IoT
devices and cloud, and may support additional tasks such as intermediate
sensor data storage and preprocessing, service discovery, geo-localization,
verification and billing. In addition, gateways also deliver the actuation
requests from the cloud to the devices.

In some systems, the IoT devices themselves are capable of uploading
sensing data directly to the cloud, as well as receiving actuation requests
directly from the cloud, e.g., via Wi-Fi, 3G/4G or soon NB-IoT and 5G
networks. In such solutions, no dedicated gateway devices are required at
all. Furthermore, it is not uncommon to have IoT solutions in which IoT de-
vices themselves are capable of acting as gateways to other devices, possibly
forming peer-to-peer (P2P) / mesh topologies via local connectivity.

Cloud computing and cloud-based storage and analytics solutions
play a central role in most IoT platforms today. The main roles of the cloud
in the generic end-to-end IoT architecture can be summarized as follows.

1. Data acquisition, storage and access. A fundamental functionality area
in IoT systems is sensor data collection and storage. IoT devices with
sensing capabilities typically collect a large amount of data that must
be harvested and stored in the cloud for further processing and anal-
ysis. Solutions in this area range from simple in-premise databases to
massive replicated, fault-tolerant, scalable storage clusters. Query and
notification APIs for accessing collected data are provided as well.

2. Data analytics. Data analytics refers to the process of examining,
cross-connecting and transforming acquired sensor data in order to

4



discover and present useful information, e.g., to support remote in-
formation sharing and decision making. Real-time analytics refers to
analysis functions that are run immediately after the data has been
received. Offline analytics, in contrast, refers to batch-style operations
that are performed after large datasets have already been accumulated.
Machine learning and data mining technologies and algorithms play
an important role in this area.

3. Actuation support. Data flows in IoT systems are not just unidirec-
tional. In addition to sensor data collection from the devices to the
cloud, secure device actuation from the cloud to the devices is also im-
portant. Actuation capabilities are a fundamental enabler for remote
device programmability.

In addition to the core IoT cloud features discussed above, a cloud solu-
tion supporting IoT solutions typically includes a number of administrative
functions such as device management, user account management, usage log-
ging, server status monitoring, reporting capabilities, and so on.

3 Roadmap to the Programmable World

Looking above and beyond data acquisition, analytics, data visualization
and other currently prominent IoT topics, we believe that the future of
the Internet of Things lies in the ability to orchestrate and program large,
complex topologies of IoT devices remotely. As argued by Wasik [11], once
devices are connected to public or private clouds, with sensor data flowing
in and actuation capabilities being widely available, focus will eventually
shift from sensor data collection and analytics features to application pro-
gramming capabilities that can be used for manipulating complex real-world
systems. Actuation capabilities offered by IoT devices form the foundation
for all this. These capabilities will literally put the world at our finger-
tips, making it possible to command and control everyday objects in our
surroundings (and potentially all over the planet) from the comfort of a
programming environment or an app in front of us.

The transition towards the Programmable World will be driven by ad-
vances in hardware development. IoT hardware capabilities and price points
are rapidly reaching an inflection point in which it will be possible to run
full-fledged operating systems such as Linux or virtualized software stacks
or dynamic language runtimes on almost any type of device. The low-cost
computing chips that have become available in the mid-2010’s already match
or exceed the memory and processing power capabilities that mobile phones
had in the late 1990’s, just before the emergence of the Java 2 Platform,
Micro Edition (J2ME) [12] launched the industry-wide mobile application
revolution leading to today’s multi-billion mobile application industry. We

5



take it for granted that similar cross-manufacturer programming capabilities
will soon find their way to everyday objects and things around us.

Another major trend driving the industry towards the Programmable
World is the emergence of edge computing. Classic cloud computing sys-
tems are highly centralized. While centralized computing has significant
benefits, it can also be very costly in terms of communication and power
consumption. For instance, if an IoT environment consists of a large collec-
tion of devices that are in close proximity of each other, it may be inefficient
to transmit all the data from those devices to a faraway data center for
processing, and then transmit actuation requests back from the remote data
center to the individual devices. In an IoT deployment with tight latency
requirements, latency overhead alone can make such solutions impractical.

The term edge computing was coined around 2002, and it was origi-
nally associated with the deployment of applications over Content Delivery
Networks (CDNs) – the main objective was to benefit from the proximity
of CDN edge servers to achieve better scalability and lower latency. Edge
computing IoT solutions harness the edge of the network (usually gateway
devices such as routers or base stations) for computation, e.g., to preprocess
sensor data and trigger alerts and actuation requests locally based on pre-
defined criteria. Such systems may leverage local connectivity technologies
(e.g., Bluetooth LE or Wi-Fi Direct) to enable direct, more efficient and
decentralized communication between sensor devices. Virtualization tech-
nologies also play a central role in enabling the migration of computation
between different entities.

Table 1 presents an anticipated roadmap predicting how IoT systems
will evolve over the next ten years. The table has been divided into two
columns: one looking at the evolution from the data viewpoint, and another
looking at the evolution from the programming angle. In this paper, the
primary focus is on programming aspects, so in the remainder of the paper
we will dive deeper only into challenges related to programmability.

The table is based on a number of sources:

• observed trends within the industry and in the academia, reflecting
recent theses, academic papers and books (e.g., [1, 5, 7, 9, 10, 13, 14]);

• expert views, building on practical product and prototype development
experiences in both industry and academia [2, 3];

• personal experiences and past observations from the mobile application
revolution as mobile phones evolved from closed, voice-centric devices
to application-rich smartphones [12]; and

• personal experiences and past observations from the evolution of the
Web from a simple document distribution environment to a platform
that supports rich application development and instant worldwide de-
ployment [15].

6



Table 1: Anticipated Evolution of IoT Systems

Year Data Viewpoint Programmability Viewpoint

2015 —
• Data acquisition already possible on a

massive scale
• Monitor, track, route, command and con-

trol, mining for trends and behaviors
• Cloud-centric data analytics, including

both real-time and offline analytics sup-
port

• A lot of focus on data visualization and
simple IFTTT (If-This-Then-That) alerts

• Open source technologies available and
widely used for implementing data acqui-
sition and analytics features

• The majority of serious computation in IoT sys-
tems performed in the cloud

• Devices support basic actuation only; actua-
tion implemented mostly natively using device-
or manufacturer-specific, proprietary APIs and
apps

• Device- or manufacturer-specific device control
applications available in app stores

• Visual notations (e.g., NodeRED) emerging for
implementing device control applications in a
more portable fashion

• Standards emerging (e.g., OMA LWM2M, IPSO
Smart Objects) but not yet widely adopted

2020 — ”Edge IoT Era”

• Edge computing APIs and mechanisms
leveraged extensively in data processing
and analytics; more intelligent filtering
and denoising of uploaded data

• Increasingly autonomous operation of
data acquisition and analytics systems
based on direct machine-to-machine com-
munication, utilizing local connectivity

• Adapt, enhance, extend; automatic deter-
mination and selection of computing and
analytics resources (cloud vs. edge)

”Edge IoT Era”

• Edge computing capabilities and APIs available
for provisioning computing flexibly between the
cloud and edge devices

• More advanced actuation capabilities; standard-
ized actuation APIs

• Domain-specific device control applications
available, e.g., for controlling lighting systems
or home security equipment from different man-
ufacturers

• Virtual machines commonly available in IoT de-
vices, enabling cross-manufacturer IoT applica-
tion development and flexible migration of com-
putations between the cloud and edge devices

2025 — ”Universal IoT Era”

• Fully automated, context-aware data ac-
quisition, analytics and decision optimiza-
tion based on pervasive use of AI tech-
niques such as machine learning

• Universal machine-to-machine collab-
oration enabled by common cross-
manufacturer, cross-industry APIs; Social
use of data among machines

”Universal IoT Era”

• Universal, containerized application deployment
and execution model supported across multiple
manufacturers and industries

• Industry-wide, cross-manufacturer program-
ming APIs allowing device discovery, data ac-
quisition, remote device programming and de-
vice management in a generalized fashion

• ”Universal remote control” applications and
”universal device consoles” possible

• Dynamic remote (re)programming of devices
widely supported, enabled by the widespread use
of virtual machines, containerization and com-
mon developer APIs

7



Basically, we expect the evolution of the IoT programming capabilities
to progress from simple actuation features, vendor-specific apps and device
APIs, and cloud-centric data acquisition and processing to systems that
leverage edge computing, virtualization and containers extensively. Such
future systems will support portable, cross-manufacturer and cross-industry
application development, and allow – whenever required – flexible migration
of computation and data between the cloud and heterogeneous edge devices.

While it is debatable whether there will ever be a single set API to cover
IoT devices from entirely different domains and verticals, it is safe to pre-
dict that in five to ten years IoT devices and their APIs will have converged
significantly. It is simply impractical for people to use a large number of
vendor-specific apps to control all the devices in their surroundings. It is also
likely that the necessary infrastructure will grow around the already exist-
ing IP networking and web infrastructure, enhanced with local connectivity
technologies in order to support edge computing.

4 How is IoT Development Different from Mobile
and Web Application Development?

Below we summarize the basic differences between IoT development and
mainstream mobile and client-side web application development today. These
differences are a key reason for the implications and technical challenges pre-
sented later.

• IoT devices are part of a system. IoT devices are almost always
part of a larger system of devices, e.g., an installation of interoperat-
ing devices in a home, office, factory, shopping mall or in an airplane.
Furthermore, IoT devices are usually just a small part of an end-to-
end architecture presented in Section 2. Granted, PCs and smart-
phones today have major dependencies with cloud-based services as
well, but from the developer’s perspective they are still primarily seen
as standalone devices, with the application developer targeting a single
computer or smartphone when writing software.

• Rebootables vs. systems that never sleep. Personal computers,
smartphones and other standalone computing devices can be viewed
as ”rebootables” – systems that can and will be rebooted when things
go awry. In contrast, IoT systems are ”systems that never sleep” that
in most cases should not or cannot be shut down in their entirety. Al-
though individual devices may be shut down, the system in its entirety
must be designed to be resilient to device and network outages.

• Pets vs. cattle. The number of computing units (devices/CPUs) in
IoT systems is often dramatically larger than in traditional computing

8



environments, consisting potentially of hundreds, thousands or even
millions of units. Unlike personal computers and smartphones that
are seen by the users almost like ”pets”, IoT devices in a large system
are more like ”cattle” that must be managed en masse instead giving
them personal attention and care.

• IoT devices are embedded and often invisible. IoT devices are
often embedded in our surroundings in a manner that makes them
physically invisible and unreachable. Devices may be permanently
buried deep in the ground or physically embedded in various mate-
rials (e.g., vibration sensors placed in mining equipment). It may be
impossible to attach physical cables to those devices, or replace hard-
ware or embedded software when problems arise.

• IoT systems are highly heterogeneous. Computing units in an
E2E IoT system can have dramatically varying computing power, stor-
age capabilities, network bandwidth and energy requirements. The I/O
mechanisms, sensory capabilities and supported input modalities can
also vary considerably. Some devices have physical buttons and dis-
plays, while many devices present no visible user interface at all.

• IoT systems have weak connectivity. IoT devices tend to be
weakly connected, with intermittent and often unreliable network con-
nections. From the software developer’s viewpoint, such an environ-
ment places special requirements on constantly preparing for failure.
Applications written with insufficient error handling are likely to stall
during a device or network outage, infinitely waiting for an answer
packet, excessively consuming memory, battery or other resources.

• IoT systems have dynamic topologies. In IoT systems, device
topologies can be highly dynamic and ephemeral. For instance, in fac-
tory environments there may be countless of constantly moving pieces
of equipment with sensing capabilities, or products (or parts thereof)
that stay within the factory perimeter only transiently. When com-
bined with the much larger number of devices overall, this will require
programming and deployment technologies that can cope with dynam-
ically changing ”swarms” of devices.

In addition to the basic differences listed above, there are many addi-
tional issues that arise from the relative immaturity of the IoT area. Such
differences include:

• Today’s IoT systems have incompatible, immature develop-
ment APIs. At this stage, common industry-wide IoT developer
APIs are still missing. Unlike in mobile and web application devel-
opment where significant convergence has already taken place, IoT

9



APIs still tend to be vendor- and hardware-specific. This severely
hinders the creation of software that would work across IoT devices
and systems from different manufacturers and vendors. A number of
standardization efforts are underway, e.g., by the Industrial Internet
Consortium, IPSO Alliance, Open Connectivity Foundation (formerly
Open Interconnect Consortium), and Open Mobile Alliance (OMA).
However, it will still take several years until standardization efforts
reach consensus and maturity.

• Today’s IoT systems are very cloud-centric. Today’s IoT sys-
tems are highly cloud-centric in the sense that nearly all the data
is collected in the cloud; most of the computation/actions on the col-
lected data are typically performed on the cloud side as well. However,
as IoT devices and gateways become more capable, it becomes possi-
ble to perform computation in various places – in devices/peripherals,
in gateways/hubs or in the cloud. Optimal behavior of IoT systems
relies on the ability to migrate computation and data flexibly to those
devices where computations make most sense at each time.

5 Implications and Challenges for Software Devel-
opment

To summarize the differences presented above, an IoT developer needs to
consider several dimensions that are unfamiliar to most mobile and client-
side web developers, including: (1) multi-device programming, (2) reactive
and always-on nature of the system, (3) heterogeneity and diversity, (4) dis-
tributed, highly dynamic and potentially migratory nature of software, and
(5) the general need to write software in a fault-tolerant and defensive man-
ner. A typical IoT application is continuous and reactive in nature. Based on
observed sensor readings, computations get (re)triggered and eventually re-
sult in various actionable events. The programs are essentially asynchronous,
parallel and distributed.

Strictly speaking, these are by no means new characteristics in software
development. Any developer who has built software for distributed systems
or mission-critical systems is at least to some degree familiar with the chal-
lenges arising from such qualities. The developers of today’s cloud backend
server cluster software are commonly faced with these aspects as well.

Tackling the fallacies of distributed computing. Based on our
experiences the average mobile or client-side web application developer to-
day is not well-equipped to cope with challenges presented by IoT systems
development. As L. Peter Deutsch aptly summarized in his fallacies of dis-
tributed computing back in 1994, there is a set of (false) assumptions that
programmers will invariable make when writing software for distributed sys-

10



tems and applications for the first time. Unfortunately, the original Sun
Microsystems blog site summarizing the fallacies (http://blogs.sun.com/
jag/resource/Fallacies.html) is no longer online, but material on the
topic is readily available on the Web [16].

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is infinite.

4. The network is secure.

5. Topology does not change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous.

Failure to take into account these false assumptions will result in various
kinds of errors, e.g., open sockets listening to devices that are no longer
present, assuming immediate responses or infinitely waiting for reply pack-
ets, and consuming memory and battery unnecessarily. As Leslie Lamport
once famously wrote, in a distributed system a ”failure of a computer you
did not even know existed can render your own computer unusable”.

That said, there is also a danger that the developer will have to write
too much code to cope with any potential error and exception, burying the
actual program logic under thousands of lines of error handling ”boilerplate”
code and thus making programs much more difficult to understand and
maintain. Therefore, a major challenge in IoT development is to reach the
proper balance between application logic and error handling. Ideally, the
development languages and tools should facilitate this so that error handling
code does not unnecessarily clutter the program logic.

In general, the hidden costs of building and maintaining software for
distributed systems are almost always underestimated. According to studies,
verification and validation activities and checks may amount up to 75% of
the total software development costs [17].

Inadequate languages and tools for programming and orches-
trating IoT systems. The programming languages and development tools
that people use for IoT development today are largely the same that are used
for mainstream mobile and client-side web application development. For in-
stance, the software development toolkits available for today’s popular IoT
development boards – for instance, Arduino, Espruino, Intel’s Edison and
Galileo, and Tessel – provide a choice between C, C#, Java, JavaScript or
Python development.

11



Against all odds, JavaScript and Node.js (the server-side version of
JavaScript) – because of their popularity in web development – are be-
coming central tools for IoT development. This is rather unfortunate, since
JavaScript was not originally designed for writing asynchronous, distributed
applications, or for programming-in-the-large more broadly. In recent years,
the expression ”callback hell” was popularized in the context of JavaScript
to characterize situations in which application logic becomes impossible to
follow because of asynchronous function calls and the separate event handler
functions that are used for writing the success and error handler routines
(see, e.g., http://callbackhell.com/). The Promise mechanism added in
the ECMAScript 6 standard alleviates this problem, but nevertheless it is
fair to say that JavaScript is hardly an optimal development language for
any distributed software system.

The currently popular IoT development languages do not really address
the programming-in-the-large aspects either, i.e., they do not provide any
facilities for orchestrating systems that consists of thousands of devices, or
mechanisms that would allow code to be flexibly migrated between the cloud,
gateways and IoT devices.

The dynamic nature of IoT systems poses additional challenges.
Software development has generally become much more agile and dynamic
in the past 10-15 years. Most applications are connected to backend services
nowadays. Dynamic programming languages such as JavaScript and Python
have gained popularity. The emergence of the World Wide Web has enabled
instant worldwide software deployment. Developers expect to be able to
push updates to their applications on a dramatically faster pace than ten
years ago – often even several times a day. The DevOps development and
deployment model [18] has largely replaced earlier practices in automating
the process of software delivery and infrastructure.

While these advances have been largely beneficial to the software indus-
try, the extremely dynamic nature of IoT system poses additional challenges.
For instance, debugging and testing of IoT systems can be very challenging
because of the large number of devices, dynamic topologies, unreliable con-
nectivity, and heterogeneous and sometimes invisible nature of the devices.

Although individual IoT devices may have very limited data collection
functionality and thus be reasonably easy to test, the testing of an entire
system consisting of hundreds or thousands of IoT devices deployed in com-
plex real-world environments (in factories, malls, greenhouses, ships, and so
on) can be very challenging. Debugging and testing become even more com-
plicated if the system has features that allow the system to self-adjust and
balance (trade off) computation speed, network latency and device battery
consumption by migrating computations dynamically between the cloud,
gateways and devices. In the presence of such self-adjustment features, the
behavior of the system may not ever be fully repeatable for testing and
debugging purposes.

12



Again, for the developers of distributed or mission-critical software, or
for the developers of process automation systems these are not necessarily
new challenges. However, the vast majority of mobile and client-side web de-
velopers have not faced these kinds of challenges, and thus they are likely to
underestimate the effort and potential problems associated with debugging
and testing.

Looking ahead – while learning from the past. The observa-
tions and challenges above reveal that the emergence of the Programmable
World will require much more than just new hardware development, new
communication protocols and technologies, or new techniques to digest and
analyze massive datasets. To harness the full power of the Programmable
World, new software engineering and development technologies, processes,
methodologies, abstractions and tools will be required. Past experiences and
technologies for the development of distributed systems and mission-critical
software play an important role in avoiding duplicated work and reinventing
the wheel. To a large degree the challenges need to addressed by educating
software developers to realize that IoT development truly is different from
mobile and client-side web application development.

Security. Last but not least, it is obligatory to note that a major chal-
lenge for the realization of the Programmable World vision is security. The
remote management of complex installations of IoT devices in environments
such as factories, power plants or oil rigs is obviously something that re-
quires utmost attention on security. Remote actuation and programming
capabilities can pose very high security risks. Cryptographic protocols for
transport layer security, security certificates, physical isolation, and other
established industry practices play a critical role in this area, but various
interesting technical challenges remain.

6 Putting It All Together

Advances in hardware development and the general availability of powerful
but very inexpensive integrated chips will make it possible to embed con-
nectivity and full-fledged virtual machines and dynamic language runtimes
everywhere, thus leading us to a Programmable World in which everyday
things around us will become universally connected and programmable. We
believe that the future potential of the Programmable World disruption
will be every bit as significant as the mobile application revolution that
was sparked when similar, seemingly subtle hardware advances and small-
footprint virtual machines made it possible to open up mobile phones for
third-party application developers in the early 2000’s.

At the moment, the programming features in IoT systems are provided
mainly in the form of custom apps that are emerging from different manufac-
turers to control equipment that is specific to their ecosystem. For instance,

13



lightbulbs produced by Philips can be controlled with a Philips Hue app,
while GE or Cree provide separate apps for their lighting systems. Corre-
spondingly, air conditioning systems, security systems, home media control
systems and car remote control applications from different manufacturers
all typically require separate apps. The ”separate app for every thing” ap-
proach does not scale well and is bound to be only a temporary solution
until industry-wide standards become available.

We foresee the nature of IoT development changing over the coming
years. At the moment, there are no universal, interoperable software de-
velopment environments that would allow a developer to effortlessly write
a single IoT application that would be capable of running on all types of
devices, let alone orchestrate and manage large, complex topologies and
heterogeneous installations of such devices. The lack of such tools reflects
the current immaturity and fragmentation of the IoT market, as well as
the technical limitations of the devices, e.g., constrained CPU power or the
inability to update software without attaching physical cables to the de-
vices. Virtual machines, dynamic language runtimes and liquid software
techniques will play a fundamental role in enabling flexible transfer of com-
putation and data. Traditional binary software and hardware-specific IoT
development kits are at a significant disadvantage if the same code needs to
be executable (or adaptable to execution) on a broad variety of devices.

In this paper we have presented a roadmap for IoT system evolution
from today’s cloud-centric, data-driven IoT systems to systems in which
the edge of the network becomes universally programmable. Furthermore,
we highlighted important software development challenges and implications
that necessitate developer education and deserve deeper investigation above
and beyond those topics that receive the most attention in the IoT area
today. We are excited by the opportunities and challenges presented by the
Programmable World and we hope that this paper – for its part – encourages
people to work hard in this area.

References

[1] R. Stackowiak, A. Licht, V. Mantha, and L. Nagode, Big Data and The
Internet of Things: Enterprise Information Architecture for A New
Age. APress, 2015.

[2] P. Selonen and A. Taivalsaari, “Kiuas: IoT Cloud Environment for
Enabling the Programmable World,” in Proceedings of the 42nd Eu-
romicro Conference on Software Engineering and Advanced Applica-
tions (SEAA’2016, Limassol, Cyprus, August 31 - September 2, 2016).

14



[3] F. Ahmadighohandizi and K. Systä, “Application Development and De-
ployment for IoT Devices,” in 4th Workshop on CLoud for IoT (CLIoT
2016), to appear.

[4] A. Gallidabino, C. Pautasso, V. Ilvonen, T. Mikkonen, K. Systa, J.-
P. Voutilainen, and A. Taivalsaari, “On the Architecture of Liquid
Software: Technology Alternatives and Design Space,” in 13th Work-
ing IEEE/IFIP Conference on Software Architecture (WICSA 2016),
Venice, Italy, April 2016.

[5] J. Miranda, N. Mäkitalo, J. Garcia-Alonso, J. Berrocal, T. Mikkonen,
C. Canal, and J. M. Murillo, “From the Internet of Things to the In-
ternet of People,” IEEE Internet Computing, vol. 19, no. 2, pp. 40–47,
2015.

[6] Postscapes, “A Brief History of the Internet of Things,” 2014. [Online].
Available: http://postscapes.com/internet-of-things-history

[7] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Communications Surveys & Tuto-
rials, vol. 17, no. 4, pp. 2347–2376, 2015.

[8] G. Moore, Crossing the Chasm: Marketing and Selling Disruptive Prod-
ucts to Mainstream Customers, 3rd Edition. HarperBusiness, January
2014.

[9] O. Said and M. Masud, “Towards Internet of Things: Survey and Future
Vision,” International Journal of Computer Networks, vol. 5, no. 1, pp.
1–17, 2013.

[10] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A Vision, Architectural Elements, and Future Direc-
tions,” Future Generation Computer Systems, vol. 29, no. 7, pp. 1645–
1660, 2013.

[11] B. Wasik, “In the Programmable World, All Our Objects Will Act
as One,” Wired, 2013. [Online]. Available: http://www.wired.com/
gadgetlab/2013/05/internet-of-things/all

[12] R. Riggs, A. Taivalsaari, and M. VandenBrink, Programming Wireless
Devices with the Java 2 Platform, Micro Edition. Pearson Education,
Java Series, 2001.

[13] S. Greengard, The Internet of Things. MIT Press, 2015.

[14] N. Balani, Enterprise IoT: A Definitive Handbook. CreateSpace Inde-
pendent Publishing, 2015.

15



[15] D. Ingalls, K. Palacz, S. Uhler, A. Taivalsaari, and T. Mikkonen,
“The Lively Kernel: A Self-Supporting System on a Web Page,” in
Self-Sustaining Systems (S3’2008, Potsdam, Germany). Springer
LNCS5146, 2008, pp. 31–50.

[16] A. Rotem-Gal-Oz, “Fallacies of Distributed Computing Ex-
plained,” http://www.rgoarchitects.com/Files/fallacies.pdf,
[Online; accessed 20-April-2016].

[17] J.-C. Laprie, “Dependable Computing: Concepts, Limits, Challenges,”
in Proceedings of the 25th IEEE International Symposium on Fault-
Tolerant Computing. IEEE, 1995, pp. 42–54.

[18] P. Debois, “Devops: A Software Revolution in the Making,” Journal of
Information Technology Management, vol. 24, no. 8, pp. 3–39, 2011.

16


