Can we drive malaria away with gene drives?

The dreadful effects of malaria need no recalling. One strategy to counter it is by creating mutant mosquitoes that are resistant to the parasites. However, the bottleneck has always been to ensure that the mutant mosquitoes should also spread in the wild population rapidly. Gantz et. al. [1] exploited the genome editing power of CRISPR to create a method for mutagenic chain reaction (MCR) [2] in mosquitoes. MCR technology allows us to create homozygous loss-of-function mutations in the germ line of the host organism that spreads rapidly through its offspring. Inserting mutations in two genes that cause resistance to the malarial parasite, the authors engineered a gene drive that passed on the modified homozygous genes to 99% of their offspring. Gene drives based on CRISPR-Cas9 have the potential to rapidly spread through the wild population. However, a lot of work is still required to assess its stability when introduced in a gene pool and developing human regulatory control before the powerful technology can be taken out of the lab.

  1. Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci U S A. 2015 Dec 8; 112(49):E6736-43.
  2. Gantz VM, Bier E. Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science. 2015 Apr 24;348(6233):442-4.

Leave a Reply

Your email address will not be published. Required fields are marked *