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Brief Overview of the Course  

Economics suggests important relationships, often with policy 

implications, but virtually never suggests quantitative 

magnitudes of causal effects. 

 What is the quantitative effect of reducing class size on 

student achievement? 

 How does another year of education change earnings? 

 What is the price elasticity of cigarettes? 

 What is the effect on output growth of a 1 percentage point 

increase in interest rates by the Fed? 

 What is the effect on housing prices of environmental 

improvements? 
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This course is about using data to 

measure causal effects.  

 Ideally, we would like an experiment 

 what would be an experiment to estimate the effect of 

class size on standardized test scores? 

 But almost always we only have observational 

(nonexperimental) data. 

 returns to education 

 cigarette prices 

 monetary policy 

 Most of the course deals with difficulties arising from using 

observational to estimate causal effects 

 confounding effects (omitted factors) 

 simultaneous causality 

 “correlation does not imply causation”  
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In this course you will:  

 Learn methods for estimating causal effects using 

observational data 

 Learn some tools that can be used for other purposes, for 

example forecasting using time series data; 

 Focus on applications – theory is used only as needed to 

understand the “why”s of the methods; 

 Learn to evaluate the regression analysis of others – this 

means you will be able to read/understand empirical 

economics papers in other econ courses; 

 Get some hands-on experience with regression analysis in 

your problem sets. 
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Review of Probability and Statistics 

(SW Chapters 2, 3)  

Empirical problem:  Class size and educational output 

 

 Policy question:  What is the effect on test scores (or some 

other outcome measure) of reducing class size by one student 

per class?  By 8 students/class? 

 We must use data to find out (is there any way to answer this 

without data?) 
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The California Test Score Data Set  

All K-6 and K-8 California school districts (n = 420) 

 

Variables: 

 5PthP grade test scores (Stanford-9 achievement test, 

combined math and reading), district average 

 Student-teacher ratio (STR) = no. of students in the district 

divided by no. full-time equivalent teachers 
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Initial look at the data: 

(You should already know how to interpret this table)  

 This table doesn’t tell us anything about the 

relationship between test scores and the STR.  
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Do districts with smaller classes have  

higher test scores?  

Scatterplot of test score v. student-teacher ratio  

What does this figure show?  
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We need to get some numerical evidence on 
whether districts with low STRs have higher 
test scores – but how?  

1. Compare average test scores in districts with low STRs to 

those with high STRs (“estimation”) 

 

2. Test the “null” hypothesis that the mean test scores in the 

two types of districts are the same, against the 

“alternative” hypothesis that they differ (“hypothesis 

testing”) 

 

3. Estimate an interval for the difference in the mean test 

scores, high v. low STR districts (“confidence interval”) 
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Initial data analysis: Compare districts with 
“small” (STR < 20) and “large” (STR ≥ 20) 
class sizes:  

1. Estimation of  = difference between group 

means 

2. Test the hypothesis that   = 0 

3. Construct a confidence interval for  

Y

Class Size Average score  

(   ) 

Standard 

deviation 
(sBYB) 

n 

Small 657.4 19.4 238 

Large 650.0 17.9 182 
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1.  Estimation  

small largeY Y  = 
small

1small

1 n

i

i

Y
n 

  – 
large

1large

1
n

i

i

Y
n 

  

= 657.4 – 650.0  

= 7.4 

 

Is this a large difference in a real-world sense? 

 Standard deviation across districts = 19.1 

 Difference between 60
th

 and 75
th

 percentiles of test score 

distribution is 667.6 – 659.4 = 8.2 

 This is a big enough difference to be important for school 

reform discussions, for parents, or for a school committee? 
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2.  Hypothesis testing  

Difference-in-means test:  compute the t-statistic, 

 

2 2 ( )s l

s l

s l s l

s s
s l

n n

Y Y Y Y
t

SE Y Y

 
 


  (remember this?) 

 

where SE( sY  – lY ) is the “standard error” of sY  – lY , the 

subscripts s and l refer to “small” and “large” STR districts, and 

2 2

1

1
( )

1

sn

s i s

is

s Y Y
n 

 

  (etc.) 
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Compute the difference-of-means  

t-statistic:  

 

Size Y  sBYB n 

small 657.4 19.4 238 

large 650.0 17.9 182 

 

2 2 2 219.4 17.9

238 182

657.4 650.0 7.4

1.83s l

s l

s l

s s

n n

Y Y
t

 
  

 
 = 4.05 

 

|t| > 1.96, so reject (at the 5% significance level) the null 

hypothesis that the two means are the same. 
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3.  Confidence interval  

A 95% confidence interval for the difference between the means 

is, 

 

( sY  – lY )   1.96 SE( sY  – lY ) 

     = 7.4   1.96 1.83 = (3.8, 11.0) 

Two equivalent statements: 

1. The 95% confidence interval for  doesn’t include 0; 

2. The hypothesis that  = 0 is rejected at the 5% level.  
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What comes next…  

 The mechanics of estimation, hypothesis testing, and 

confidence intervals should be familiar 

 These concepts extend directly to regression and its variants 

 Before turning to regression, however, we will review some 

of the underlying theory of estimation, hypothesis testing, 

and confidence intervals: 

 Why do these procedures work, and why use these rather 

than others? 

 So we will review the intellectual foundations of statistics 

and econometrics 
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Review of Statistical Theory  

1. The probability framework for statistical inference 

2. Estimation 

3. Testing 

4. Confidence Intervals 

 

The probability framework for statistical inference 

(a) Population, random variable, and distribution 

(b) Moments of a distribution (mean, variance, standard 

deviation, covariance, correlation) 

(c) Conditional distributions and conditional means 

(d) Distribution of a sample of data drawn randomly from a 

population: Y1,…, Yn 
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(a) Population, random variable, and 

distribution  

Population 

 The group or collection of all possible entities of interest 

(school districts) 

 We will think of populations as infinitely large (  is an 

approximation to “very big”) 

 

Random variable Y 

 Numerical summary of a random outcome (district average 

test score, district STR) 
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Population distribution of Y  

 The probabilities of different values of Y that occur in the 

population, for ex. Pr[Y = 650]  (when Y is discrete) 

 or: The probabilities of sets of these values, for ex.  

Pr[640   Y   660] (when Y is continuous). 
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(b) Moments of a population distribution: 
mean, variance, standard deviation, 
covariance, correlation 

mean  = expected value (expectation) of Y 

= E(Y)  

= Y  

= long-run average value of Y over repeated 

       realizations of Y 

variance = E(Y – Y)
2
  

= 2

Y   

= measure of the squared spread of the 

   distribution 

standard deviation = variance  = Y 
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Moments, ctd.  

skewness = 
 

3

3

Y

Y

E Y 



 
   

   = measure of asymmetry of a distribution 

 skewness = 0: distribution is symmetric 

 skewness > (<) 0: distribution has long right (left) tail 

 

kurtosis =  
 

4

4

Y

Y

E Y 



 
 

 

   = measure of mass in tails 

   = measure of probability of large values 

 kurtosis = 3: normal distribution 

 skewness > 3: heavy tails (“leptokurtotic”) 
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2 random variables: joint 

distributions and covariance  

 Random variables X and Z have a joint distribution 

 The covariance between X and Z is 

cov(X,Z) = E[(X – X)(Z – Z)] = XZ 

 

 The covariance is a measure of the linear association between 

X and Z; its units are units of X  units of Z 

 cov(X,Z) > 0 means a positive relation between X and Z 

 If X and Z are independently distributed, then cov(X,Z) = 0 (but 

not vice versa!!) 

 The covariance of a r.v. with itself is its variance: 

 cov(X,X) = E[(X – X)(X – X)] = E[(X – X)
2
] = 2

X  
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so is the correlation…  

The covariance between Test Score 

and STR is negative:  
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The correlation coefficient is 

defined in terms of the covariance:  

 

corr(X,Z) = 
cov( , )

var( ) var( )

XZ

X Z

X Z

X Z



 
  = rXZ 

 

 –1  corr(X,Z)  1 

 corr(X,Z) = 1 mean perfect positive linear association 

 corr(X,Z) = –1 means perfect negative linear association 

 corr(X,Z) = 0 means no linear association 
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The correlation 
coefficient 
measures 
linear 
association  
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(c)  Conditional distributions and 

conditional means  

Conditional distributions 

 The distribution of Y, given value(s) of some other random 

variable, X 

 Ex: the distribution of test scores, given that STR < 20 

Conditional expectations and conditional moments 

 conditional mean = mean of conditional distribution  

= E(Y|X = x)  (important concept and notation) 

 conditional variance = variance of conditional distribution 

 Example:  E(Test scores|STR < 20) = the mean of test scores 

among districts with small class sizes 

The difference in means is the difference between the means of 

two conditional distributions: 
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Conditional mean, ctd.  

 = E(Test scores|STR < 20) – E(Test scores|STR ≥ 20) 

 

Other examples of conditional means: 

 Wages of all female workers (Y = wages, X = gender) 

 Mortality rate of those given an experimental treatment (Y = 

live/die; X = treated/not treated) 

 If E(X|Z) = const, then corr(X,Z) = 0 (not necessarily vice 

versa however) 

The conditional mean is a (possibly new) term for the familiar 

idea of the group mean  
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(d)  Distribution of a sample of data drawn 

randomly from a population: Y1,…, Yn 

We will assume simple random sampling 

 Choose and individual (district, entity) at random from the 

population 

Randomness and data 

 Prior to sample selection, the value of Y is random because 

the individual selected is random 

 Once the individual is selected and the value of Y is 

observed, then Y is just a number – not random 

 The data set is (Y1, Y2,…, Yn), where Yi = value of Y for the i
th

 

individual (district, entity) sampled 
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Distribution of Y1,…, Yn under 

simple random sampling  
 Because individuals #1 and #2 are selected at random, the 

value of Y1 has no information content for Y2.  Thus: 

 Y1 and Y2 are independently distributed 

 Y1 and Y2 come from the same distribution, that is, Y1, Y2 

are identically distributed 

 That is, under simple random sampling, Y1 and Y2 are 

independently and identically distributed (i.i.d.). 

 More generally, under simple random sampling, {Yi},  

i = 1,…, n, are i.i.d. 

 

This framework allows rigorous statistical inferences about 

moments of population distributions using a sample of data 

from that population … 
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1. The probability framework for statistical inference 

2. Estimation 

3. Testing 

4. Confidence Intervals 

 

Estimation 

Y  is the natural estimator of the mean.  But: 

(a) What are the properties of Y ? 

(b) Why should we use Y  rather than some other estimator? 

 Y1 (the first observation) 

 maybe unequal weights – not simple average 

 median(Y1,…, Yn) 

The starting point is the sampling distribution of Y … 
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(a) The sampling distribution of  Y
Y  is a random variable, and its properties are determined by the 

sampling distribution of Y  

 The individuals in the sample are drawn at random. 

 Thus the values of (Y1,…, Yn) are random 

 Thus functions of (Y1,…, Yn), such as Y , are random:  had a 

different sample been drawn, they would have taken on a 

different value 

 The distribution of Y  over different possible samples of size 

n is called the sampling distribution of Y . 

 The mean and variance of Y  are the mean and variance of its 

sampling distribution, E(Y ) and var(Y ). 

 The concept of the sampling distribution underpins all of 

econometrics. 
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The sampling distribution of    , ctd.  Y

Example:  Suppose Y takes on 0 or 1 (a Bernoulli random 

variable) with the probability distribution, 

Pr[Y = 0] = .22, Pr(Y =1) = .78 

Then  

E(Y) = p1 + (1 – p)0 = p = .78 
2

Y  = E[Y – E(Y)]
2
 = p(1 – p)  [remember this?] 

= .78 (1–.78) = 0.1716 

The sampling distribution of Y  depends on n. 

Consider n = 2.  The sampling distribution of Y  is,  

Pr(Y  = 0) = .22
2
 = .0484 

Pr(Y  = ½) =  2.22.78 = .3432 

Pr(Y  = 1) = .78
2
 = .6084 
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The sampling distribution of    when Y is Bernoulli 

(p = .78):  

Y
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Things we want to know about the 

sampling distribution:  

 What is the mean of Y ? 

 If E(Y ) = true  = .78, then Y  is an unbiased estimator of 

 

 What is the variance of Y ? 

 How does var(Y ) depend on n (famous 1/n formula) 

 Does Y  become close to  when n is large? 

 Law of large numbers: Y  is a consistent estimator of  

 Y  –  appears bell shaped for n large…is this generally true? 

 In fact, Y  –  is approximately normally distributed for n 

large (Central Limit Theorem) 
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The mean and variance of the 

sampling distribution of  Y
General case – that is, for Yi i.i.d. from any distribution, not just 

Bernoulli: 

mean:  E(Y ) = E(
1

1 n

i

i

Y
n 

 ) = 
1

1
( )

n

i

i

E Y
n 

  = 
1

1 n

Y

in




  = Y 

 

Variance:     var(Y ) = E[Y  – E(Y )]
2
  

= E[Y  – Y]
2
 

      = E

2

1

1 n

i Y

i

Y
n




  
  

  
   

= E

2

1

1
( )

n

i Y

i

Y
n
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so       var(Y ) = E

2

1

1
( )

n

i Y

i

Y
n




 
 

 
  

= 
1 1

1 1
( ) ( )

n n

i Y j Y

i j

E Y Y
n n

 
 

    
     

    
   

= 
2

1 1

1
( )( )

n n

i Y j Y

i j

E Y Y
n

 
 

     

= 
2

1 1

1
cov( , )

n n

i j

i j

Y Y
n  

  

= 2

2
1

1 n

Y

in




  

= 
2

Y

n
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Mean and variance of sampling 

distribution of    , ctd.   

       E(Y ) = Y  

 var(Y ) = 
2

Y

n


 

 

Implications: 

1. Y  is an unbiased estimator of Y (that is, E(Y ) = Y) 

2. var(Y ) is inversely proportional to n 

 the spread of the sampling distribution is proportional 

to 1/ n  

 Thus the sampling uncertainty associated with Y  is 

proportional to 1/ n  (larger samples, less uncertainty, 

but square-root law) 
 

Y
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The sampling distribution of    when 

n is large  

Y

For small sample sizes, the distribution of Y  is complicated, but 

if n is large, the sampling distribution is simple! 

1. As n increases, the distribution of Y  becomes more tightly 

centered around Y (the Law of Large Numbers) 

2. Moreover, the distribution of Y – Y becomes normal (the 

Central Limit Theorem) 
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The Law of Large Numbers:  

An estimator is consistent if the probability that its falls 

within an interval of the true population value tends to one as 

the sample size increases. 

If (Y1,…,Yn) are i.i.d. and 2

Y  <  , then Y  is a consistent 

estimator of Y, that is, 

Pr[|Y  – Y| < ]  1 as n    

which can be written, Y  
p

 Y   

(“Y  
p

 Y”  means “Y  converges in probability to Y”). 

(the math:  as n   , var(Y ) = 
2

Y

n


  0, which implies that 

Pr[|Y  – Y| < ]  1.) 
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The Central Limit Theorem (CLT):  

If (Y1,…,Yn) are i.i.d. and 0 < 2

Y  <  , then when n is large 

the distribution of Y  is well approximated by a normal 

distribution. 

 Y  is approximately distributed N(Y, 
2

Y

n


) (“normal 

distribution with mean Y and variance 2

Y /n”) 

 n (Y  – Y)/Y is approximately distributed N(0,1) (standard 

normal) 

 That is, “standardized” Y  = 
( )

var( )

Y E Y

Y


 = 

/

Y

Y

Y

n






 is 

approximately distributed as N(0,1) 

 The larger is n, the better is the approximation. 
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Sampling distribution of     when Y 

is Bernoulli, p = 0.78:  

Y
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Same example:  sampling distribution of               : 
( )

var( )

Y E Y

Y
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Summary:  The Sampling 

Distribution of    Y
For Y1,…,Yn i.i.d. with 0 < 2

Y  <  , 

 The exact (finite sample) sampling distribution of Y  has 

mean Y (“Y  is an unbiased estimator of Y”) and variance 
2

Y /n 

 Other than its mean and variance, the exact distribution of Y  

is complicated and depends on the distribution of Y (the 

population distribution) 

 When n is large, the sampling distribution simplifies: 

  Y  
p

 Y   (Law of large numbers) 

   
( )

var( )

Y E Y

Y


 is approximately N(0,1)  (CLT) 

 



44 

(b) Why Use     To Estimate Y?  Y
 Y  is unbiased: E(Y ) = Y 

 Y  is consistent: Y  
p

 Y 

 Y  is the “least squares” estimator of Y; Y  solves, 

2

1

min ( )
n

m i

i

Y m


  

so, Y  minimizes the sum of squared “residuals” 

optional derivation (also see App. 3.2) 

2

1

( )
n

i

i

d
Y m

dm 

  = 2

1

( )
n

i

i

d
Y m

dm

  = 
1

2 ( )
n

i

i

Y m


  

Set derivative to zero and denote optimal value of m by m̂: 

1

n

i

Y


  = 
1

ˆ
n

i

m


  = ˆnm or m̂ = 
1

1 n

i

i

Y
n 

  = Y  
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Why Use    To Estimate Y?, ctd. Y

 Y  has a smaller variance than all other linear unbiased 

estimators:  consider the estimator, 
1

1
ˆ

n

Y i i

i

a Y
n




  , where 

{ai} are such that ˆ
Y  is unbiased; then var(Y )   var( ˆ

Y ) 

(proof: SW, Ch. 17) 

 Y  isn’t the only estimator of Y – can you think of a time 

you might want to use the median instead? 
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1. The probability framework for statistical inference 

2. Estimation 

3. Hypothesis Testing 

4. Confidence intervals 
 
Hypothesis Testing 

The hypothesis testing problem (for the mean):  make a 

provisional decision, based on the evidence at hand, whether a 

null hypothesis is true, or instead that some alternative 

hypothesis is true.  That is, test  

H0: E(Y) = Y,0 vs. H1: E(Y) > Y,0 (1-sided, >) 

H0: E(Y) = Y,0 vs. H1: E(Y) < Y,0 (1-sided, <) 

H0: E(Y) = Y,0 vs. H1: E(Y)  Y,0 (2-sided) 
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Some terminology for testing statistical hypotheses: 

p-value = probability of drawing a statistic (e.g. Y ) at least as 

adverse to the null as the value actually computed with your 

data, assuming that the null hypothesis is true.  

 

The significance level of a test is a pre-specified probability of 

incorrectly rejecting the null, when the null is true. 

 

Calculating the p-value based on Y : 

 

 p-value = 
0 ,0 ,0Pr [| | | |]act

H Y YY Y        

 

where actY  is the value of Y  actually observed (nonrandom)  
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Calculating the p-value, ctd.  
 To compute the p-value, you need the to know the sampling 

distribution of Y , which is complicated if n is small. 

 If n is large, you can use the normal approximation (CLT): 

 

p-value = 
0 ,0 ,0Pr [| | | |]act

H Y YY Y    ,  

    = 
0

,0 ,0
Pr [| | | |]

/ /

act

Y Y

H

Y Y

Y Y

n n

 

 

 
  

    = 
0

,0 ,0
Pr [| | | |]

act

Y Y

H

Y Y

Y Y 

 

 
  

      probability under left+right N(0,1) tails 

where 
Y

  = std. dev. of the distribution of Y  = Y/ n . 
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Calculating the p-value with Y known:  

 For large n, p-value = the probability that a N(0,1) random 

variable falls outside |( actY – Y,0)/ Y
 | 

 In practice, 
Y

  is unknown – it must be estimated 
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Estimator of the variance of Y:  

2

Ys  = 2

1

1
( )

1

n

i

i

Y Y
n 



  = “sample variance of Y” 

Fact:   

If (Y1,…,Yn) are i.i.d. and E(Y
4
) <  , then 2

Ys  
p

 2

Y  

 

Why does the law of large numbers apply? 

 Because 2

Ys  is a sample average; see Appendix 3.3 

 Technical note: we assume E(Y
4
) <   because here the 

average is not of Yi, but of its square; see App. 3.3 
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Computing the p-value with       estimated: 
2

Y

p-value = 
0 ,0 ,0Pr [| | | |]act

H Y YY Y    ,  

      = 
0

,0 ,0
Pr [| | | |]

/ /

act

Y Y

H

Y Y

Y Y

n n

 

 

 
  

        
0

,0 ,0
Pr [| | | |]

/ /

act

Y Y

H

Y Y

Y Y

s n s n

  
   (large n) 

so  

      p-value = 
0

Pr [| | | |]act

H t t      ( 2

Y  estimated)    

     probability under normal tails outside |t
act

| 

where t = 
,0

/

Y

Y

Y

s n


 (the usual t-statistic) 
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What is the link between the p-value 

and the significance level?  

The significance level is prespecified.  For example, if the 

prespecified significance level is 5%, 

 you reject the null hypothesis if |t|   1.96 

 equivalently, you reject if p   0.05. 

 The p-value is sometimes called the marginal significance 

level. 

 Often, it is better to communicate the p-value than simply 

whether a test rejects or not – the p-value contains more 

information than the “yes/no” statement about whether the 

test rejects. 
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What happened to the t-table and the degrees of freedom? 

 

Digression: the Student t distribution 

If Yi, i = 1,…, n is i.i.d. N(Y, 2

Y ), then the t-statistic has the 

Student t-distribution with n – 1 degrees of freedom. 

The critical values of the Student t-distribution is tabulated in the 

back of all statistics books.  Remember the recipe? 

1. Compute the t-statistic 

2. Compute the degrees of freedom, which is n – 1 

3. Look up the 5% critical value 

4. If the t-statistic exceeds (in absolute value) this critical 

value, reject the null hypothesis. 
 

At this point, you might be wondering,...  
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Comments on this recipe and the 

Student t-distribution  

1. The theory of the t-distribution was one of the early triumphs 

of mathematical statistics.  It is astounding, really:  if Y is i.i.d. 

normal, then you can know the exact, finite-sample 

distribution of the t-statistic – it is the Student t.  So, you can 

construct confidence intervals (using the Student t critical 

value) that have exactly the right coverage rate, no matter 

what the sample size.  This result was really useful in times 

when “computer” was a job title, data collection was 

expensive, and the number of observations was perhaps a 

dozen.  It is also a conceptually beautiful result, and the math 

is beautiful too – which is probably why stats profs love to 

teach the t-distribution.  But…. 
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Comments on Student t distribution, ctd.  

2. If the sample size is moderate (several dozen) or large 

(hundreds or more), the difference between the t-distribution 

and N(0,1) critical values are negligible.  Here are some 5% 

critical values for 2-sided tests: 

 

degrees of freedom 

(n – 1) 

5% t-distribution 

critical value 

10 2.23 

20 2.09 

30 2.04 

60 2.00 

 1.96 
 



56 

Comments on Student t 

distribution, ctd.  

3. So, the Student-t distribution is only relevant when the 

sample size is very small; but in that case, for it to be correct, 

you must be sure that the population distribution of Y is 

normal.  In economic data, the normality assumption is 

rarely credible.  Here are the distributions of some economic 

data.  

 Do you think earnings are normally distributed? 

 Suppose you have a sample of n = 10 observations from 

one of these distributions – would you feel comfortable 

using the Student t distribution? 
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Comments on Student t distribution, ctd.  

4. You might not know this.  Consider the t-statistic testing the 

hypothesis that two means (groups s, l) are equal: 

2 2 ( )s l

s l

s l s l

s s
s l

n n

Y Y Y Y
t

SE Y Y

 
 


 

Even if the population distribution of Y in the two groups is 

normal, this statistic doesn’t have a Student t distribution! 

There is a statistic testing this hypothesis that has a 

normal distribution, the “pooled variance” t-statistic – see 

SW (Section 3.6) – however the pooled variance t-statistic is 

only valid if the variances of the normal distributions are the 

same in the two groups.  Would you expect this to be true, 

say, for men’s v. women’s wages? 
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The Student-t distribution – summary  

 The assumption that Y is distributed N(Y, 2

Y ) is rarely 

plausible in practice (income?  number of children?) 

 For n > 30, the t-distribution and N(0,1) are very close (as n 

grows large, the tn–1 distribution converges to N(0,1))  

 The t-distribution is an artifact from days when sample sizes 

were small and “computers” were people 

 For historical reasons, statistical software typically uses the 

t-distribution to compute p-values – but this is irrelevant 

when the sample size is moderate or large. 

 For these reasons, in this class we will focus on the large-n 

approximation given by the CLT  
 



60 

1. The probability framework for statistical inference 

2. Estimation 

3. Testing 

4. Confidence intervals 

 

Confidence Intervals 

A 95% confidence interval for Y is an interval that contains the 

true value of Y in 95% of repeated samples. 

 

Digression: What is random here?  The values of Y1,…,Yn and 

thus any functions of them – including the confidence interval.  

The confidence interval it will differ from one sample to the next.  

The population parameter, Y, is not random, we just don’t know 

it. 
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Confidence intervals, ctd.  

A 95% confidence interval can always be constructed as the set of 

values of Y not rejected by a hypothesis test with a 5% 

significance level. 

{Y:  
/

Y

Y

Y

s n


   1.96} = {Y: –1.96   

/

Y

Y

Y

s n


   1.96} 

= {Y: –1.96 Ys

n
   Y  – Y   1.96 Ys

n
} 

= {Y  (Y  – 1.96 Ys

n
 , Y  + 1.96 Ys

n
)} 

This confidence interval relies on the large-n results that Y  is 

approximately normally distributed and 2

Ys  
p

 2

Y .
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Summary:  

From the two assumptions of: 

(1) simple random sampling of a population, that is, 

{Yi, i =1,…,n} are i.i.d. 

(2) 0 < E(Y
4
) <   

we developed, for large samples (large n): 

 Theory of estimation (sampling distribution of Y )  

 Theory of hypothesis testing (large-n distribution of t-

statistic and computation of the p-value) 

 Theory of confidence intervals (constructed by inverting test 

statistic) 

Are assumptions (1) & (2) plausible in practice?  Yes 
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Let’s go back to the original policy 

question:  

What is the effect on test scores of reducing STR by one 

student/class?   

Have we answered this question? 


