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One Regression 
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Linear Regression with One Regressor 
(SW Chapter 4) 

 Linear regression allows us to estimate, and make 

inferences about, population slope coefficients.  

Ultimately our aim is to estimate the causal effect 

on Y of a unit change in X – but for now, just think 

of the problem of fitting a straight line to data on 

two variables, Y and X.  
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 Estimation: 

 How should we draw a line through the data to estimate the 

(population) slope (answer: ordinary least squares). 

 What are advantages and disadvantages of OLS? 

 Hypothesis testing: 

 How to test if the slope is zero? 

 Confidence intervals: 

 How to construct a confidence interval for the slope?  

The problems of statistical inference for linear regression 

are, at a general level, the same as for estimation of the 

mean or of the differences between two means.  Statistical, 

or econometric, inference about the slope entails: 

 



4 

Linear Regression: Some Notation  
and Terminology 
(SW Section 4.1)  
The population regression line:  

 

Test Score = 0 + 1STR 

 

1 = slope of population regression line  

= 
Test score

STR




  

= change in test score for a unit change in STR 

 Why are 0 and 1 “population” parameters? 

 We would like to know the population value of 1. 

 We don’t know 1, so must estimate it using data. 
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The Population Linear Regression 

Model – general notation  

  Yi = 0 + 1Xi + ui, i = 1,…, n 
 

 X is the independent variable or regressor 

 Y is the dependent variable 

 0 = intercept 

 1 = slope 

 ui = the regression error  

 The regression error consists of omitted factors, or possibly 

measurement error in the measurement of Y.  In general, 

these omitted factors are other factors that influence Y, other 

than the variable X 
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This terminology in a picture: Observations 
on Y and X; the population regression line; 
and the regression error (the “error term”):  
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The Ordinary Least Squares Estimator 

(SW Section 4.2)  

How can we estimate 0 and 1 from data? 

Recall that Y  was the least squares estimator of Y: Y  solves, 

2
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By analogy, we will focus on the least squares (“ordinary least 

squares” or “OLS”) estimator of the unknown parameters 0 

and 1, which solves, 
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Mechanics of OLS  

The population regression line:  Test Score = 0 + 1STR 

 

1 = 
Test score

STR




 = ?? 
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The OLS estimator solves:  
0 1

2

, 0 1

1

min [ ( )]
n

b b i i

i

Y b b X


 

 The OLS estimator minimizes the average squared difference 

between the actual values of Yi and the prediction (“predicted 

value”) based on the estimated line.  

 This minimization problem can be solved using calculus (App. 

4.2). 

 The result is the OLS estimators of 0 and 1. 
 



10 



11 

Application to the California Test 

Score – Class Size data  

Estimated slope  = 1̂  = – 2.28 

Estimated intercept = 0̂  = 698.9 

Estimated regression line: TestScore = 698.9 – 2.28 STR 
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Interpretation of the estimated slope 
and intercept  

TestScore = 698.9 – 2.28 STR 

 Districts with one more student per teacher on average have 

test scores that are 2.28 points lower. 

 That is, 
Test score

STR




 = –2.28 

 The intercept (taken literally) means that, according to this 

estimated line, districts with zero students per teacher would 

have a (predicted) test score of 698.9. 

 This interpretation of the intercept makes no sense – it 

extrapolates the line outside the range of the data – here, the 

intercept is not economically meaningful. 
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Predicted values & residuals:  

One of the districts in the data set is Antelope, CA, for which 

STR = 19.33 and Test Score = 657.8 

predicted value:  ˆ
AntelopeY  = 698.9 – 2.28 19.33 = 654.8 

residual:    ˆ
Antelopeu  = 657.8 – 654.8 = 3.0 
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OLS regression:  STATA output  

regress testscr str, robust 

 

Regression with robust standard errors            Number of obs =     420 

                                                  F(  1,   418) =   19.26 

                                                  Prob > F      =  0.0000 

                                                  R-squared     =  0.0512 

                                                  Root MSE      =  18.581 

 

------------------------------------------------------------------------- 

        |               Robust 

testscr |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

--------+---------------------------------------------------------------- 

    str |  -2.279808   .5194892    -4.39   0.000    -3.300945   -1.258671 

  _cons |    698.933   10.36436    67.44   0.000     678.5602    719.3057 

------------------------------------------------------------------------- 

 

TestScore = 698.9 – 2.28 STR  

 

(we’ll discuss the rest of this output later) 
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Measures of Fit 

(Section 4.3)  

A natural question is how well the regression line “fits” or 

explains the data.  There are two regression statistics that provide 

complementary measures of the quality of fit: 

 

 The regression R
2
 measures the fraction of the variance of Y 

that is explained by X; it is unitless and ranges between zero 

(no fit) and one (perfect fit) 

 

 The standard error of the regression (SER) measures the 

magnitude of a typical regression residual in the units of Y. 
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The regression R
2
 is the fraction of the sample variance of Yi 

“explained” by the regression. 

Yi = ˆ
iY  + ˆ

iu   = OLS prediction + OLS residual 

 sample var (Y) = sample var( ˆ
iY ) + sample var( ˆ

iu ) (why?) 

 total sum of squares = “explained” SS + “residual” SS 

Definition of R
2
:   R

2
 = 

ESS

TSS
 = 

2

1

2

1

ˆ ˆ( )

( )

n

i

i

n

i

i

Y Y

Y Y












 

 R2
 = 0 means ESS = 0 

 R2
 = 1 means ESS = TSS 

 0 ≤ R
2
 ≤ 1 

 For regression with a single X, R
2
 = the square of the 

correlation coefficient between X and Y 
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The Standard Error of the 

Regression (SER)  

The SER measures the spread of the distribution of u.  The SER 

is (almost) the sample standard deviation of the OLS residuals: 

SER = 2

1
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(the second equality holds because û  = 
1

1
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u
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  = 0). 
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SER = 2

1

1
ˆ

2

n

i

i

u
n 

  

The SER: 

 has the units of u, which are the units of Y 

 measures the average “size” of the OLS residual (the average 

“mistake” made by the OLS regression line) 

 The root mean squared error (RMSE) is closely related to the 

SER: 

RMSE = 2

1

1
ˆ

n

i

i

u
n 

  

This measures the same thing as the SER – the minor 

difference is division by 1/n instead of 1/(n–2). 
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Technical note:  why divide by n–2 instead of n–1? 

SER = 2

1

1
ˆ

2

n

i

i

u
n 

  

 

 Division by n–2 is a “degrees of freedom” correction – just like 

division by n–1 in 2

Ys , except that for the SER, two parameters 

have been estimated (0 and 1, by 0̂  and 1̂ ), whereas in 2

Ys  

only one has been estimated (Y, by Y ). 

 When n is large, it makes negligible difference whether n, n–1, 

or n–2 are used – although the conventional formula uses n–2 

when there is a single regressor. 

 For details, see Section 17.4 
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Example of the R2 and the SER  

TestScore = 698.9 – 2.28STR, R
2
 = .05, SER = 18.6 

STR explains only a small fraction of the variation in test scores.  

Does this make sense?  Does this mean the STR is unimportant in 

a policy sense?  
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The Least Squares Assumptions  
(SW Section 4.4) 

What, in a precise sense, are the properties of the OLS 

estimator?  We would like it to be unbiased, and to have a small 

variance.  Does it?  Under what conditions is it an unbiased 

estimator of the true population parameters? 

 

To answer these questions, we need to make some 

assumptions about how Y and X are related to each other, and 

about how they are collected (the sampling scheme) 

 

These assumptions – there are three – are known as the Least 

Squares Assumptions. 
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The Least Squares Assumptions  

     Yi = 0 + 1Xi + ui, i = 1,…, n 

 

1. The conditional distribution of u given X has mean zero, that 

is, E(u|X = x) = 0. 

This implies that 1̂  is unbiased 

2. (Xi,Yi), i =1,…,n, are i.i.d. 

 This is true if X, Y are collected by simple random 

sampling 

 This delivers the sampling distribution of 0̂  and 1̂  

3. Large outliers in X and/or Y are rare. 

 Technically, X and Y have finite fourth moments 

 Outliers can result in meaningless values of 1̂  
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Least squares assumption #1:   

E(u|X = x) = 0.  

Example: Test Scorei = 0 + 1STRi + ui, ui = other factors 

 What are some of these “other factors”? 

 Is E(u|X=x) = 0 plausible for these other factors? 
 

For any given value of X, the mean of u is zero: 
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A benchmark for thinking about this assumption is to consider an 

ideal randomized controlled experiment: 

 X is randomly assigned to people (students randomly assigned 

to different size classes; patients randomly assigned to 

medical treatments).  Randomization is done by computer – 

using no information about the individual. 

 Because X is assigned randomly, all other individual 

characteristics – the things that make up u – are 

independently distributed of X 

 Thus, in an ideal randomized controlled experiment,  

E(u|X = x) = 0 (that is, LSA #1 holds) 

 In actual experiments, or with observational data, we will 

need to think hard about whether E(u|X = x) = 0 holds. 
 

Least squares assumption #1, ctd. 
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Least squares assumption #2: 

(Xi,Yi), i = 1,…,n are i.i.d.  

This arises automatically if the entity (individual, district) is 

sampled by simple random sampling:  the entity is selected then, 

for that entity, X and Y are observed (recorded). 

 

The main place we will encounter non-i.i.d. sampling is when 

data are recorded over time (“time series data”) – this will 

introduce some extra complications. 
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Least squares assumption #3: Large outliers are 

rare Technical statement: E(X4) <  and E(Y4) <   

 A large outlier is an extreme value of X or Y 

 On a technical level, if X and Y are bounded, then they have 

finite fourth moments.  (Standardized test scores 

automatically satisfy this; STR, family income, etc. satisfy 

this too). 

 However, the substance of this assumption is that a large 

outlier can strongly influence the results 
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OLS can be sensitive to an outlier:  

 Is the lone point an outlier in X or Y? 

 In practice, outliers often are data glitches (coding/recording 

problems) – so check your data for outliers!  The easiest way 

is to produce a scatterplot. 
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The Sampling Distribution of the 
OLS Estimator 
(SW Section 4.5)  
The OLS estimator is computed from a sample of data; a 

different sample gives a different value of 
1̂ .  This is the source 

of the “sampling uncertainty” of 1̂ .  We want to: 

 quantify the sampling uncertainty associated with 1̂  

 use 1̂  to test hypotheses such as 1 = 0 

 construct a confidence interval for 1 

 All these require figuring out the sampling distribution of the 

OLS estimator.  Two steps to get there… 

 Probability framework for linear regression 

 Distribution of the OLS estimator 
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Probability Framework for Linear 
Regression  
The probability framework for linear regression is summarized 

by the three least squares assumptions. 

Population 

The group of interest (ex:  all possible school districts) 

Random variables: Y, X 

 Ex:  (Test Score, STR) 

Joint distribution of (Y, X) 

The population regression function is linear 

E(u|X) = 0 (1
st
 Least Squares Assumption) 

X, Y have finite fourth moments (3
rd

 L.S.A.) 

Data Collection by simple random sampling: 

{(Xi, Yi)}, i = 1,…, n, are i.i.d. (2
nd

 L.S.A.)  
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The Sampling Distribution of  
1 

ˆ  

Like Y , 
1̂  has a sampling distribution. 

 What is E(
1̂ )? (where is it centered?) 

 If E(
1̂ ) = 1, then OLS is unbiased – a good thing! 

 What is var(
1̂ )?  (measure of sampling uncertainty) 

 What is the distribution of 1̂  in small samples? 

 It can be very complicated in general 

 What is the distribution of 1̂  in large samples? 

 It turns out to be relatively simple – in large samples, 1̂  

is normally distributed. 
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The mean and variance of the sampling 

distribution of  
Some preliminary algebra: 

Yi = 0 + 1Xi + ui 

Y  = 0 + 1 X  + u  

so   Yi – Y  = 1(Xi – X ) + (ui – u ) 

Thus, 

1̂  = 1
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     1̂  = 1 1
1
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so   1̂  – 1 = 1
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Substitute 
1
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expression for 1̂  – 1: 
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Now we can calculate  E(    ) and  var(    ):  
1̂

  E( 1̂ ) – 1 =  1
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= 0   because E(ui|Xi=x) = 0 by LSA #1 

 Thus LSA #1 implies that E( 1̂ ) = 1 

 That is, 1̂  is an unbiased estimator of 1. 

 For details see App. 4.3 
 

1̂
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Next calculate var(   ):  
1̂

write 

1̂  – 1 =  1
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where vi = (Xi – X )ui.  If n is large, 2
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where vi = (Xi – X )ui (see App. 4.3).  Thus, 
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1̂  – 1  1
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so     var( 1̂  – 1) = var( 1̂ )  

= 
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so  

 var( 1̂  – 1) = 
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    . 

 

Summary so far 

 1̂  is unbiased: E( 1̂ ) = 1 – just like Y ! 

 var( 1̂ ) is inversely proportional to n – just like Y ! 
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What is the sampling distribution of    ?  1̂
The exact sampling distribution is complicated – it depends 

on the population distribution of (Y, X) – but when n is large we 

get some simple (and good) approximations: 

(1) Because var( 1̂ )  1/n and E( 1̂ ) = 1, 1̂   
p

 1 

(2) When n is large, the sampling distribution of 
1̂  is 

 well approximated by a normal distribution (CLT) 

 

Recall the CLT:  suppose {vi}, i = 1,…, n is i.i.d. with E(v) = 0 

and var(v) = 2
.  Then, when n is large, 

1

1 n

i

i

v
n 

  is approximately 

distributed N(0, 2 /v n ). 
 



38 

Large-n approximation to the 
distribution of    :  

1̂  – 1 =   1
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, where vi = (Xi – X )ui 

 When n is large, vi = (Xi – X )ui  (Xi – X)ui, which is i.i.d. 

(why?) and var(vi) <   (why?).  So, by the CLT, 
1

1 n

i

i

v
n 

  is 

approximately distributed N(0, 2 /v n ). 

 Thus, for n large, 1̂  is approximately distributed  

 1̂   ~ 
2

1 4
, v

X

N
n






 
 
 

, where vi = (Xi – X)ui 

 

1̂
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The larger the variance of X, the 

smaller the variance of    
The math 

var( 1̂  – 1) = 
4

var[( ) ]1 i x i

X

X u

n






  

where 2

X  = var(Xi).  The variance of X appears in its square in 

the denominator – so increasing the spread of X decreases the 

variance of 1. 

 

The intuition 

If there is more variation in X, then there is more information 

in the data that you can use to fit the regression line.  This is 

most easily seen in a figure… 
 

1̂
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The larger the variance of X, the 

smaller the variance of  1̂

There are the same number of black and blue dots – using which 

would you get a more accurate regression line? 
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Summary of the sampling distribution of    :  1̂

If the three Least Squares Assumptions hold, then 

 The exact (finite sample) sampling distribution of 1̂  has: 

  E( 1̂ ) = 1   (that is, 1̂  is unbiased)  

 var( 1̂ ) = 
4

var[( ) ]1 i x i

X

X u

n






   

1

n
. 

 Other than its mean and variance, the exact distribution of 1̂  

is complicated and depends on the distribution of (X,u) 

 1̂  
p

 1 (that is, 1̂  is consistent) 

  When n is large, 1 1

1

ˆ ˆ( )

ˆvar( )

E 




 ~ N(0,1) (CLT) 

 This parallels the sampling distribution of Y . 
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We are now ready to turn to hypothesis tests & confidence 

intervals… 
 


