Repeated games Lecture 10

November 24, 2015

Repeated games

- In a repeated game there is a fixed stage game, say prisoners' dilemma, that is played over and over again.
- There is a big difference whether the stage game is played finitely many times or infinitely many times.
- To study repeated games it is necessary to agree on the way the players evaluate the pay-offs.
- The most common, albeit by no means the only, practice is to postulate that after each round of the stage game the players receive the stage game pay-offs, and that they evaluate the stream, finite or infinite, of expected pay-offs as separable over time and discounted.

Repeated games

- Consider an infinitely repeated prisoners' dilemma

$$
\begin{array}{ccc}
& C & D \\
C & 2,2 & 0,3 \\
D & 3,0 & 1,1
\end{array}
$$

- Choosing (D,D) in the first round and then (C,C) in each successive round players' pay-offs are

$$
1+\sum_{t=1}^{\infty} \delta^{t} 2=1+\frac{\delta}{1-\delta} 2
$$

- This is the discounted 'life-time' utility from the above play.
- It is convenient to consider the average utility, or per period utility, that generates this life-time utility.
- This is got by multiplying the life-time utility by $1-\delta$.
- Above this would yield $1-\delta+2 \boldsymbol{\delta}=1+\boldsymbol{\delta}$.

Repeated games

- The Nash-equilibrium pay-offs of strategic games are typically not on the Pareto frontier.
- One of the main questions in repeated games is whether there are equilibria whose periodic outcomes are on the Pareto frontier of the stage game.
- This is most challenging in the prisoners' dilemma, and for this reason it is the most common stage game in applications.
- A repeated game is an extensive form game, and its formal definition is straightforward.
- It is, though, quite complicated.
- Consider a 2×2 game which is played three times.
- The number of strategies in this game is got as follows.
- In the first stage there are 2 ways of making a choice.
- In the second stage a strategy has to specify what to do after each possible history.

Repeated games

- As there are four histories and two actions the number of possible ways of making a choice is 2^{4}.
- In the third stage there are $4 \cdot 4=16$ histories and two actions.
- Consequently, there are 2^{16} ways of making a choice.
- Thus, the number of strategies is $2 \cdot 2^{4} \cdot 2^{16}=2^{21}$.

Repeated games

- Consider first prisoners' dilemma that is played T times (presumably repeated T-1 times).
- An outcome path is any end node.
- The only Nash-equilibrium outcome path of this game is D in each round.
- First, it is a Nash-equilbrium to play D in each round.
- Fix a Nash-equilibrium and let t be the last stage such that at least one player chooses C.
- But deviating to D in stage t increases the deviating player's pay-off, and changes nothing for the rest of the game.

Repeated games

- Consider the following stage game repeated once, i.e., played twice

	L	C	R
T	6,6	0,7	1,2
M	7,0	1,1	2,0
B	2,1	0,1	3,3

- A strategy where player- 1 chooses T in the first round, and B in the second round if the history is (T, L) and M if the history is something else, and player-2 chooses L in the first round, and R in the second round if the history is (T, L) and C if the history is something else, constitutes an equilibrium that supports the co-operative outcome.
- This works if there are several stage game equilibria.
- The worst of them can be used to threaten bad behaviour.
- The threat is credible since playing an equilibrium is credible.

Repeated games

- Let us return to the prisoners' dilemma, and consider the infinitely repeated version.
- There are several well-known strategies that we analyse next.
- The grim-trigger strategy is such that a player chooses C in the first period, and continues to do so unless his/her opponent chooses D.
- After D by the opponent s/he chooses D forever.
- This is a Nash-equilibrium if the discount factor is high enough.
- On the Nash-equilibrium outcome path C is played each period and the average pay-off is 2 .
- If one player deviates and chooses D in the first period then his/her opponent chooses D forever from the second period on, and the deviating player's optimal deviation is D forever.

Repeated games

- His/her average pay-off is $(1-\delta)\left(3+\frac{\delta}{1-\delta}\right)=3-2 \delta$.
- This is less than 2 iff $\delta \geq \frac{1}{2}$.
- In the grim-trigger strategy the 'punishment'-phase following a deviation is infinitely long.
- In a straightforward fashion it is possible to determine when a strategy with a finite punishment-phase constitutes a Nash-equilibrium.

Repeated games

- The strategy called tit-for-tat postulates that in the first stage a player chooses C and in each consequent stage $s / h e$ chooses what his/her opponent chose in the previous stage.
- If this is a Nash-equilibrium then on the outcome path C is played in each period.
- If one player deviates to D in period t then the other player chooses D in period $t+1$.
- Thus, the deviator has two choices: Either to choose D forever or to revert to C in period $t+1$ but then $s / h e$ is in the same situation as in period t .
- Consequently, the optimal deviation is D forever or to alternate between D and C .
- Choosing D forever yields $(1-\delta)\left(3+\frac{\delta}{1-\delta}\right)$, while alternating yields $(1-\delta) \frac{3}{1-\delta^{2}}$.
- The maximun of the above pay-offs is less than 2 iff $\delta \geq \frac{1}{2}$.

Repeated games

- It is clear that any convex combination of the average pay-offs can be generated (to a required degree) by some strategy combination if the discount factor is high enough.
- For instance, $1.45=\frac{145}{100}=\frac{29}{20}=\frac{9 \cdot 3+1 \cdot 2+10 \cdot 0}{20}$ for player 1 can be got on the outcome path

$$
((D, C), \ldots,(D, C),(C, C),(C, D), \ldots,(C, D))
$$

where the first string is of lenght 9 and the last string is of length 10.

- Repeating this string indefinitely (supported by the threat that deviation results in perpetual D) generates the desired pay-off.
- The feasible average pay-offs is a convex set, the convex combination of the possible pay-offs of the stage game.
- Picking any point from there one can read from the weights which outcome path generates that pay-off.

Repeated games

- Not all Nash-equilibria are SPE.
- There is a simple test for perfectness.

One-deviation property: No player can increase his/her pay-off by changing his/her action in any subgame which s/he starts given the other players' strategies and the rest of his/her strategy.

Repeated games

Theorem

A strategy profile is a SPE iff it satisfies the one-deviation property.

- The grim-trigger strategy is not a SPE since in a subgame following a deviation by a player this player is supposed to choose C.
- Changing the strategy so that it postulates the choice D whenever the history contains choices different from C restores subgame perfectness.

Theorem

(Subgame perfect folk theorem). Let $\left(x_{1}, x_{2}\right)>(1,1)$ be any average feasible pay-off in the infinitely repeated prisoners' dilemma. For sufficiently high value of the discount factor there exists a subgame perfect Nash-equilibrium that generates average pay-offs $\left(x_{1}, x_{2}\right)$.

- Basic wisdom: The greater the possible punishment the easier it is to sustain co-operative behaviour.
- In the twice played game above co-operation was supported by the threat to play a bad Nash-equilibrium in the last stage.
- But in general the threats need not be Nash-equilibria of the stage game.

