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Mixed strategies

In many games there are no Nash-equilibria in pure strategies.

An example is Matching Pennies game below.

H T
H 1,−1 −1,1
T −1,1 1,−1
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The solution to this problem involves extending the action
spaces of the players to include probability distributions.

When this extension is made we call the players' action spaces
strategy spaces.

Instead of choosing single actions the players are allowed to
choose probability distributions over the original actions.

The probability distributions are then called mixed strategies.

In the above example players would choose probability
distributions (p,1−p) where p is the probability of choosing
action H and 1−p is the probability of choosing action T .
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Considering mixed strategies as objects of choice presents
some problems.
If a player expects his/her opponent to use a mixed strategy
how should s/he evaluate the utility that a particular action
gives him/her?
From the player's point of view s/he is participating in a
lottery/gamble, and the situation is like that of a decision
maker under uncertainty.
We know that decision making under uncertainty can be
handled with relative ease if the decision maker has von
Neumann-Morgenstern preferences, i.e., if his/her preferences
have a utility representation in the expected utility form.
To remind, if a decision maker has von Neumann-Morgenstern
type preferences s/he evaluates the expected utility of a lottery
q on a countable set A by

U(q) = ∑
a∈A

q(a)u(a)

where u is many times called the Bernoulli utility function
while U is the von Neumann-Morgenstern utility function.
If the set A is not countable the sum must be replaced by the
proper integral.
It is important to keep in mind that all the pay-o�s are in von
Neumann-Morgenstern utility units, and for instance issues of
risk do not arise as the numbers already re�ect these matters.
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De�nition

Consider a normal form game Γ =
{
N,{Ai}i∈N ,{ui}i∈N

}
.

Its mixed extension is a normal form game where each player's
action set is Si =

{
p :
∫
Ai
dp = 1

}
.

De�nition

Consider a normal form game Γ =
{
N,{Ai}i∈N ,{ui}i∈N

}
and its

mixed extension
Γme =

{
N,{Si}i∈N ,{ui}i∈N

}
.

A Nash-equilibrium is a vector of strategies s∗ = (s∗
1
,s∗
2
, ...,s∗n) such

that for all players i ∈ N ui
(
s∗i ,s

∗
−i
)
≥ ui

(
si ,s

∗
−i
)
for all si ∈ Si .
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Notice that in the de�nition the Nash-equilibrium applies both
the to normal form game and its mixed extension; in the
sequel we do not make any di�erence between the two, and
when one is looking for Nash-equilibria it is understood that
one is looking for equilibria both in pure and mixed strategies.

The mixed extension makes it possible to show
Nash-equilibrium existence in a large class of games.

Theorem

Every �nite normal form game has a mixed strategy equilibrium.
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To �nd mixed Nash-equilibria in simple games it is useful to
consider a 2x2-game where the row player's actions are T and
B and the column player's actions are L and R .

Assume that the former uses a mixed strategy (p,1−p) and
the latter a mixed strategy (q,1−q).

Then the probabilities for the four possible outcomes are as
depicted below

L R
T pq p(1−q)
B (1−p),q (1−p)(1−q)
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The utility of the row player is now

p [qu1(T ,L) + (1−q)u1(T ,R)]+

(1−p) [qu1(B,L) + (1−q)u1(B,R)]

The magnitudes within square brackets are the utilities
associated with pure strategies T and B .

It is clear that both of them have to be of equal magnitude if
p is strictly between zero and unity.

In other words, the row player has to be indi�erent between T
and B .

More generally, in a mixed strategy equilibrium a player has to
be indi�erent between all pure strategies (actions) in the
support of his/her mixed strategy.
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Example

Non-standard matching pennies
H T

H 2,−2 −1,1
T −3,3 2,−2
Here the row player suggest playing matching pennies, and in order
to make the game less monotonic s/he pays 3 to the opponent if
s/he chooses tails and the opponent heads, and to even out things
s/he pays only 1 if s/he chooses heads and the opponent tails.
Let the row player's mixed strategy be (p,1−p) and that of the
column player's (q,1−q). Let us determine the row player's best
response function.
If the row player chooses H s/he expects 2q−1(1−q), and if s/he
chooses T s/he expects −3q+2(1−q).
It is clear that if q is close to zero then T is the best response, and
if q is close to unity then H is the best response.
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Example

The row player is indi�erent between his/her choices if
2q−1(1−q) =−3q+2(1−q) which is equivalent to q = 3

8
.

Only at exactly this value it is possible that the row player chooses
a mixed strategy where p ∈ (0,1).
In an analogous way one �nds that the equilibrium mixed strategy
of the row player is p = 5

8
.

The equilibrium pay-o� of the row player is 1

8
.

Notice (and con�rm by calculation) that using his/her equilibrium
strategy the row player earns 1

8
regardless of the strategy the

column player uses.
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Example

Notice that a player's mixed strategy is determined by his/her
opponent's pay-o�s; as a player is indi�erent between his/her pure
strategies that belong to his/her mixed strategy's support, the only
purpose of the mixed strategy is to keep the opponent indi�erent,
too.
Calculate what happens in the above game to the row player's
equilibrium strategy when his/her pay-o� for T is slightly raised
(say by ε > 0).
One can de�ne weak and strict dominance as before, and the main
insight is that players do not use strictly dominated actions in
mixed strategy equilibria.
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Example

A �rm may receive any number of applications for a vacancy from
identical workers.
An application consists of a wage demand, and the �rm chooses
the worker with a lowest wage demand.
On the background there is an economy with many �rms and many
workers and the workers randomly decide which �rm to apply to.
Assume that the number of workers is the same as the number of
�rms.
Then the number of workers that contact a particular �rm is
Poisson-distributed with parameter 1.
Thus, a worker that applies to a �rm knows that k other workers
apply to the same �rm with probability e−1 1

k! , but s/he does not
know the exact number of other workers applying to the same �rm.
Assume that each worker produces one unit of surplus while
employed.
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Example

It is clear that there is no pure strategy equilibrium: If each
worker's equilibrium wage demand were w then a worker who
deviates and demands w − ε get the job for certain.
For this same reason there is no equilibrium with mass point.
Thus, the equilibrium strategy has to be a mixed strategy.
One can show that the support of the mixed strategy cannot
contain gaps so that the mixed strategy F is continuous and has
support [l ,L].
Let us next construct the mixed strategy.
First, note that L = 1; a worker who demands L gets it only if it is
the only worker that the �rm meets.
The �rm is willing to pay up to unity, and thus, any demand less
than unity would not be optimal.
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Example

Demanding L = 1 yields utility e−1, i.e. 1 times the probability that
there are no other workers applying to the �rm.
When a worker makes a demand l s/he gets the job for certain, and
as this demand is in the support of the mixed strategy it has to
yield the same utility as any other demand in the support.
In particular, it has to yield the same utility as demand L = 1.
Thus, l = e−1.
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Example

Assume that a worker makes a demand w ∈
(
e−1,1

)
.

Then his/her utility is given by

∞

∑
k=0

e−1
1

k!
(1−F (w))k w = e−1e(1−F (w))w

This, again, must yield the same utility as other demands in the
support of the mixed strategy.
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Example

Consequently,
e−1e(1−F (w))w = e−1

which is equivalent with

e(1−F (w))w = 1

which is equivalent with

1−F (w) = ln
1

w

which is equivalent with

F (w) = 1− ln
1

w
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