Sorting along age and income

- Focus on continuous variables.
- Consider a large population of people uniformly distributed between ages 0 and 100 .
- There are two rooms where the people can go.
- They prefer to go to the room where the average age is closest to his/her own.
- Equilibrium is pretty simple: everyone less than 50 goes to one room and everyone over 50 to the other room.
- What if everyone wants to be in the room where the age in the pth percentile is closest to his/her own age.
- Assume that in one room there are people aged between 0 and x, and that the rest are in the other room.
- The p th percentile in the first room is $p x$, and in the other room $x+p(100-x)$.
- Person x has to be indifferent between the two rooms, or

$$
x-p x=x+p(100-x)-x
$$

which yields $x=p 100$.

- The interesting cases are such that people have a preference about a population statistic to which they contribute, and where there is positive correlation between the preference and the contribution.
- Consider the example in MM where there are two rooms and people prefer the room the closer to 55% of the population there is.
- Given any percentages $x \%$ and $100 \%-x \%$ where $x \%<50 \%$, it is the case that 50% is equally close to $x \%$ and $100 \%-x \%$.
- But then necessarily 55% is further away from $x \%$ than $100 \%-x \%$.
- Consequently people always want to go to the room with $100 \%-x \%$ of the people.
- Notice that 100% is further away from 55% than 15%.
- Thus, one could improve everyone's situation by moving 15% of the people into the other room.
- More interesting application of a continuous variable is the following.

Example

Statistical discrimination.
Assume that there are two types of people; men and women, or blacks and whites, or natives and immigrants.
Call the types a and b.
Each type's productivity is similarly distributed on the unit interval, say it is uniform on $[0,1]$.
When looking for a job a person is interviewed.
Assume that if an interviewer is of the same type as the job applicant s/he can infer the productivity accurately.
If an interviewer is of the other type s/he gets an informative but imperfect signal of the productivity.

Example

(continued). Assume that given productivity $z \in[0,1]$ the interviewer gets signal that is distributed by density

$$
f(s \mid z)= \begin{cases}\delta_{\alpha}, \text { if } & s=z \\ 1-\alpha, x>z & s \neq z\end{cases}
$$

where δ_{α} is Dirac-measure or point probability. If the interviewer gets signal s s/he calculates that the probability of the job applicant being of type x is

$$
f(x \mid s)=\frac{f(s \mid x) f(x)}{\int_{0}^{1} f(s \mid x) f(x) d x}
$$

which is just the Bayes's theorem.

Example

(continued). If $x=s$ then the above formula gives
$\frac{\delta_{\alpha}}{\delta_{\alpha}+\int_{0}^{1} f(s \mid x)(1-\alpha) d x}=\delta_{\alpha}$.
If $x \neq s$ we get density $1-\alpha$.
Given that the interviewer observes $s \mathrm{~s} /$ he calculates the expected productivity of the job applicant

$$
\alpha s+(1-\alpha) \int_{0}^{1} x d x=\alpha s+\frac{1}{2}(1-\alpha)
$$

Example

(continued). A job applicant who knows his/her productivity x rationally expects the interviewer to evaluate him/her as

$$
\int_{0}^{1}\left(\alpha s+\frac{1}{2}(1-\alpha)\right)(1-\alpha) d s+\alpha\left(\alpha x+\frac{1}{2}(1-\alpha)\right)
$$

which equals

$$
\alpha(1-\alpha)+\frac{1}{2}(1-\alpha)^{2}+\alpha^{2} x
$$

One easily finds that this is less than x if $x>\frac{1}{2}$ and it is more than x if $x<\frac{1}{2}$.

Example

（continued）．Assume that $\alpha=\frac{4}{10}$ ．
Assume that all the interviewers are of type a．
This is unfortunate for the aggregate success of type b job applicants．
Assume that the interviewer interviews five applicants of both type．

Example

(continued). Assume that the applicants of type a are of productivities $\frac{2}{10}, \frac{4}{10}, \frac{5}{10}, \frac{6}{10}$ and $\frac{8}{10}$.
Assume that the applicants of type b are of productivities $\frac{3}{10}, \frac{5}{10}$, $\frac{6}{10}, \frac{8}{10}$ and $\frac{9}{10}$.
Type a applicants' productivities are perfectly observed.
Type b applicants' productivities are estimated at $\frac{468}{1000}, \frac{500}{1000}, \frac{516}{1000}$, $\frac{548}{1000}$ and $\frac{564}{1000}$.

Example
(continued). But now two of the type a applicants are ranked higher than the best of the type b applicants.
If there is only one or two vacancies only type a applicants are hired.

- The rest of MM continues along the familiar lines and nothing particularly new emerges.
- Two central points are i) that there are a lot of interesting situations where strategic behaviour may have bad consequences.
- There is not, however, a single model that can be used to analyse them.
- And ii) strategic behaviour leads to inefficient outcomes.
－Let us see how obvious the second point is when the pay－offs are randomly generated．
－Use this link http：／／www．random．org／integers／

