Game theory lecture 4

September 24, 2012

Best-response or best-reply functions.

- We introduced Nash-equilibrium as a profile of actions (an action for each player) such that no player has an incentive to choose a different action (provided that others stick to their choice).

Finding Nash equilibrium

- It is clear that at a Nash-equilibrium each player's choice is a best response to the other players' choices.
- This may lead one to expect that Nash- equilibrium is a fixed point of the players best-response functions (or correspondences to be precise).
- The best-response function is dened as follows

Definition. In a normal form game $\Gamma=\left(N,\left\{A_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right)$ player i 's best-response function is defined as $B_{i}\left(a_{i}, a_{-i}\right)=\left\{a_{i} \in A_{i}: u_{i}\left(a_{i}, a_{-i}\right) \geq u_{i}\left(a_{i}^{\prime}, a_{-i}\right)\right\}$ for all $a_{i}^{\prime} \in A_{i}$.

Finding Nash equilibrium

- Notice that unlike in Osborne I have defined the best-response function such that the argument includes all the players' choices; this is convenient in some instances but it is of no importance.
- Notice also that even though I, and Osborne, call it a function it is not; the best-response may contain many elements, and typically such objects are called correspondences.

Definition. In a normal form game $\Gamma=\left(N,\left\{A_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right)$ an action profile $a * \in \times_{i \in N} A_{i}$ is a Nash equilibrium if $a_{i}^{*} \in B_{i}(a *)$ for all $i \in N$.

Finding Nash equilibrium

Example1. Cournot competition

- Consider a standard linear inverse demand $p=1-q$.
- There are two firms and each chooses how much to offer for sale simultaneously.
- Assume that marginal costs of production are zero.
- Assume that firm 2 produces q_{2}.
- Firm 1's best- response is given by $q_{1}\left(q_{2}\right)=\operatorname{argmax}_{q_{1}}\left(1-q_{1}-q_{2}\right) q_{1}$.
- This can be found by taking the first order condition $q_{1}=\frac{1-q_{2}}{2}$.
- As the situation is symmetric firm 2's best-response is evidently given by $q_{2}=\frac{1-q_{1}}{2}$.

Finding Nash equilibrium

- Solving the pair of equations yields the symmetric Nash equilibrium $\left(\frac{1}{3}, \frac{1}{3}\right)$.
- This, however, is not the only Nash-equilibrium of the model.
- The other equilibria are not found by straightforward use of calculus but one has to think about best-response functions.
- All action profiles where $q_{1} \in[1, \infty]$ and $q_{2} \in[1, \infty]$ are also Nash-equilibria.
- Try to figure out what is their relation to dominance!

Finding Nash equilibrium

Example2.

- A common resource is used by n firms.
- Firm i 's production is given by $x_{i}\left(1-\left(x_{1}+x_{2}+\ldots+x_{n}\right)\right)$ as long as $x_{1}+x_{2}+\ldots+x_{n}<1$ and zero otherwise.
- If firms maximise production the best-response function of firm i is found by determining the first order condition

$$
1-\left(x_{1}+x_{2}+\ldots+x_{n}\right)-x_{i}=0
$$

Since the situation is symmetric it is natural to look for a symmetric Nash equilibrium where all firms use the same strategy x.

- The FOC becomes then

$$
1-(n+1) x=0
$$

and the Nash equlibrium is given by $\left(\frac{1}{n+1}, \ldots, \frac{1}{n+1}\right)$.

- Notice again that there are other equilibria: If all the firms i choose $x_{i}=1$ then eveyone gets zero and no firm can improve

Finding Nash equilibrium

Example3.

- Bertrand competition is like Cournot competition except that the firms choose prices instead of quantities.
- Consumers buy from the firm with the lowest price; if prices are equal the firms divide the market.
- Best-response of firm i is given by

$$
B_{i}\left(p_{i}, p_{j}\right)=\left\{\begin{array}{c}
\left\{p_{i}: p_{i}>p_{j}\right\} \text { if } p_{j}<0 \\
\left\{p_{i}: p_{i} \geq 0\right\} \text { if } p_{j}=0 \\
\emptyset \text { if } 0<p_{j} \leq p^{m} \\
\left\{p^{m}\right\} \text { if } p^{m}<p_{j}
\end{array}\right.
$$

where p^{m} denotes the monopoly price.

- Graphing the best-response functions it is immediate that the unique Nash equilibrium is $(0,0)$.

Finding Nash equilibrium

Example4.

- Let us consider so called second-price sealed-bid auction.
- There are $n \geq 2$ bidders, and an indivisible object for sale.
- Player i has valuation v_{i} for the object, and if $s /$ he gets it at price p his/her utility is $v_{i}-p$.
- Players' action sets are positive real numbers from which they choose their bids b_{i}.
- The rules are such that the highest bidder wins, and pays the second highest bid (if there are draws some known rule is applied).
- Change the names of the bidders so that the order of the valuations is $v_{1}>v_{2}>\ldots>v_{n}$.

Finding Nash equilibrium

- This game is remarkable in that it has a Nash-equilibrium in dominant strategies.
- Bidding one's own valuation is a dominant strategy: Changing the bid does not affect the price conditional that the player would win anyway.
- If a player bids less than his/her valuation s/he reduces his/her chances of getting the object as s/he might bid so low that his/her bid is not anymore the highest.
- Conditional on winning nothing happens to price as $s / h e$ still has to pay the second highest bid.
- If a player bids more than his/her valuation nothing happens if his/her bid was the highest to start with.
- But if it was not $s / h e$ might win the object but then $s / h e$ has to pay more than his/her valuation.
- This is a situation where revealing ones true preferences is a dominant strategy equilibrium.

Finding Nash equilibrium

- There are other equilibria.
- If $n=3$, for instance, and the valuations are $v_{1}=10, v_{2}=6$ and $v_{3}=2$ the following is a Nash-equilibrium: $\left(b_{1}=3, b_{2}=97, b_{3}=5\right)$.

Finding Nash equilibrium

Example5.

- All-pay auction is a game where the highest bidder wins and all bidders pay their bid.
- It can be used to model political lobbying, or rent seeking, where n players invest in, say, bribing a politician who has a right to grant a monopoly or some prize.
- Let us assume that the probability of winning the price for player i is given by $p_{i}=\frac{b_{i}}{\sum_{j=1}^{n} b_{j}}$ where b_{i} is the bribe by player i.
- If the value of the monopoly right is V then player i 's objective is $\max _{b_{i}} p_{i} V-b_{i}$.
- Again we determine the first-order condition

$$
\frac{\sum_{j=1}^{n} b_{j}-b_{i}}{\left(\sum_{j=1}^{n} b_{j}\right)^{2}} V-1=0
$$

- Then we focus on a symmetric equilibrium which means that $b_{i}=b_{j}=b$ for all $j \in\{1,2, \ldots, n\}$.
- Inserting this information to the FOC we can solve for the symmetric Nash equilibrium $b^{N}=\left(\frac{n-1}{n^{2}} V, \ldots, \frac{n-1}{n^{2}} V\right)$.
- The total expenditure, pure waste if the politician's utility is ignored, is $n b=\frac{n-1}{n} V$; if there are many bidder or lobbyists almost all of the value is wasted in the rent seeking activity.

Example6.

- Two players have to divide a cake.
- Both state simultaneously what is the share they want.
- If the shares sum to at most unity the cake is divided accordingly.
- If the shares exceed unity neither player gets anything.
- Any $(x, 1-x), x \in[0,1]$ where x is the share of player 1 constitutes a Nash-equilibrium.
- There are others!

Mixed strategies

- In many games there are no Nash-equilibria in pure strategies.
- An example is Matching Pennies game below where the players simultaneously choose Heads or Tails, and if the choices are the same player 1 wins one unit from player 2 , and if they differ player 2 wins one unit from player 1.

$$
\begin{array}{ccc}
& H & T \\
H & 1,-1 & -1,1 \\
T & -1,1 & 1,-1
\end{array}
$$

Mixed strategies

- The solution to this problem involves extending the action spaces of the players to include probability distributions.
- When this extension is made I shall call the players' action spaces strategy spaces.
- Instead of choosing single actions the players are allowed to choose probability distributions over the original actions.
- The probability distributions are then called mixed strategies.
- In the above example players would choose probability distributions $(p, 1-p)$ where p is the probability of choosing action H and $1-p$ is the probability of choosing action T .

Mixed strategies

- Considering mixed strategies as objects of choice presents some problems.
- If a player expects his/her opponent to use a mixed strategy how should s / he evaluate the utility that a particular action gives him/her?
- From the player's point of view $s / h e$ is participating in a lottery/gamble, and the situation is like that of a decision maker under uncertainty.
- We know that decision making under uncertainty can be handled with relative ease if the decision maker has von Neumann-Morgenstern preferences, i.e., if his/her preferences have a utility representation in the expected utility form.

Mixed strategies

- To remind, if a decision maker has von Neumann-Morgenstern type preferences $s /$ he evaluates the expected utility of a lottery q on a numerable set A by

$$
U(q)=\sum_{a \in A} q(a) u(a)
$$

where u is many times called the Bernoulli utility function while U is the von Neumann-Morgenstern utility function.

- If the set A is not numerable the sum must be replaced by the proper integral.
- Since we have assumed all the time that the players have von Neumann-Morgenstern utilities no problems should arise.
- It is important to keep in mind that all the pay-offs are in von Neumann- Morgenstern utility units, and for instance issues of risk do not arise as the numbers already reflect these matters.

Mixed strategies

Definition. Mixed extension
The mixed extension of a normal form game
$\Gamma=\left(N,\left\{A_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right)$ is a normal form game where player i 's
action set is replaced by $S_{i}=\left\{p: \int_{A_{i}} d p=1\right\}$.
Definition. Nash equilibrium Consider a normal form game $\Gamma=\left(N,\left\{A_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right)$, and its mixed extension $\Gamma^{m e}=\left(N,\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right)$. A Nash equilibrium is a vector of strategies $s=\left(s_{1}, s_{2} \ldots, s_{n}\right)$ such that for all players $i \in N$ $U_{i}\left(s_{i}, s_{-i}\right) \geq U_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{i}^{\prime} \in S_{i}$.

Mixed strategies

- Notice that in the denition the Nash-equilibrium applies both the to normal form game and its mixed extension.
- In the sequel we do not make any difference between the two, and when one is looking for Nash-equilibria it is understood that one is looking for equilibria both in pure and mixed strategies.
- The mixed extension makes it possible to show Nash-equilibrium existence in a large class of games.

Mixed strategies

Theorem. Existence in finite games Every finite normal form game has a mixed strategy equilibrium.

- To find mixed Nash-equilibria in simple games it is useful to consider a 2×2-game where the row player's actions are T and B and the column player's actions are L and R.
- Assume that the former uses a mixed strategy $(p, 1-p)$ and the latter a mixed strategy $(q, 1-q)$.
- Then the probabilities for the four possible outcomes are as depicted below

$$
\begin{array}{ccc}
& L & R \\
T & p q & p(1-q) \\
B & (1-p) q & (1-p)(1-q)
\end{array}
$$

- The utility of the row player is now

$$
\begin{gathered}
p\left[q u_{1}(T, L)+(1-q) u_{1}(T, R)\right]+ \\
(1-p)\left[q u_{1}(B, L)+(1-q) u_{1}(B, R)\right]
\end{gathered}
$$

- Square brackets contain the utilities associated with pure strategies T and B.
- Both of them have to be of equal magnitude if p is strictly between zero and unity.
- In other words, the row player has to be indifferent between T and B.
- More generally, in a mixed strategy equilibrium a player has to be indifferent between all pure strategies (actions) in the support of his/her mixed strategy.

Finding mixed strategy Nash equilibrium

Example. Non-standard matching pennies

- Here the row player suggests playing matching pennies, and in order to make the game less monotonic s/he pays 3 to the opponent if $s / h e$ chooses tails and the opponent heads.
- To even out things s/he pays only 1 if $s /$ he chooses heads and the opponent tails.
- Let the row player's mixed strategy be $(p, 1-p)$ and that of the column player $(q, 1-q)$.
- The row player has to be indifferent between his/her choices.

Finding mixed strategy Nash equilibrium

- If s/he chooses H s/he expects

$$
2 q-1(1-q)
$$

- If s / he chooses $T \mathrm{~s} / \mathrm{he}$ expects

$$
-3 q+2(1-q)
$$

- These have to be equal or

$$
2 q-1(1-q)=-3 q+2(1-q)
$$

- The solution to this equation is $q=\frac{3}{8}$.

Finding mixed strategy Nash equilibrium

- Analogously one finds the other mixed strategy $p=\frac{5}{8}$. DO THIS.
- The equilibrium pay-off of the row player is $\frac{1}{8}$.
- Using this strategy the row player can guarantee pay-off $\frac{1}{8}$ regardless of what the column player does. CONFIRM THIS.
- Notice that a player's mixed strategy is determined by his/her opponents pay- offs.
- As a player is indifferent between his/her pure strategies that belong to his/her mixed strategy's support, the only purpose of the mixed strategy is to keep the opponent indifferent.
- Calculate what happens in the above game to the row player's equilibrium strategy when his/her pay-off for T is slightly raised (say by $\varepsilon>0$).

Example. Voting

- There are two candidates A and B who are supported by n_{A} and n_{B} voters where $n_{A}>n_{B}$.
- The candidate who gets more votes is elected.
- If a voter's favourite is elected $s /$ he receives utility 1 , and zero otherwise.
- Voting is costly and we denote the cost by $c>0$.
- Denote the equilibrium probabilities of voting by a and b.
- Let us study the supporters of candidate A.

Finding mixed strategy Nash equilibrium

- If a supporter does not vote his/her utility is

$$
\begin{gathered}
\operatorname{Pr}(A \text { wins }) \cdot 1= \\
\sum_{i=1}^{n_{A}-1}\binom{n_{A}-1}{i} a^{i}(1-a)^{n_{A}-1-i} \sum_{j=1}^{\min \left\{i-1, n_{B}\right\}}\binom{n_{B}}{j} b^{j}(1-b)^{n_{B}-j}+ \\
\frac{1}{2} \sum_{i=0}^{n_{B}}\binom{n_{A}-1}{i} a^{i}(1-a)^{n_{A}-1-i}\binom{n_{B}}{i} b^{i}(1-b)^{n_{B}-i}
\end{gathered}
$$

Finding mixed strategy Nash equilibrium

- If a supporter votes his/her utility is

$$
\begin{gathered}
\operatorname{Pr}(A \text { wins }) \cdot 1-c= \\
\sum_{i=0}^{n_{A}-1}\binom{n_{A}}{i} a^{i}(1-a)^{n_{A}-1-i} \sum_{j=0}^{\min \left\{i, n_{B}\right\}}\binom{n_{B}}{j} b^{j}(1-b)^{n_{B}-j}+ \\
\frac{1}{2} \sum_{i=0}^{n_{B}}\binom{n_{A}-1}{i} a^{i}(1-a)^{n_{A}-1-i}\binom{n_{B}}{i+1} b^{i+1}(1-b)^{n_{B}-i-1}-c
\end{gathered}
$$

- These two expressions have to be equal in a Nash equilibrium in order to make the voter indifferent between voting and not voting.
- One gets an analogous equations for a supporter of B, and from these one can determine a symmetric equilibrium.
- Typically there are multiple symmetric equilibria.
- Let us consider a simple case where $n_{A}=2$ and $n_{B}=1$.
- The equations look as follows.
- If a supporter of A does not vote A wins with probability

$$
\frac{1}{2}(1-a)(1-b)+\frac{1}{2} a b+a(1-b)
$$

- If s / he votes A wins with probability

$$
\frac{1}{2}(1-a) b+(1-b)
$$

- In a mixed strategy equilibrium the voter has to be indifferent between the choices or

$$
\frac{1}{2}(1-a)(1-b)+\frac{1}{2} a b+a(1-b)=\frac{1}{2}(1-a) b+(1-b)-c
$$

- From this one can solve

$$
b=\frac{1-a-2 c}{a}
$$

Finding mixed strategy Nash equilibrium

- If the supporter of B does not vote B wins with probability

$$
\frac{1}{2}(1-a)^{2}
$$

- If s / he votes B wins with probability

$$
\frac{1}{2} 2 a(1-a)+(1-a)^{2}
$$

- In equilibrium

$$
\frac{1}{2}(1-a)^{2}=\frac{1}{2} 2 a(1-a)+(1-a)^{2}-c
$$

- One can solve

$$
a=\sqrt{1-2 c}
$$

- Are the any values of $c=0,15$ such that all agents vote with positive probability? DO THIS

Exercises

1. There is a vacancy available. There are two potential job applicants A and B. There are three equally likely states of the world s_{A}, s_{B} and $s_{A B}$. In the first state only applicant A is interested in the job, in the second state only applicant B is interested in the job and in the last state both of them are interested in the job.
A job applicant must make a wage demand to an employer. The maximum the employer is willing to pay is 1 . A job applicant only knows whether s/he is interested in the job but s/he does not know the exact state of the world. Determine the applicants' equilibrium strategy.
2. Determine all the equilibria of the following game

$$
\begin{array}{ccc}
& c & d \\
& 5,2 & 2,2 \\
b & 1,1 & 3,6
\end{array}
$$

3. Determine the pure strategy Nash equilibria of the following game

	$\ddot{0}$	\ddot{a}	z	x	y	w	v	u
a	23,4	19,300	9,17	20,30	5,4	59,2	49,5	1,2
b	5,8	39,11	0,6	4,6	48,99	78,666	6,7	5,4
c	9,55	10,8	0,55	7,7	33,55	66,7	90,90	44,90
d	6,4	1,3	6,0	0,2	23,3	11,3	5,5	6,44
e	$-4,7$	64,90	33,5	58,0	10,19	9,11	9,3	5,7
f	88,5	3,55	100,78	0,0	77,5	7,5	5,78	7,23
g	4,66	6,5	6,45	4,66	9,77	10,0	20,5	9,5
h	77,4	45,66	7,8	9,4	3,4	33,34	0,5	5,0

