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Example1. Game of NIM

There are several heaps of sticks and two players who move
alternately. An allowed move is to remove any number of sticks
from any heap but from only one heap at a time. The player who
removes the last stick is the winner. Since both the number of
heaps and sticks in any heap are finite the game ends after a finite
number of moves. Code the state of the game by
nk = (n1,n2, ...,nk) meaning that there are k heaps with ni sticks in
heap i ; let us call this a position and denote the set of possible
positions by Π = ∪h∈NZh

+.
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Let us adopt some notation:
N = {n ∈ Π |nextplayer can ascertain victory when the position is n}
and P = {n ∈ Π |all moves lead to N when the position is n}. Since
this is a finite game (progressively bounded impartial game) N and
P partition all the NIM-games, or there is always a player with a
winning strategy.
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It is clear that (1,0), (0,1), (n1,0) and (0,n2) belong to N,
while (1,1) belongs to P .
Also (1,2) and (2,1) belong to N.
Position (n,n) belongs to P and if m 6= n position (m,n)
belongs to N.
One can say something about positions with three and four
heaps but things start getting complicated.
It is better to try to come up with some general results.
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Lemma. If nk and nl are positions a concatenated position is
denoted by

(
nk ,nl).

a) If nk and nl belong to P then
(
nk ,nl) belongs to P .

b) If nk belongs to P and nl belongs to N then
(
nk ,nl)

belongs to N.
c) If nk and nl belong to N then

(
nk ,nl) may belong to

N or to P .
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Proof. Notice first that trivially if
(
nk ,nl) has at most one

stick then either nk and nl both have zero sticks and(
nk ,nl) belongs to P , or nk = 1 and nl = 0 (or vice
versa) in which case the former belongs to N and the
latter to P , and

(
nk ,nl) to N . Proceed by induction

and assume that whenever
(
nk ,nl) has at most n

sticks it holds that if nk and nl belong to P then(
nk ,nl) belongs to P , and if nk belongs to P and nl

belongs to N then
(
nk ,nl) belongs to N.
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Proof (Continued). Assume next that
(
nk ,nl) has at most

n +1 sticks. If nk belongs to P and nl belongs to N
then the next player can make nl such that the new
position belongs to P which creates a concatenation
of two P-positions. This new position has at most n
sticks and by the induction hypothesis it must belong
to P . But then it must be the case that

(
nk ,nl)

belongs to N.
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Proof (Continued) If nk and nl belong to P then the next
player must take sticks from one of the piles, let them
belong to nl . But this always turns nl a position that
belongs to N, and the new position is a concatenation
of a position that belongs to P and a position that
belongs N. It also has at most n sticks, and by the
induction hypothesis belongs to N. Thus, the original
position belongs to P .

To conclude the proof note that a single pile is in N, while (1,1)
belongs to P , and (1,2) belongs to N. QED
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Definition. The Nim-sum of m,n ∈ N is got as follows. Express n
and m in binary form (radix), and sum the digits in
each column modulo 2. The resulting binary number
is the Nim-sum of n and m. Denote it by n⊕m.

This can be generalised in an obvious way to any finite number of
numbers.
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Example. The Nim-sum of 3, 9 and 13: 3 = 1×21 +1×20 = 11b,
9 = 1×23 +0×22 +0×21 +1×20 = 1001b and
13 = 1×23 +1×22 +0×21 +1×20 = 1101b. Now summing the
columns yields

0 0 1 1
1 0 0 1

+ 1 1 0 1
= 2 1 1 3

Sum 2113 is not the final result since each digit has to be taken
modulo 2, or its remainder when dividing by 2. The Nim-sum is
then 0111b = 7.
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Bouton’s Theorem. A nim position nk = (n1,n2, ...,nk) is in P
if and only if the Nim-sum of its components is 0.

Proof. Let Q be the set of positions with Nim-sum zero, and
assume that nk = (n1,n2, ...,nk) belongs to Q.
Suppose there are sticks left and we remove them
from pile n1so that there remains n′1 < n1 sticks. The
Nim-sum of the resulting position is given by
n′1⊕n2⊕ ...⊕nk = n′1⊕n1 6= 0 because each change
of a binary digit going from n1 to n′1 causes the
column sum to change modulo 2; of course it changes
similarly taking the Nim-sum of n′1 and n1 (make sure
you figure this out on paper). So any move from Q
leads to a position outside Q.
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Proof (Continued) Assume next that
nk = (n1,n2, ...,nk) /∈ Q, and let
s = n1⊕n2⊕ ...⊕nk 6= 0. As s is a binary expression
its leftmost digit is unity, and consequently there
must be an odd number of ni , i ∈ {1,2, ...,k} such
that its leftmost digit is unity. Choose one of these,
call it xi and note that xi ⊕ s < xi . This is because
both xi and s have unity at their leftmost position
and the sum of that column is then 2 which is 0
modulo 2. Let a player remove xi − (xi ⊕ s) sticks
from the i th pile causing xi to change to xi ⊕ s. The
Nim-sum of the new position
(n1,n2, ...ni−1,xi ⊕ s,ni+1, ...nk) is zero and thus it is
in Q. Whenever a position lies outside Q there is a
move that results in a position that is in Q.
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Proof (Continued) If the initial position is not in Q the first
player can always choose a move that leads to a
position that is in Q. If the second player has any
moves s/he necessarily moves from Q to a position
outside Q. Any position not in Q is thus in N.
Similar argument shows that if the initial position is
in Q the second player can guarantee a win. Any
position in Q is thus in P . QED
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Knowledge about other players’ intentions is central in game theory.
This example hints at the interesting issues that arise when studying
the epistemic aspects of the players’ behaviour. The point is to
differenciate between mutual knowledge and common knowledge.
Example2. There are twenty players in a room each with a red

hat or a blue hat. The players can see each others’
hats but they cannot see their own hats. There is also
a clock that everyone can see. Every five minutes the
players who can figure out the colour of their hats
can tell it to an instructor, and the first player/s who
figure out the colour correctly get a prize. A wrong
guess involves a punishment so big that no-one wants
to just take a chance and guess. The players are
prevented from communicating with each other in any
way.
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Assuming that eleven of the players have a red hat what
happens?
Nothing happens since every time five minutes has passed the
players are exactly as wise as in the beginning of the game; no
new information has appeared/been created.
Since nothing happens the experiment is cancelled.
Next day the experiment is repeated.
But then the instructor announces to the players that at least
one of them has a red hat.
This is hardly big news to the players but in about an hour all
the players with a red hat know that they have a red hat, and
get the prize.
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Let us see what happens. It is very useful to introduce some
notation. It is also useful (as almost always) to study some simple
cases first.

We denote a knowledge operator by K .
We denote the statement ’at least i players are wearing a red
hat’ by Ri .
Now we can formalise the statement ’player3 knows that at
least 1 player is wearing a red hat’ by P3K R1.
The simplest case (consistent with the instructor’s
announcement) is when exactly one player has a red hat;
without loss of generality let the player be P1.
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Before the statement P1 sees only blue hats, and all other
players see exactly one red hat.
Formally, P1¬K R1, and Pi K R1 whenever i 6= 1.
After the announcement everyone else’s knowledge remains the
same but now player1’s knowledge is given by P1K R1.
And as player1 sees only blue hats s/he can figure out that
s/he has a red hat.
Assuming that the announcement is made when the minute
hand is at noon and that the first time to tell one’s knowledge
to the instructor is five past, it takes five minutes once the
game is over.
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Assume next that player1 and player2 have red hats.
Before the announcement every player’s state of knowledge is
that there is at least one red hat; of course some players know
that there are at least two red hats but this is of no
significance since the players’ inference starts from the
instructor’s announcement which is R1.
It is enough to focus on the inference of those players who
have a red hat.
Before the announcement P1K R1 and P2K R1, and also
P1¬K (P2K R1) and P2¬K (P1K R1).
After the announcement, however, P1K (P2K R1) and
P2K (P1K R1).
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Consequently, each of the players can infer that if the other
player sees only blue hats s/he will tell the colour of his/her
hat to the instructor at five past.
Because this is not the case at five past each player can infer
that the other player saw exactly one red hat that must be
his/hers.
Then at ten past these two players tell the instructor that they
have red hats.
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Assume that player1, player2 and player3 have red hats.
Let us study the situation from the point of view of player1
because it is analogous to the other red hatters.
Now player1 knows that each of the other red hatters knows
that everyone knows that there is at least one red hat.
But player1 does not know that player2 knows that player3
knows that there is at least one red hat.
This is because from player1’s point of view it is possible that
s/he has a blue hat.
In this case player2, who regards it as possible that s/he has a
blue hat, cannot know that player3 knows that there is at least
one red had (since player3 does not know the colour of his/her
hat).
Formally, P1¬K (P2K (P3K R1)).
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After the announcement R1 becomes common knowledge, or
P1K (P2K (P3K R1)).
Now each of the red hatters regards it as possible that there
are only two red hats.
In this case the two red hatters would tell the instructor the
colours of their hats at ten past.
But this does not happen, and so the three red hatters know
that there must be three red hats (the only other possibility),
and they tell the colours to the instructor at fifteen past.
Continuing the logic, at 55 past the eleven red hatters of the
original problem know the colour of their hats and the game
ends.
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Example3. Gale-Shapley algorithm

Consider marriage market where the objective is to match men
and women in pairs.
Design a game that has desirable features.
Let there be n men ja n women.
Each player has a preference ordering (ranking) over the
potential partners.
This is what they tell the market maker.
Denote men by lower case and women by upper case letters.
An example is given below.
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Men’s preferences

A B C D
a→ 3 4 1 2
b→ 2 3 4 1
c → 1 2 3 4
d → 3 4 2 1

Women’s preferences

A ↓ B ↓ C ↓ D ↓
a 1 1 3 2
b 2 2 1 3
c 3 3 2 1
d 4 4 4 4
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Study one possible solution.
a A
b B
c C
d D

3,1
3,2
3,2
1,4

where the first number is the man’s ranking of the woman and the
second the woman’s ranking of the man.

This is not a stable matching because D can propose b that
they form a pair.
D ranks b the third and b ranks D the first.
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Definition. A stable matching is sucht that there is no man and
woman who consider each other better than their
current partners.

The following pairs form a stable matching
a C
b D
c A
d B

1,3
1,3
1,3
4,4

There are two problems: i) Figure out whether a stable
matching exists, and ii) how to find a stable matching.
Gale-Shapley-algorithm takes care of both problems.
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1 Each man makes a proposal to a woman who is number 1 in
his ranking. Women who get at least two proposals select the
highest ranking man on a waiting list and tell other men never
to contact her again.

2 Each rejected man makes a proposal to a woman who is
number 2 in his ranking. The women choose the highest
ranking man on the waiting list and tell others not to make a
proposal any more.The men on the waiting list from the
previous round are regarded as proposers.

3 Each rejected man makes a proposal to a woman whom he
ranks next highest. The women choose the highest ranking
man on the waiting list and tell others not to make a proposal
any more.

4 Continue as above.
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Does this process always stop?
Does it produce a stable matching?
The answer is positive to both questions.
Let us first study an example.
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Men’s preferences
A B C D

a→ 1 2 3 4
b→ 1 4 3 2
c → 2 1 3 4
d → 4 2 3 1

Women’s preferences

A ↓ B ↓ C ↓ D ↓
a 3 3 2 3
b 4 1 3 2
c 2 4 4 1
d 1 2 1 4
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First round produces 
a,b∗

c

d

A
B
C
D

where the asterisk denotes a rejectedd man. No-one proposes
woman C .
Second round produces

a
c

d∗,b

A
B
C
D
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Third round produces 
a

c∗,d

b

A
B
C
D

Fourth round produces 
a∗,c
d

b

A
B
C
D
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Fifth round produces 
c

d ,a∗

b

A
B
C
D

Sixth round produces 
c
d
a
b

A
B
C
D
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Theorem. Gale-Shapley-algorithm ends after a finite number of
rounds.

Proof. If a woman has several proposals there exists a
woman without any proposals because there are equal
numbers of men and women. If a woman ever gets a
proposal she has a man on a waiting list from there
on. But as long as there is a woman without a
proposal there is a man who keeps on making
proposals, and the algorithm necessarily ends in a
state where each woman has a proposal. QED
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Theorem. Gale-Shapley-algorithm terminates in a stable
matching.

Proof. Assume that in the final stage there exist pairs (r ,R)
and (s,S) such that r regards S as better than his
current partner R . This means that at some stage r
has proposed to S . But then S has rejected r at
some point. All men on the waiting list of S are
better than r after she has rejected r .
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Algorithm can work also so that women propose to men.
When men propose one gets a man-optimal matching.
When women propose one gets a woman-optimal matching.
If these coincide there exists only one stable matching.
When men propose their optimal strategy is to propose
according to their preferences, but in some cases women can
benefit from strategic behaviour.
More insight to the G-S-algorithm can be found in Gura and
Maschler 2008 “Insights into game theory”.
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Exercise

Consider the following preferences.

A B C D
a→ 4 2 1 3
b→ 2 1 3 4
c → 3 1 4 2
d → 2 4 1 3

A ↓ B ↓ C ↓ D ↓
a 1 2 4 2
b 2 4 2 1
c 3 1 1 3
d 4 3 3 4

Determine the stable matchings when men propose and when
women propose.
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