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There are no wages but there is heterogeneity in rewards.

The model is in continuous time.

There is an island with a continuum of agents, say, the unit
interval.

The only thing to consume is coconuts which grow in palms
that vary in height.

The higher a coconut is the more costly it is to get.

All the coconuts are the same, though, and if an agent
consumes at time t his/her utility is u(t) = y and otherwise
zero.
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If an agent collects a coconut at time t the cost is c(t).

His/her utility at time τ is given by

V (τ) =
∫

∞

τ

e−rt (u(t)− c(t))dt

The cost of getting a coconut is given by a distribution
function F with support [c, c̄].

To facilitate trading we make an extreme assumption that an
agent cannot consume the coconut that s/he has him/herself
collected.

To consume the agents have to �nd a partner who also has a
coconut and this does not happen instantaneously.

Let us further simplify by assuming that the agents can carry
around at most one coconut.
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Meetings are not modelled explicitly but it is assumed that
when the measure of agents looking for a partner is e then
they meet at a �ow rate b(e), i.e., the expected time until the
�rst meeting is exponentially given with parameter b(e).

Another way to say this is that meetings happen with
Poisson-rate b(e). Heuristically this means that within a short
interval 4t the probability of meeting exactly one agent is
given by b(e)4t, and the probability of meeting more than
one agent is of type o(4t), i.e., negligible.

We make an assumption that amounts to positive externalities in
the (unmodelled) meeting technology

Assumption. b′(e) > 0.

Coconut trees are encountered with an exogenous Poisson-rate
a.
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The optimal behaviour of an agent depends on the cost of
getting a coconut and the measure of agents looking for
partners.

Heuristically, if the cost is low and there are many agents
around an agent �nds it pro�table to get a coconut.

We model the strategy p : [c, c̄]× [0,1]→ [0,1] as a probability
of acquiring the coconut.1

With these assumptions we can formulate the value-functions,
or Bellman equations, of the agents.

1We could also let the strategy to depend on time but for simplicity we

focus on a steady state.
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They can be in two states, namely they may possess a coconut
and wait for a partner or they can wait to �nd an opportunity
to get a coconut.

Denote the expected utility in the former state by VE and in
the latter state by VU .

Let us derive the expression for VE explicitly, and leave the
other one as an exercise

VE (τ) =
∫

∞

τ

e−rt [u(t)− c(t)]dt

= [∆τb(e(τ)) +o(∆τ)] [y +VU(τ)]

+[1−∆τb(e(τ))−o(∆τ)]e−r∆τ

∫
∞

τ+∆τ

e−rt [u(t)− c(t)]dt

The �rst equality is just the de�nition where one has to
understand that u(t) and c(t) get a strictly positive value only
if consumption or getting a coconut takes place.

Notice also that we do not yet integrate over possible values of
c .
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The second equality follows from considering a small time
interval ∆τ .

During it the agents changes the state with probability
∆τb(e(τ)).

As a result the agent consumes and get utility y and changes
his/her state the value of which is given by VU(τ).

The magnitude o(τ) signi�es the case that our agent meets
several partners.

With a complementary probability the agent does not meet a
partner and his/her expected utility is the same expressed in
the �rst equality expect that time has run ∆τ forward and
must be accordingly discounted.
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The last expression can be given in a more convenient form

VE (τ) = [∆τb(e(τ)) +o(∆τ)] [y +VU(τ)]

+[1−∆τb(e(τ))−o(∆τ)]e−r∆τVE (τ + ∆τ)

Our aim is to derive a di�erential equation for the value
function, and for that purpose we express the above chain of
equations as

VE (τ)−VE (τ + ∆τ) =

[∆τb(e(τ)) +o(∆τ)]
[
y +VU(t)− e−r∆τVE (τ + ∆τ)

]
+e−r∆τVE (τ + ∆τ)−VE (τ + ∆τ)
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Divide everything by ∆τ and take a limit to get the following
expression

lim∆τ→0

VE (τ)−VE (τ + ∆τ)

∆τ
=

lim∆τ→0

[
b(e(τ)) +

o(∆τ)

∆τ

][
y +VU(τ)− e−r∆τVE (τ + ∆τ)

]
+lim∆τ→0

e−r∆τ −1

∆τ
VE (τ + ∆τ)

After the limiting process we get

−dVE (τ)

dτ
= b(e(τ)) [y +VU(τ)−VE (τ)]− rVE (τ)

where we have assumed that the value function is continuously
di�erentiable.
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The last term can be derived by the L'Hospital's rule:

lim∆t→0

e−r∆t −1

∆t
=

d
dt (e−rt −1)

d
dt t

|t=0 =
−re−rt

1
|t=0 =−r

or by using the approximation e−r∆t = 1− r∆t.

In a steady state the time derivative of the value function is
zero and we get the standard asset value equation

rVE = b(e) [y +VU −VE ] (1)

Notice that focussing on a steady state means that none of
the variables depends on time.
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The other value function can be derived analogously once one
understands that the optimal strategy of collecting coconuts is
a treshold strategy such that all coconut with costs c ≤ c∗ are
collected and the rest are not.

rVU = a
∫ c∗

c
[−c +VE −VU ]g(c)dc (2)

We still have to �gure out the treshold.

It is clear that it must be given by the indi�erence condition

c∗ = VE −VU (3)

because collecting a coconut amounts to changing the state
from 'unemployment' to 'employment' and at the treshold an
agent has to be indi�erent.

Notice that, once again, the value functions can be only
implicitly determined.
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The �nal piece of the model to be determined is e, the
measure of active agents.

In a steady state the in�ow of agents to e must equal the
out�ow at any point of time or

a(1− e)G (c∗) = b(e)e (4)

where the LHS signi�es that proportion a of the 'unemployed'
�nd a coconut and proportion G (c∗) of the coconuts is
acceptable and the RHS signi�es that of the 'employed'
proportion b(e) �nds a partner.

Since the determination of e involves b(e) there is a possibility
of multiple solutions.
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Solving the value functions (1) and (2), and inserting to (3)
one �nds the threshold

c∗ =
b(e)y +a

∫ c∗
c cg(c)dc

r +b(e) +aG (c∗)
(5)

and from (4) one can 'solve'

e =
aG (c∗)

aG (c∗) +b(e)
(6)
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Equations (5) and (6) implicitly de�ne the steady state values
of the treshold and the measure of traders. As far as these two
relationships hold simultaneously there exists an equilibrium.
The problem is that in c− e-space both curves are upward
sloping and there may be a multiplicity of equilibria.

Expression (5) is equivalent to

c∗ [r +b(e) +aG (c∗)]−b(e)y −a
∫ c∗

c
cg(c)dc = 0

Totally di�erentiating it one gets

dc∗ {r +b(e) +aG (c∗) + c∗ag (c∗)− c∗ag (c∗)}

+de
{
c∗b′(e)−b′(e)y

}
= 0

from which one gets
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dc∗

de
=

b′(e)(y − c∗)

r +b(e) +aG (c∗)
> 0

Analogously one gets from (6)

de∗

dc
=

a(1− e)g (c∗)

b(e) + eb′(e) +aG (c∗)
> 0

There are several things to notice.
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First, e = 0 always constitutes an equilibrium with c∗ = c ; if
no-one collects coconuts then no-one will trade them and then
it is optimal not to collect them, and e = 0.

Second, in all equilibria there are too few agents searching or e
is too low because c∗ is too low.

This can be shown formally although it is quite cumbersome.

The heuristics are clear though; an individual decision to
increase c∗ causes a positive external e�ect as there will be
more traders in the economy.

Individual decision making does not take this e�ect into
account.
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Example

All production costs are the same c .

Function b(e) = βe where β > 0.

We determine the Bellman equations, e and the probability
that a production opportunity is accepted γ .

The asset value equations are given by (notice the bad practice
of 'e' denoting two di�erent things)

rVe = βe (y +Vu−Ve)

rVu = amaxγγ (Ve −Vu− c)
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Flow condition for employment in a steady state is given by

βee = aγ(1− e)

from which we get

γ =
βe2

a(1− e)

There are three possible cases: γ = 0, 0< γ < 1 or γ = 1.

It is clear that the �rst one is always a solution: If no one
produces then it does not pay to produce because eating
requires exchange.

If γ = 1 it must be the case that Ve −Vu ≥ c .

This is equivalent to e ≥ rc
β(y−c) (make sure you can derive

this).

If the inequality is to the other direction we get the necessary
condition for γ = 0.
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More interesting is when 0< γ < 1.

Then Ve −Vu = c .

Then it is immediate that Vu = 0, and Ve −Vu = βey
r+βe .

Analogously to the previous cases we also have e = rc
β(y−c) .
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In (γ,e)-space we can see that there are three steady states.

First is (0,0).

The second is
(

βe2

a(1−e) ,
rc

β(y−c)

)
.

And the third one is

(
1,
−a+
√

a2+4aβ

2β

)
where the value of e is

got from the expression for γ which is unity here.

These steady states can be Pareto-ranked so that the higher
ones are better than the lower ones.
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