Trading mechanisms

January 28, 2015

- S sellers each with unit supply of an indivisible good; value it at zero.
- B buyers each with unit demand; value a good at unity.
- The buyers contact the sellers, and then trade.
- The key questions are how are prices decided and how do the contacts happen.
- We study three price formation mechanisms: Auction, bargaining and posted prices.
- The economy proceeds in discrete time; discounting with factor $\delta \in(0,1)$.
- Agents who trade are replaced by identical agents.

Auction

- Buyers contact the sellers randomly; each seller with the same probability.
- When there are very many buyers and sellers a seller expects k buyers with probability $e^{-\theta} \frac{\theta^{k}}{k!}, \theta=\frac{B}{S}$.
- If a solitary buyer meets a seller s/he offers a price that just makes the seller indifferent.
- If several buyers meet a seller they bid up the price until they are indifferent between trading and searching for a new partner.
- Focus on steady state equilibrium.
- Evaluate buyers' and sellers' value functions, W and Y, at the end of a period.
- We need not figure out actual prices: If only one buyer contacts a seller the buyer makes an offer that leaves the seller indifferent between accepting and rejecting i.e., waiting till next period.
- If there are two or more buyers competing for a good then the price will be so high that the buyers are indifferent between buying at the price and waiting till next period.
- Now the value functions are given by

$$
\begin{gathered}
W=\delta\left\{e^{-\theta}(1-Y)+\left(1-e^{-\theta}\right) W\right\} \\
Y=\delta\left\{e^{-\theta} Y+\theta e^{-\theta} Y+\left(1-e^{-\theta}-\theta e^{-\theta}\right)(1-W)\right\}
\end{gathered}
$$

- Solving the equations explicitly is straightforward

$$
\begin{gathered}
W=\delta \frac{e^{-\theta}}{1-\delta \theta e^{-\theta}} \\
Y=\delta \frac{1-e^{-\theta}-\theta e^{-\theta}}{1-\delta \theta e^{-\theta}}
\end{gathered}
$$

Bargaining

- The seller chooses randomly one of the buyers who contacts him/her and they split the available surplus in half.
- Denote a buyer's value function by U and that of a seller by V.
- Notice that a symmetric contact strategy means that each seller is contacted with the same probability or the expected queue length at each seller is θ.
- When a buyer and seller negotiate about the price the end result is the division of the surplus $1-U-V$ in half.
- The probability that a buyer is selected as a bargaining partner is given by

$$
\sum_{i=0}^{\infty} e^{-\theta} \frac{\theta^{i}}{i!} \frac{1}{i+1}=\frac{1}{\theta} \sum_{i=1}^{\infty} e^{-\theta} \frac{\theta^{i}}{i!}=\frac{1-e^{-\theta}}{\theta}
$$

- A seller finds a bargaining partner with probability $1-e^{-\theta}$.
- The value functions look as follows

$$
\begin{gathered}
U=\delta\left\{\frac{1-e^{-\theta}}{\theta}\left(U+\frac{1}{2}(1-U-V)+\frac{\theta-1+e^{-\theta}}{\theta} U\right\}\right. \\
V=\delta\left\{\left(1-e^{-\theta}\right)\left(V+\frac{1}{2}(1-U-V)+e^{-\theta} V\right\}\right.
\end{gathered}
$$

- Solving these equations explicitly

$$
\begin{aligned}
& U=\delta \frac{1-e^{-\theta}}{\theta\left(2-\delta-\delta e^{-\theta}\right)+\delta\left(1-e^{-\theta}\right)} \\
& V=\delta \frac{\theta\left(1-e^{-\theta}\right)}{\theta\left(2-\delta-\delta e^{-\theta}\right)+\delta\left(1-e^{-\theta}\right)}
\end{aligned}
$$

Evolutionary stability

- One would perhaps like to compare the above trading mechanisms.
- An obvious criterion would be efficiency but it has no bite as equal number of trades takes place under either scenario.
- One way is to consider disequilibrium dynamics.
- To that end assume that there are two market places; in one trades are consummated by bargaining and in the other by auction.
- Let proportion x of the buyers and proportion y of the sellers participate in the bargaining market and the rest in the auction market.
- Now the formulas of the life time utilities remain of the same form but the expected queue lengths change to $\alpha=\frac{x}{y} \theta$ and $\beta=\frac{1-x}{1-y} \theta$.
- If there is an equilibrium where the two markets exist simultaneously then the buyers have to fare equally well in both market, and sellers, too.
- Formally, this means that $U=W$ and $V=Y$ or

$$
\begin{gathered}
\delta \frac{1-e^{-\alpha}}{\alpha\left(2-\delta-\delta e^{-\alpha}\right)+\delta\left(1-e^{-\alpha}\right)}=\delta \frac{e^{-\beta}}{1-\delta \beta e^{-\beta}} \\
\delta \frac{\alpha\left(1-e^{-\alpha}\right)}{\alpha\left(2-\delta-\delta e^{-\alpha}\right)+\delta\left(1-e^{-\alpha}\right)}=\delta \frac{1-e^{-\beta}-\beta e^{-\beta}}{1-\delta \beta e^{-\beta}}
\end{gathered}
$$

- These are equivalent with

$$
\begin{gathered}
\frac{1-e^{-\alpha}}{\alpha\left(2-\delta-\delta e^{-\alpha}\right)+\delta\left(1-e^{-\alpha}\right)}-\frac{e^{-\beta}}{1-\delta \beta e^{-\beta}}=0 \\
\frac{\alpha\left(1-e^{-\alpha}\right)}{\alpha\left(2-\delta-\delta e^{-\alpha}\right)+\delta\left(1-e^{-\alpha}\right)}-\frac{1-e^{-\beta}-\beta e^{-\beta}}{1-\delta \beta e^{-\beta}}=0
\end{gathered}
$$

where the first one is called the buyers' equilibrium curve and the latter one the sellers' equilibrium curve.

- Both determine y as a function of x.
- Somewhat lengthy analysis that can be found in Lu and McAfee (1996 Games and Economic Behavior, 15, 228-254) shows that the curves are as in the following figure.
- Notice that naturally the shape of the curves depends on the overall ratio of buyers to sellers.

(a) $\theta<\theta_{1}$

(c) $\theta=\theta_{0}$

(b) $\theta_{1} \leq \theta \leq \theta_{2}, \theta \neq \theta_{0}$

- First, one can see that the curves do not intersect at interior points which means that the two markets cannot coexist.
- Thus, there are two equilibria; either everyone consummates the trades by bargaining or everyone consummated the trades by auction.
- To better understand the relative performance of the two trading mechanisms one considers dynamics.
- In this case replicator dynamics turns out convenient. T
- The basic idea is that each period small proportion of entering agents adapt; they go to the market where their type did better in the previous period.
- Consequently, one can analyse what happens even in disequilibrium states.
- The idea of the dynamics is to find a stable equilibrium.
- An equilibrium is stable if small perturbations away from it do not upset it.
- If the economy is not in equilibrium but close to stable equilibrium then the dynamics goes towards this equilibrium.
- The figures show the direction of movement.
- It is almost immediate that only the auction market constitutes a stable equilibrium.
- The exception is the case when $\theta=\theta_{0}$ which is the value that makes $B E$ - and $S E$-curves coincide on the diagonal.
- Then no equilibrium is stable.

(a) $\theta<\theta_{1}$

(c) $\theta=\theta_{0}$

(b) $\theta_{1} \leq \theta \leq \theta_{2}, \theta \neq \theta_{0}$

(d) $\theta>\theta_{2}$
- The sellers compete in prices which they announce to the buyers.
- Based on the prices the buyers contact the sellers.
- A seller with a lower price than his/her competitors can expect more buyers than his/her competitors.
- Then all the sellers do not experience the same queue lengths like in the analysis of bargaining and auction.
- On top of that it is unclear how to model price posting.
- The standard way would be to assume that some price is an equilibrium price, and then consider a single seller who deviates to different price, calculate the optimal deviation, and impose that it has to be the original price.
- But a single seller is of measure zero and it is difficult to come up with a story how the queue length that s/he expects is determined.
- Let us see how this problem can be solved.
- Focus on symmetric equilibrium and assume that the equilibrium price is p.
- Evaluate the sellers' and buyers' life-time utilities at the end of a period and denote them by S and B

$$
\begin{gathered}
S=\delta\left\{e^{-\theta} S+\left(1-e^{-\theta}\right) p\right\} \\
B=\delta\left\{\sum_{k=0}^{\infty} e^{-\theta} \frac{\theta^{k}}{k!} \frac{1}{k+1}(1-p)+\left(1-\sum_{k=0}^{\infty} e^{-\theta} \frac{\theta^{k}}{k!} \frac{1}{k+1}\right) B\right\} \\
=\delta\left\{\frac{1-e^{-\theta}}{\theta}(1-p)+\frac{\theta-1+e^{-\theta}}{\theta} B\right\}
\end{gathered}
$$

- One can solve

$$
\begin{gathered}
S=\delta \frac{1-e^{-\theta}}{1-\delta e^{-\theta}} p \\
B=\delta \frac{1-e^{-\theta}}{\theta(1-\delta)+\delta\left(1-e^{-\theta}\right)}(1-p)
\end{gathered}
$$

- One still has to determine the equilibrium value of p.
- Assume that proportion z of sellers deviates for one period and posts price p^{\prime}.
- Proportion σ of buyers contact the deviators and $1-\sigma$ the non-deviators.
- Meeting rate for deviating sellers $\theta^{\prime}=\frac{\sigma}{z} \theta$ and for non-deviating sellers $\widetilde{\theta}=\frac{1-\sigma}{1-z} \theta$.
- These are determined by the buyers' indifference

$$
\begin{aligned}
& \frac{1-e^{-\theta^{\prime}}}{\theta^{\prime}}\left(1-p^{\prime}\right)+\frac{\theta^{\prime}-1+e^{-\theta^{\prime}}}{\theta^{\prime}} B \\
& =\frac{1-e^{-\widetilde{\theta}}}{\widetilde{\theta}}(1-p)+\frac{\widetilde{\theta}-1+e^{-\widetilde{\theta}}}{\widetilde{\theta}} B
\end{aligned}
$$

- For the deviating sellers' programme we need to know how σ depends on p^{\prime}.
- Solving

$$
\begin{gathered}
p^{\prime}=1+\frac{\theta^{\prime}-1+e^{-\theta^{\prime}}}{\theta^{\prime}} B \\
-\frac{\theta^{\prime}}{1-e^{-\theta^{\prime}}}\left\{\frac{1-e^{-\tilde{\theta}}}{\widetilde{\theta}}(1-p)+\frac{\tilde{\theta}-1+e^{-\tilde{\theta}}}{\widetilde{\theta}} B\right\}
\end{gathered}
$$

- Insert this into the sellers' objective

$$
\max _{\sigma} e^{-\theta^{\prime}} S+\left(1-e^{-\theta^{\prime}}\right) p^{\prime}
$$

and derive the first order condition, as $\frac{\partial \theta^{\prime}}{\partial \sigma}=\frac{\theta}{z}$ and $\frac{\partial \widetilde{\theta}}{\partial \sigma}=-\frac{\theta}{1-z}$,

$$
\begin{gathered}
-e^{\theta^{\prime}} S / z+e^{\theta^{\prime}} / z+\left(1-e^{\theta^{\prime}}\right) \frac{\theta B}{z(1-z) \widetilde{\theta}^{2}}-e^{\theta^{\prime}} \frac{\theta^{\prime} B}{(1-z) \tilde{\theta}}-e^{\theta^{\prime}} \frac{B}{z} \\
+\left[e^{\theta^{\prime}} \frac{\theta^{\prime}}{(1-z) \widetilde{\theta}}-\left(1-e^{\theta^{\prime}}\right) \frac{\theta}{z(1-z) \widetilde{\theta}^{2}}\right](1-p)=0
\end{gathered}
$$

- Inserting the expressions of lifetime utilities and then imposing equilibrium condition $p^{\prime}=p$, and then letting z go to zero one gets (a candidate) equilibrium price

$$
p=\frac{\left(1-\delta e^{-\theta}\right)\left(1-e^{-\theta}-\theta e^{-\theta}\right)}{\left(1-e^{-\theta}\right)\left(1-\delta \theta e^{-\theta}\right)}
$$

- This price is just a local maximum; for equilibrium one has to consider large deviations, too.
- We do this a little later.
- Inserting the equilibrium price into the expressions for life time utilities gives

$$
\begin{gathered}
B=\delta \frac{e^{-\theta}}{1-\delta \theta e^{-\theta}} \\
S=\delta \frac{1-e^{-\theta}-\theta e^{-\theta}}{1-\delta \theta e^{-\theta}}
\end{gathered}
$$

- One immediately finds that $W=B$ and $Y=S$.
- This means that auction and posted price are equivalent trading mechanisms utilitywise.
- This is a pretty neat result but only applies with homogeneous buyers and sellers provided that they are risk neutral.
- Finally, let us show that the above p is an equilibrium price.
- Let us also adopt the so called competitive market technique where it is assumed that if someone deviates $s /$ he experiences queue length that guarantees the buyers the same utility as they would get when no-one deviates, so called market utility.
- Assume that a seller deviates to price q.
- Buyers approach the deviator with rate γ such that

$$
(1-q) \frac{1-e^{-\gamma}}{\gamma}+\frac{\gamma-1+e^{-\gamma}}{\gamma} B=(1-p) \frac{1-e^{-\theta}}{\theta}+\frac{\theta-1+e^{-\theta}}{\theta} B
$$

- Solving for q one finds that the deviator expects profit

$$
\begin{gathered}
\left(1-e^{-\gamma}\right) q+e^{-\gamma} S= \\
1-e^{-\gamma}+\left(\gamma-1+e^{-\gamma}\right) B-\gamma \frac{e^{-\theta}\left[\theta(1-\delta)+\delta\left(1-e^{-\theta}\right)\right]}{\left(1-e^{-\theta}\right)\left(1-\delta \theta e^{-\theta}\right)} \frac{\left(1-e^{-\theta}\right)}{\theta} \\
\gamma \frac{\theta-1+e^{-\theta}}{\theta} \delta \frac{e^{-\theta}}{1-\delta \theta e^{-\theta}}+e^{-\gamma} S
\end{gathered}
$$

which is equivalent to

$$
\begin{gathered}
1-e^{-\gamma}+\left(\gamma-1+e^{-\gamma}\right) B- \\
\gamma \frac{e^{-\theta}}{1-\delta \theta e^{-\theta}}+e^{-\gamma} S
\end{gathered}
$$

- Let us study the magnitude of this expression, and denote it by $f(\gamma)$.
- Notice first that $f(0)=S>0$ and $f(\infty)>0$.
- The first derivative is
$f^{\prime}(\gamma)=e^{-\gamma}+\left(1-e^{-\gamma}\right) B-\frac{e^{-\theta}}{1-\delta \theta e^{-\theta}}-e^{-\gamma} S$, and the second derivative is $f^{\prime \prime}(\gamma)=-e^{-\gamma}+e^{-\gamma} B+e^{-\gamma} S<0$.
- Thus, f is concave and the unique zero of its derivative gives its maximum value.
- Inserting $\gamma=\theta$ into the derivative yields

$$
\begin{gathered}
e^{-\theta}+\left(1-e^{-\theta}\right) \delta \frac{e^{-\theta}}{1-\delta \theta e^{-\theta}}-\frac{e^{-\theta}}{1-\delta \theta e^{-\theta}} \\
-e^{-\theta} \delta \frac{1-e^{-\theta}-\theta e^{-\theta}}{1-\delta \theta e^{-\theta}}=0
\end{gathered}
$$

- This means that the optimal deviation is such that the expected queue length is θ; but there is just one price that generates that queue lenght namely p.

