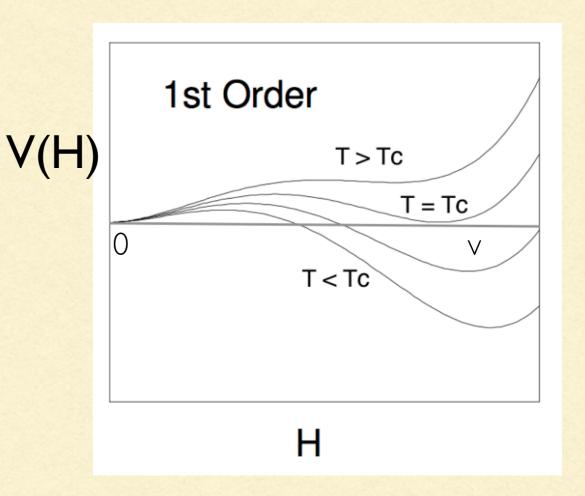
Electroweak Phase Transition Dynamics

Niyati Venkatesan

Ph.D. student, University of Jyväskylä


Supervisor: Kimmo Kainulainen

with the support of The Magnus Ehrnrooth Foundation; The Ellen & Arturi Nyyssönen Foundation;

and The Vilho, Yrjö & Kalle Väisälä Foundation

The electroweak phase transition

- The universe transitions from $\langle \phi \rangle = 0$ to $\langle \phi \rangle = v$.
- $T \sim 100 GeV, t \sim 10^{-12} s.$
- Universe filled with quark gluon plasma.
- EWPT is a crossover in the MSM, but first order in many extensions!

First Order Phase Transition

Bubbles!

- Necessitates BSM (typically dark sector) physics
- Source of matter-antimatter asymmetry
- Gravitational wave signal might be observable by LISA!

How fast do the bubbles expand?

The bubble wall velocity is a measurable parameter of the gravitational wave signal.

It also affects the generation of matter-antimatter asymmetry!

Can we calculate the wall velocity for specific particle physics models?

The evolution of the distribution function in the semiclassical approximation is described by the Boltzmann equation:

$$(\partial_t + v_g \partial_z + F_z \partial_{k_z}) f_i = C[f_i]$$

The transition is driven by a scalar field ϕ . Its equation of motion is

$$\Box \phi + \frac{\partial V(\phi)}{\partial \phi} + \sum_{i} \frac{dm_i^2}{d\phi} \int \frac{d^3p}{(2\pi)^3 2E_p} f_i(p, x) = 0.$$

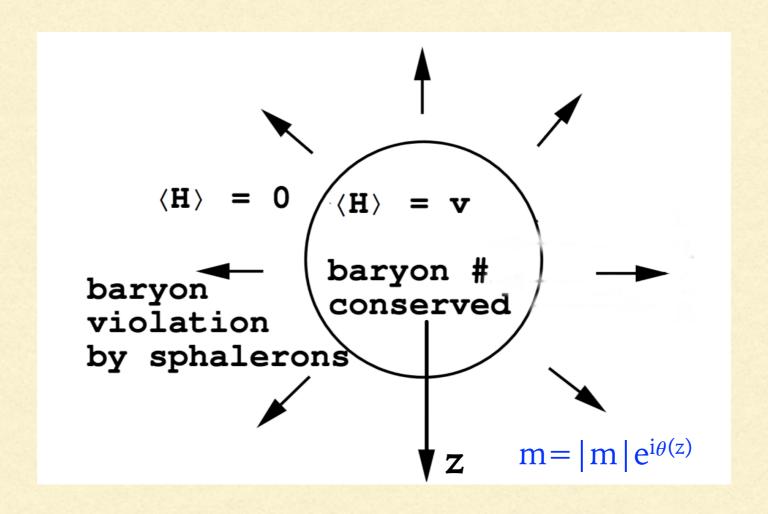
Inserting $f = f_0 + \delta f$, we get

$$\Box \phi + \frac{\partial V(\phi, T)}{\partial \phi} = -\sum_{i} \frac{dm_i^2}{d\phi} \int \frac{d^3p}{(2\pi)^3 2E_p} \delta f.$$

The CP-even perturbation away from equilibrium sources the friction.

Baryogenesis

Why is there more matter than antimatter in the universe?


Unexplained by the Standard Model and ACDM!

Electroweak Baryogenesis

- First order EWPT: a possible fulfilment of Sakharov's baryogenesis conditions?
 - Baryon number violation: sphalerons at high T
 - C and CP-symmetry violation: MSM + BSM physics
 - out-of-equilibrium conditions: first-order phase transition
- Sphalerons: non-perturbative B violation in the MSM

Sakharov, 1967;

McLerran, Shaposhnikov, Turok & Voloshin, 1991; Shaposhnikov, 1994

Thank you!

How EWBG works

- CP-violation generates a chiral asymmetry in front of the wall.
- Sphalerons convert the chiral asymmetry to baryon asymmetry in front of the wall.
- Sphalerons are shut off behind the wall if v>1.1T, so the asymmetry is preserved.

McLerran, Shaposhnikov, Turok & Voloshin, 1991; Shaposhnikov, 1994; Moore, 1998