

# Deep learning for automatic speech recognition

Mikko Kurimo

Department for Signal Processing and Acoustics Aalto University

# Mikko Kurimo

Associate professor in **speech and language processing** 

Background from machine learning algorithms and pattern recognition systems

PhD 1997 at TKK on **speech recognition with neural networks** 

Research experience in several top speech groups:

- Research Centers: IDIAP (CH), SRI (USA), ICSI (USA)
- Universities: Edinburgh, Cambridge, Colorado, Nagoya

Head of Aalto **speech recognition research group +** several national and European speech and language projects

Research topics:

 Speech recognition, language modeling, speaker adaptation, speech synthesis, translation, information retrieval from audio and video



# **Contents of this talk**

1.Applications of Automatic Speech Recognition (ASR)

2.Building blocks in ASR systems

3.Deep neural networks (DNN) for acoustic models (AM)

4.Deep neural networks (DNN) for language models (LM)



## **Using Automatic Speech Recognition (ASR)**





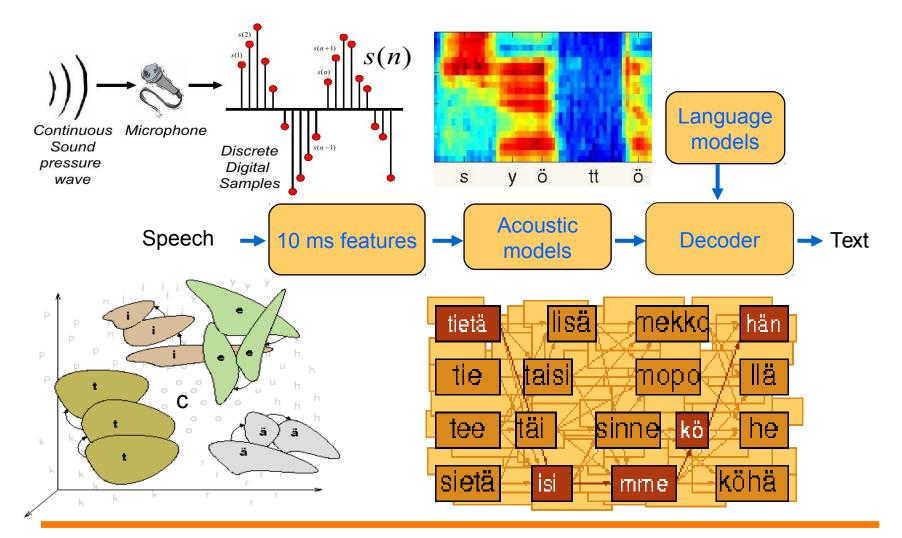
Mapping human speech to text or commands.

Has quickly become popular via voice search and virtual assistants in phones (Google, Siri etc).

Other applications: subtitling or indexing video recordings and streams, robots, toys, games, dictation, speech translation, disabled users, language learning and other education



#### **Building blocks in ASR systems**





## **ASR performance depends on:**

·Training and development data:

· Quantity and suitability

Recording and noise:

• Microphone and distance

·Speakers and speaking styles:

- · Speaker changes
- · Clarity and style

·Language styles:

- · Grammatical vs colloquial
- · Planned vs spontaneous
- · Non-standard vocabulary





## Why deep learning is needed in ASR?

1. Acoustic models (AM)

- complicated density functions in time and frequency

- variability between speakers
- variability between styles
- 2. Language models (LM)

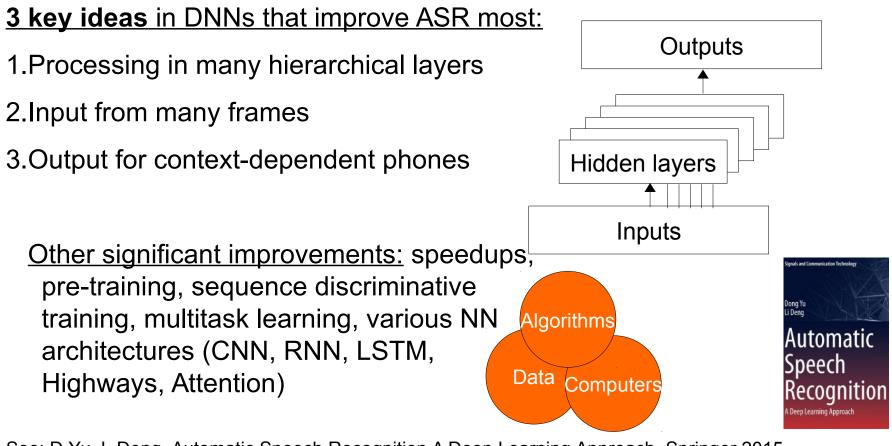
- complicated dependencies at various levels: syntax, semantics, pragmatics

- long-range dependencies
- spontaneous speech is hard





#### Analysis of DNNs in acoustic models (AM)



See: D.Yu, L.Deng. Automatic Speech Recognition A Deep Learning Approach. Springer 2015.



#### **Unsolved research problems for DNN AM**

- 1. Adaptation into new situations with little data (1,2,5)
- 2. Far field microphones, noisy and reverberant conditions (3,4)
- 3. Accented and dialect speech (5,6)
- 4. Spontaneous, non-fluent, and emotional speech (1,6)
  - (1) M.Kurimo, S.Enarvi, O.Tilk, M.Varjokallio, A.Mansikkaniemi, T.Alumäe. Modeling under-resourced languages for speech recognition. Language Resources and Evaluation, pp.1—27, 2016.
  - (2) P.Smit, J.Leinonen, K.Jokinen, M.Kurimo. Automatic Speech Recognition for Northern Sámi with comparison to other Uralic Languages. Proc. IWCLUL 2016.
  - (3) H.Kallasjoki. Feature Enhancement and Uncertainty Estimation for Recognition of Noisy and Reverberant Speech. PhD thesis. Aalto University, 2016.
  - (4) U.Remes. Statistical Methods for Incomplete Speech Data. PhD thesis. Aalto University, 2016.
  - (5) P.Smit, M.Kurimo. Using stacked transformations for recognizing foreign accented speech. Proc. ICASSP 2011.
  - (6) R.Karhila, A.Rouhe, P.Smit, A.Mansikkaniemi, H.Kallio, E.Lindroos, R.Hildén, M.Vainio, M.Kurimo. Digitala: An augmented test and review process prototype for high-stakes spoken foreign language examination. In Show and Tell at Interspeech 2016.



Aalto University

## **Deep learning in language models (LM)**

Steps taken from conventional LMs to DNNs:

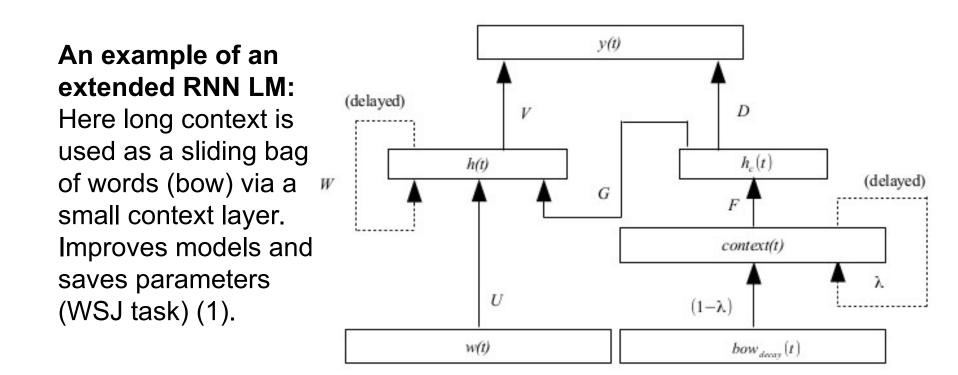
- 1. Smoothed and pruned N-gram LMs (e.g. modified Kneser-Ney, Varigrams) (1,2)
- 2. Continuous space models using N-gram features (e.g. Maximum Entropy LMs) (3,4)
- 3. Neural Network LMs with input on different time scales (e.g. Recurrent NNs, Long Short Term Memory) (5)
- (1) V.Siivola, M.Creutz, M.Kurimo. Morfessor and VariKN machine learning tools for speech and language technology. Proc. Interspeech 2007.
- (2) T.Hirsimäki, J.Pylkkönen, M.Kurimo. Importance of high-order n-gram models in morph-based speech recognition. IEEE Trans. on Audio, Speech and Language Processing, 17(4), 2009.
- (3) V.Siivola, A.Honkela. A state-space method for language modeling. Proc. ASRU 2003.
- (4) T.Alumäe, M.Kurimo. Domain adaptation of maximum entropy language models. Proc. ACL 2010.
- (5) S.Enarvi, M.Kurimo. TheanoLM An Extensible Toolkit for Neural Network Language Modeling. Proc. Interspeech 2016.



#### **Research problems in DNN LM**

- Input & Output: What are the basic modeling units (words, morphemes, letters) and their most effective and scalable embeddings (1,2)
- **2. Network structure**: How to take into account both short-term (syntax, n-grams) and long-term (topics, referencing) dependences (3)
- (1) M.Kurimo, S.Enarvi, O.Tilk, M.Varjokallio, A.Mansikkaniemi, T.Alumäe. Modeling under-resourced languages for speech recognition. Language Resources and Evaluation, 2016.
- (2) M.Varjokallio, M.Kurimo, S.Virpioja. Class n-gram models for very large vocabulary speech recognition of Finnish and Estonian. Proc. SLSP 2016.
- (3) A.Haidar, M.Kurimo. Recurrent Neural Network Language Model With Incremental Updated Context Information Generated Using Bag-of-Words Representation. Proc. Interspeech 2016.





(1) A.Haidar, M.Kurimo. <u>Recurrent Neural Network Language Model With Incremental Updated</u> <u>Context Information Generated Using Bag-of-Words Representation</u>. Proc. Interspeech 2016.

(2) S.Enarvi, M.Kurimo. TheanoLM - An Extensible Toolkit for Neural Network Language Modeling. Proc. Interspeech 2016.



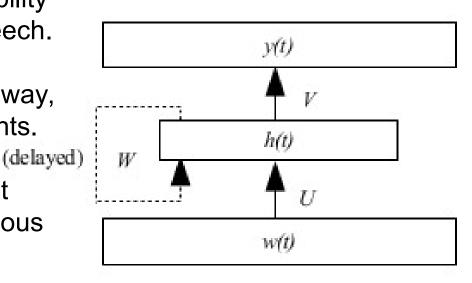
# **Recurrent Neural Network LM**

A statistical LM that gives a probability distribution of the next word in speech.

Represents words in a distributed way, as non-linear combination of weights.

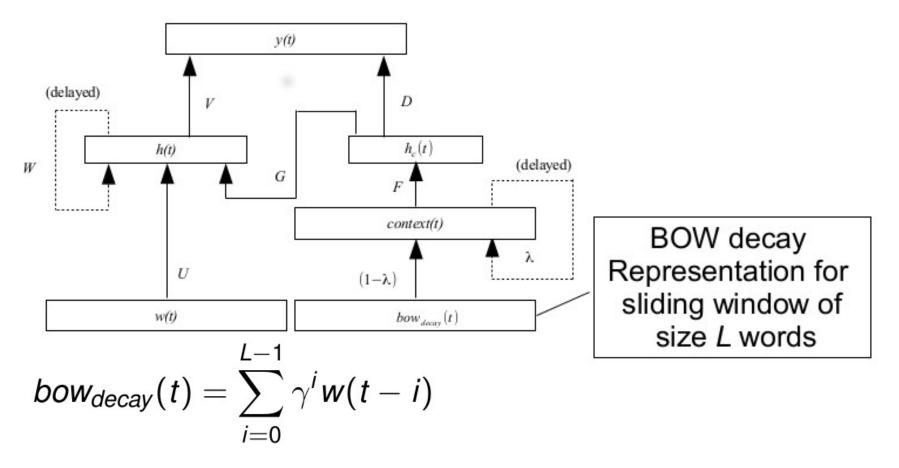
Remembers history by taking input from the hidden states of the previous time steps.

Trained by stochastic gradient descent with backpropagation through time algorithm.



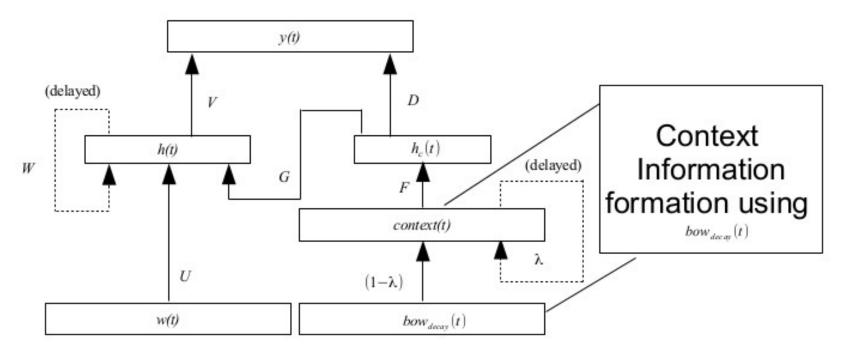


## **Proposed RNN-BOW LM: new input**





#### **Proposed RNN-BOW LM: linear context vector**

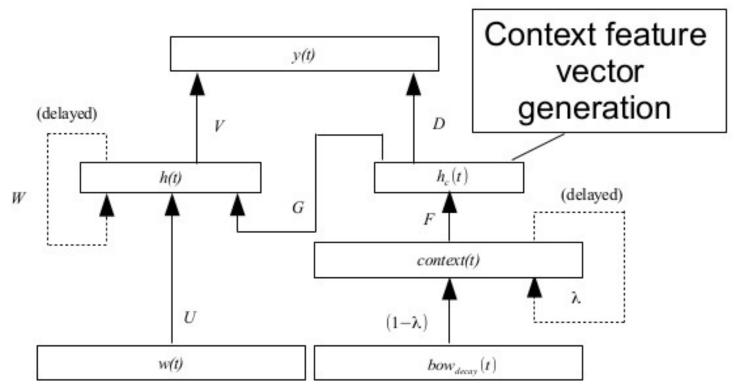


The context information vector context(t) is updated as:

$$context(t) = \lambda context(t - 1) + (1 - \lambda)bow_{decay}(t)$$



#### **Proposed RNN-BOW LM: non-linear context layer**



 $h_c(t) = f(Fcontext(t))$ 

where f() is sigmoid and F is a weight matrix



# **Computing the output of RNN-BOW LM**

The **hidden layer** *h* takes input from h(t-1), word w(t) and the **context feature layer**  $h_c(t)$ :

$$h(t) = f(Uw(t) + Wh(t-1) + Gh_c(t))$$
(8)

where f() is sigmoid and U, W and G are weight matrices The **output layer** y takes input from h(t) and  $h_c(t)$ :

$$y(t) = g(Vh(t) + Dh_c(t))$$
(9)

where g() is soft-max and V and D are weight matrices



| Language Model | $H(H_c)$ | PPL   | WER  |
|----------------|----------|-------|------|
| KN5            | -        | 248.0 | 12.8 |
| RNN            | 200 (-)  | 226.2 | 12.0 |
| RNN-BOW        | 190 (10) | 218.8 | 11.7 |
| RNN+KN5        | 200 (-)  | 191.6 | 11.8 |
| RNN-BOW+KN5    | 190 (10) | 183.0 | 11.3 |

Word error rate (WER) % and perplexity (PPL) on 1 M words Wall Street Journal speech corpus with and without class layer.

| Language Model | $H(H_c)$ | PPL   | WER  |
|----------------|----------|-------|------|
| KN5            | -        | 248.0 | 12.8 |
| RNN            | 200 (-)  | 215.6 | 12.0 |
| RNN-BOW        | 190 (10) | 207.0 | 11.7 |
| RNN+KN5        | 200 (-)  | 183.4 | 11.7 |
| RNN-BOW+KN5    | 190 (10) | 176.6 | 11.1 |

RNN-BOW requires less parameters and training, but beats RNN significanly.



A.Haidar, M.Kurimo. *Recurrent Neural Network Language Model With Incremental Updated Context Information Generated Using Bag-of-Words Representation.* Proc. Interspeech 2016.

# ASR demos today

- 1. Raw transcription of speech:
  - 1. Parliament sessions
  - 2. Television programs
- 2. Dictation and personal speech recordings:
  - 1. Offline ASR service at FIN-CLARIN and AaltoASR http://tinyurl.com/aaltoasr
  - 2. Online ASR demo
- 3. Speech-to-speech machine translation:
  - 1. Travel phrases (EMIME demo)
  - + Audio Description by Automatic Multimodal Content Analysis (ADAMCA project)



#### **Contact:**

#### Mikko Kurimo mikko.kurimo@aalto.fi

http://spa.aalto.fi/en/research/research\_groups/speech\_recognition/demos/ http://tinyurl.com/aaltoasr

#### **Demos in YouTube:**

https://www.youtube.com/channel/UCY4NOvOgKz9-x7rR\_kkb51Q