Syntax-based Language Modelling with Recurrent Neural Network Grammars

Austin Matthews, Alon Lavie, Graham Neubig, Chris Dyer

•

Language Technologies Institute

austinma@cs.cmu.edu

Recurrent Neural Network Grammars

Operation Sequence Model of Trees

Choose next action conditioned on stack, generated terminals, and action history.

Terminals				als	Stack Action
					NT(S)
					(S NT(NP)
					(S (NP GEN(The)
The				The	(S (NP The GEN(hungry)
		The	hur	ngry	(S (NP The hungry GEN(cat)
	The	hun	gry	cat	(S (NP The hungry cat REDUCE
	The	hun	gry	cat	(S (NP The hungry cat) NT(VP)
	The	hun	gry	cat	(S (NP The hungry cat) (VP GEN(meows)
The	hungry	cat	t meows		(S (NP The hungry cat) (VP meows REDUCE
The	hungry	ungry cat		ows	(S (NP The hungry cat) (VP meows) GEN(.)
The hungry ca		cat m	at meows .		(S (NP The hungry cat) (VP meows) . REDUCE
The hu	ngry	cat m	eow	s.	(S (NP The hungry cat) (VP meows) .)

- Simulates tree generation in a top-down, left-to-right fashion
- Maintains an explicit stack of (partial) constituents
- Learns a composition function that composes all elements on the stack up to the most recent open parenthesis into one vector representation

Marginalization

Importance sampling

RNNGs give us a model of p(tree, sentence), but often we want to compute p(sentence), marginalizing over trees.

$$\begin{split} p(s) &= \sum_{t \in \mathcal{T}} p(s,t) \\ &= \sum_{t \in \mathcal{T}} p(s,t) \cdot \frac{q(t|s)}{q(t|s)} & \text{Multiply by 1} \\ &= \sum_{t \in \mathcal{T}} q(t|s) \cdot \frac{p(s,t)}{q(t|s)} & \text{Rearrange} \\ &= \mathbb{E}_{t \sim q(t|s)} \frac{p(s,t)}{q(t|s)} & \text{Definition of expectation} \\ &\approx \sum_{i=1}^N \frac{p(s,t_i)}{q(t_i|s)} & \text{Monte Carlo approximation} \end{split}$$

• Use a discriminative parser (e.g. Berkeley, Stanford) to sample trees t and their probabilities $q(t \mid s)$.

Allows RNNGs to be compared to or used in place of non-syntactic LMs

Source Conditioning

RNNG Translation Models

Attention, which is now standard in NMT, can be used to turn an RNNG LM into a translation model.

Language Modeling Results

Marginalized Perplexity on Tree Banks

Evaluated perplexity on the Penn Tree Bank and Chinese Tree Bank using importance sampling marginalization.

Translation Results

Marginalized Perplexity on Translation

Evaluated on WMT TR-EN, and BTEC ZH-EN

Turkish-English

Linear 148.3

RNNG 141.1

Chinese-English

Linear 11240.3

RNNG 11044.6

BLEU Scores

Standard evaluation metric for translation

Turkish-English

Linear 15.2

RNNG 15.8

Chinese-English

Linear 21.3

RNNG