Helsinki, Turku and Uppsala @ WMT

Jörg Tiedemann & Robert Östling, University of Helsinki Fabienne Cap & Sara Stymne, Uppsala University Filip Ginter & Jenna Kanerva, University of Turku

Factored Phrase-Based Models

Multiple translation paths + morphological generation

- translation of surface words
- open-class words replaced with lemmas
- translation of morphological features

Factored Phrase-Based Models

Multiple translation paths + morphological generation

- translation of surface words
- open-class words replaced with lemmas
- translation of morphological features

Re-inflection models

Sara will tell you more ...

Factored Phrase-Based Models

Multiple translation paths + morphological generation

- translation of surface words
- open-class words replaced with lemmas
- translation of morphological features

Re-inflection models

Sara will tell you more ...

More data

OPUS, back-translations, crawled data

		time for wordalign		
newstest 2015	BLEU	real	CPU	
GIZA++	13.65	38,514s	_	
fast_align	13.56	682s	8,344s	
efmaral	14.10	370s	895s	
+ OPUS	14.81	_	_	
+ alternatives	15.55	2,630s	6,599s	
+ WWW-LM	16.98	_	_	
retuned	18.11	_	_	
back-translated	14.78	954s	2,606s	
+ OPUS,	18.22	2,758s	7,187s	

		time for wordalign		
newstest 2015	BLEU	real	CPU	
GIZA++	13.65	38,514s	_	
fast_align	13.56	682s	8,344s	
efmaral	14.10	370s	895s	
+ OPUS	14.81	_	_	
+ alternatives	15.55	2,630s	6,599s	
+ WWW-LM	16.98	_	_	
retuned	18.11	_	_	
back-translated	14.78	954s	2,606s	
+ OPUS,	18.22	2,758s	7,187s	

		time for wordalign		
newstest 2015	BLEU	real	CPU	
GIZA++	13.65	38,514s	_	
fast_align	13.56	682s	8,344s	
efmaral	14.10	370s	895s	
+ OPUS	14.81	_	_	
+ alternatives	15.55	2,630s	6,599s	
+ WWW-LM	16.98	_	_	
retuned	18.11	_	_	
back-translated	14.78	954s	2,606s	
+ OPUS,	18.22	2,758s	7,187s	

		time for wordalign			
newstest 2015	BLEU	real	CPU		
GIZA++	13.65	38,514s	_		
fast_align	13.56	682s	8,344s		
efmaral	14.10	370s	895s		
+ OPUS	14.81	_	_		
+ alternatives	15.55	2,630s	6,599s		
+ WWW-LM	16.98	_	_		
retuned	18.11	_	_		
back-translated	14.78	954s	2,606s		
+ OPUS,	18.22	2,758s	7,187s		

New Types of Data Sets

Synthetic training data

- Translate monolingual Finnish to English (using SMT)
- Morphology, compound splitting, placeholder prepos.
- Extremely useful in Neural MT, works also in PB-SMT

New Types of Data Sets

Synthetic training data

- Translate monolingual Finnish to English (using SMT)
- Morphology, compound splitting, placeholder prepos.
- Extremely useful in Neural MT, works also in PB-SMT

Alternative movie subtitles

Mitä on tekeillä?

- Mitä ihmettä te teette?

Ei tässä hätää . En tiennyt , olen pahoillani .

Mutta tajuan kyllä tyttöjäkin . Mutta ymmärrän kyllä tyttöjäkin .

New Types of Data Sets

Synthetic training data

- Translate monolingual Finnish to English (using SMT)
- Morphology, compound splitting, placeholder prepos.
- Extremely useful in Neural MT, works also in PB-SMT

Alternative movie subtitles

Mitä on tekeillä?

- Mitä ihmettä te teette?

Ei tässä hätää . En tiennyt , olen pahoillani .

Mutta tajuan kyllä tyttöjäkin . Mutta ymmärrän kyllä tyttöjäkin .

Test set with two reference translations

Gappy Language Models

Document-level decoding with Docent

- n-gram language models over selected words
- selection based on PoS and dependency relations
- agreement issues even across sentence boundaries

Gappy Language Models

Document-level decoding with Docent

- n-gram language models over selected words
- selection based on PoS and dependency relations
- agreement issues even across sentence boundaries

Gappy Language Models

Document-level decoding with Docent

- n-gram language models over selected words
- selection based on PoS and dependency relations
- agreement issues even across sentence boundaries

WMT 2016 Results

	BLEU	BLEU	TER	unknown words	
English – Finnish	lower	cased		#tokens	#types
constrained - basic	13.3	12.7	0.782	1,582	862
constrained - factored	13.5	12.8	0.784	1,659	1,233
constrained - basic + back-translated	14.2	13.6	0.770	1,024	649
constrained + factored + back-translated	14.3	13.6	0.765	1,103	890
constrained - re-inflection	12.2	11.6	0.793		
unconstrained - basic	17.0	16.2	0.746	124	60
unconstrained - factored	16.6	15.7	0.744	804	593
unconstrained - basic + back-translated	17.1	16.4	0.752	544	305
	BLEU	BLEU	TER	unknown words	
Finnish – English	lower	cased		#tokens	#types
constrained - factored	20.5	19.3	0.706	2,655	2,004
unconstrained - factored	23.3	22.1	0.670	1,128	842

Example Translations

Input: A 9-year-old boy missing at Tampere was found

SMT: 9-vuosi Tampereella kadonnut vanhus löytyi

Reference: Tampereella karkuteillä ollut 9-vuotias poika löytyi

Input: The police organised a search at Tampere on Tuesday

evening because a 9-year old boy ran away.

SMT: Poliisi järjesti etsinnän Tampereella tiistai-iltana, koska 9-

vuotias poika juoksi karkuun.

Reference: Poliisilla on ollut etsintätehtävä 9-vuotiaan pojan

karkumatkan takia Tampereella tiistaina illalla.

Input: The boy started off from western Tampere with a friend,

and a missing person notice spread in social media.

SMT: Poika aloitti Länsi-Tampereella pois ystävän kanssa, ja

kadonneen henkilön ilmoitus levisi sosiaalisessa mediassa.

Reference: Länsi-Tampereelta kaverinsa kanssa liikkeelle lähtenyttä

poikaa koskeva katoamisilmoitus on levinnyt sosiaalisessa

mediassa.

Comparison to Neural MT

Input: A 9-year-old boy missing at Tampere was found

Neural MT: Pikkupoika löytyi Tampereelta

Reference: Tampereella karkuteillä ollut 9-vuotias poika löytyi

Input: The police organised a search at Tampere on Tuesday

evening because a 9-year old boy ran away.

Neural MT: Poliisi järjesti etsinnät Tampereella tiistaiiltana, koska

vanha poika juoksi karkuun.

Reference: Poliisilla on ollut etsintätehtävä 9-vuotiaan pojan

karkumatkan takia Tampereella tiistaina illalla.

Input: The boy started off from western Tampere with a friend,

and a missing person notice spread in social media.

Neural MT: Poika lähti liikkeelle Tampereen länsilaidalla ystävänsä

kanssa, ja kadonneen henkilön levisi sosiaalisessa

mediassa.

Reference: Länsi-Tampereelta kaverinsa kanssa liikkeelle lähtenyttä

poikaa koskeva katoamisilmoitus on levinnyt sosiaalisessa

UNIVERSITY OF HELSINKI