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Optimizing Recurrent Neural Network Models
● So, what’s the topic of this presentation?
● Optimizing Recurrent Neural Networks

○ Could mean many things:
○ Maybe optimizing the performance of these models on let’s say GPU?

■ Those matrix calculation tricks used by the deep-learning libraries?
■ Nope, don’t know much about that

■ But here’s a nice link from NVidia for those interested: 
https://devblogs.nvidia.com/parallelforall/optimizing-recurrent-neural-networks-cudnn-5/

○ So it must be about hyperparameter optimization then, right?
■ Well, yes. 
■ Complex theoretical methods to solve all problems related to model selection and tuning?
■ No, sorry.

https://devblogs.nvidia.com/parallelforall/optimizing-recurrent-neural-networks-cudnn-5/
https://devblogs.nvidia.com/parallelforall/optimizing-recurrent-neural-networks-cudnn-5/


Optimizing Recurrent Neural Networks #2
● So what will be presented?
● 1) A short introduction
● 2) TurkuNLP system for shared task on cross-lingual pronoun prediction

○ The task
○ The model
○ How the model came to be
○ How much does its architecture affect its performance
○ How much do a few hyperparameters affect its performance

● 3) A few closing words



The TurkuNLP Pronoun system
● TurkuNLP System for Cross-Lingual Pronoun Prediction (Luotolahti, Kanerva, 

Ginter, 2016)
● Took part in WMT16 Shared Task on CrossLingual Pronoun Prediction
● MT-related task
● A deep recurrent neural network architecture
● Achieves the best macro recall (official task metric) on all four language pairs
● Margin to the next best system ranges between less than 1pp and almost 12pp 

depending on the language pair



The Pronoun Prediction Task #1
● Translating pronouns across language poses problems for machine translation 

systems
● How is a pronoun, for example ‘That’ translated to another language given a 

circumstance?
● Can be seen as a subtask of machine translation
● The task contained four language pairs:

○ En-Fr
○ Fr-En
○ De-En
○ En-De

● And sufficiently parallel data for each one of the pairs



The Pronoun Prediction Task #2
● The task setting simulating a processing step in a machine translation system
● The data, for each sentence contains:

○ The original, tokenized, source sentence
○ Target sentence, lemmatized with POS-tags
○ REPLACE placeholder tokens for pronouns to be predicted in the target sentence
○ Alignments between source and target sequences

● The data is based on three different datasets:
○ The Europarl dataset (Koehn, 2005)
○ news commentary corpora (IWSLT15, NCv9),
○ TED corpus



The Pronoun Prediction Task #3
Typical training example:

Source:

That ’s how they like to live .

Target: 

ce|PRON etre ˆ |VER comme|ADV cela|PRON que|PRON REPLACE_3 
aimer|VER vivre|VER .|.



Our System
● Basically a deep recurrent neural network model with learned token-level 

embeddings, two layers of Gated Recurrent Units (GRUs), a dense network layer 
with rectified linear unit (ReLU) activation, and a softmax layer

● Altogether 16 GRUs
● Embeddings for:

○ Source Pronoun,
○ Source Token,
○ Target Lemma
○ Target POS-tag
○ Target wordpos



Our System #2
● The network has 9 inputs

○ Source sentence token context to the right of the Pronoun and separately to the left

○ Target sentence lemma context to the right of the Pronoun to be predicted and separately to the 
left

○ Target sentence POS context to the right and to the left of the Pronoun to be predicted

○ Target sentence WordPOS context to the right and to the left and to the right of the Pronoun to be 
predicted

○ The source token aligned with the Pronoun to be predicted



Our system #3



Building The System
● While the model relies on learned embeddings instead of predefined set of 

features, a process similar to feature engineering takes place while designing the 
system architecture

● Design choices were made in a greedy manner and mostly the system was built 
additively, testing new features and adding the promising ones to the final system

● Not all design choice combinations were properly tested during the system 
development

● That is because of the huge search space, and also because of the fact we had 
limited time in our hands

● But let’s look at a few on the next slide
● Implemented in Keras

○ http://keras.io



Training and Tuning The System
● Only the training data provided by the shared task organizers was used
● Our primary submission is trained to optimize Macro Recall, the official metric 

for the task
○ Done by weighting the loss of the training examples relative to the frequencies of the classes, so 

that misclassifying a rare class is seen by the network as more serious mistake than misclassifying a 
common class.

○ Decision to do this was made on the last minute
○ We also delivered a contrastive system without

● We decided, mainly for congruency related reasons, to not carry out any language 
specific optimization for the models in the final submission
○ So the model parameters were the same for all language pairs in our submission



Training and Tuning The System #2
● The final model used for test set prediction was selected simply by its 

performance on the development set
● The final architecture of the system and the way training data was used was also 

selected on its performance on the development set
● All models were trained in the fantastic resource offered by CSC, the taito GPU 

cluster



The Effect of A Few Hyperparameters on the Model
● To illustrate the effect of the hyperparameter values on the model a few 

parameters were tested
● To use hyperbolic tangent activation instead of relu on the final dense layer 

decreases system performance on all language pairs by average of 5 pp
● The effect of modifying the size of the said last dense layer between yields 

differences on the order of 5 pp on all language pairs
● Swapping the GRU for LSTM generally decreases performance on all language 

pairs except French-English
● So, just these few simple hyperparameters affect the system performance quite 

dramatically



Feature Evaluation #1



Oh, okay
● So, this was to demonstrate that on a relatively typical neural model, much like 

those seen in MT-tasks, these choices matter surprisingly much
● And these were just a very few example parameters / design-choices
● There’s plenty:

○ Dropouts for RNNs
○ Dropout layers
○ Embedding sizes
○ Layer sizes
○ Regularization parameters
○ Batch sizes
○ ...



On Building Models
● As mentioned earlier, our modus operandi for building the system was a simple 

greedy, explorative and additive development
● That simply means we started small and simple, tried something and if it worked 

it was added in
● Parameters such as vector sizes were tested with very small scale grid searches 

during development
● Everything was tested against development set and overfitting was tried to be 

avoided by comparing loss with training and dev sets
● Very Simple Stuff!
● I have to admit that when you put it out there, it sounds very messy, raw and not 

too theoretically sound
○ Part of the messiness of the process is explained by our relative hurry to get the system done



On Building Models #2
● So, in a nutshell; for architectural types of decisions we just tried things, and for 

numerical parameters we basically did small grid searches
● While the approach just described doesn’t sound like something to write home 

about and most certainly isn’t a silver bullet for anything, something like this is a 
very typical tool of the trade

● Is that it? Is there nothing being done about this?
○ Yes, there is



Hyperparameter Optimization Methods for NNs
● Methods for optimizing parameters which are not part of the parameters to be 

learned by the model
● Grid Search

○ Brute force search through all relevant data points. Computationally intensive and subject to 
limitations on the feature space

● Random Search
○ Instead of doing a full search, search feature space by sampling. Uses fraction of the computational 

time for similar performance when compared to grid search (Bergstra & Bengio, 2012).

● Bayesian Optimization
○ Application of generic bayesian black-box optimization methods for neural network 

hyperparameters. (Snoek, 2012)

● Gradient based optimization methods 
○ (Maclaurin et al., 2015)



What about architectonic choices?
● What about network architecture?

○ An insane idea!
○ Endless search spaces

● Previous work exists:
○ The gradient method (Maclaurin et al., 2015) is able to optimize parts of network architecture
○ Genetic algorithms and reinforcement learning for creating neural networks (Stanley et al., 2002)
○ Genetic algorithms to create recurrent neural network topologies (Blanco et al., 2000)

● Of course none of these is able to create the modern fine-tuned monster networks
● Intuition, experience & experimentation still lives
● But maybe, just maybe, in the future



Thanks!

http://bionlp.utu.fi


