# A Short RNN talk

. . .

Juhani Luotolahti FinMT 2016 mjluot@utu.fi

#### Optimizing Recurrent Neural Network Models

- So, what's the topic of this presentation?
- Optimizing Recurrent Neural Networks
  - Could mean many things:
  - Maybe optimizing the performance of these models on let's say GPU?
    - Those matrix calculation tricks used by the deep-learning libraries?
    - Nope, don't know much about that
    - But here's a nice link from NVidia for those interested:

      https://devblogs.nvidia.com/parallelforall/optimizing-recurrent-neural-networks-cudnn-5/
  - So it must be about hyperparameter optimization then, right?
    - Well, yes.
    - Complex theoretical methods to solve all problems related to model selection and tuning?
    - No, sorry.

#### Optimizing Recurrent Neural Networks #2

- So what will be presented?
- 1) A short introduction
- 2) TurkuNLP system for shared task on cross-lingual pronoun prediction
  - The task
  - The model
  - How the model came to be
  - How much does its architecture affect its performance
  - How much do a few hyperparameters affect its performance
- 3) A few closing words

## The TurkuNLP Pronoun system

- TurkuNLP System for Cross-Lingual Pronoun Prediction (Luotolahti, Kanerva, Ginter, 2016)
- Took part in WMT16 Shared Task on CrossLingual Pronoun Prediction
- MT-related task
- A deep recurrent neural network architecture
- Achieves the best macro recall (official task metric) on all four language pairs
- Margin to the next best system ranges between less than 1pp and almost 12pp depending on the language pair

#### The Pronoun Prediction Task #1

- Translating pronouns across language poses problems for machine translation systems
- How is a pronoun, for example 'That' translated to another language given a circumstance?
- Can be seen as a subtask of machine translation
- The task contained four language pairs:
  - o En-Fr
  - o Fr-En
  - o De-En
  - o En-De
- And sufficiently parallel data for each one of the pairs

#### The Pronoun Prediction Task #2

- The task setting simulating a processing step in a machine translation system
- The data, for each sentence contains:
  - The original, tokenized, source sentence
  - Target sentence, lemmatized with POS-tags
  - REPLACE placeholder tokens for pronouns to be predicted in the target sentence
  - Alignments between source and target sequences
- The data is based on three different datasets:
  - The Europarl dataset (Koehn, 2005)
  - o news commentary corpora (IWSLT15, NCv9),
  - o TED corpus

#### The Pronoun Prediction Task #3

Typical training example:

Source:

That 's how they like to live.

Target:

ce|PRON etre ^ |VER comme|ADV cela|PRON que|PRON **REPLACE\_3** aimer|VER vivre|VER .|.

#### Our System

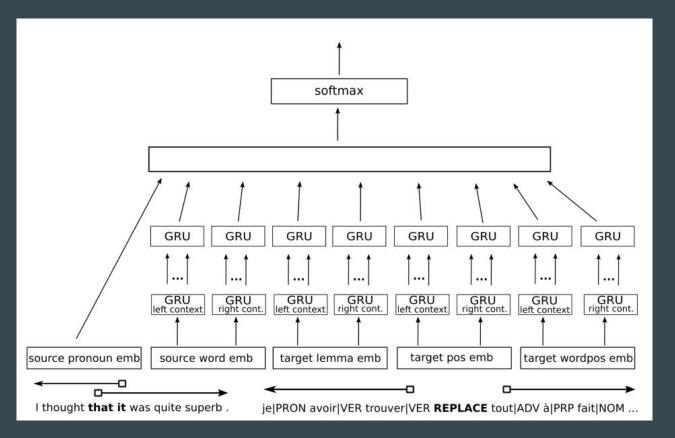
- Basically a deep recurrent neural network model with learned token-level embeddings, two layers of Gated Recurrent Units (GRUs), a dense network layer with rectified linear unit (ReLU) activation, and a softmax layer
- Altogether 16 GRUs
- Embeddings for:
  - Source Pronoun,
  - Source Token,
  - Target Lemma
  - Target POS-tag
  - Target wordpos

#### Our System #2

- The network has 9 inputs
  - Source sentence token context to the right of the Pronoun and separately to the left
  - Target sentence lemma context to the right of the Pronoun to be predicted and separately to the left
  - Target sentence POS context to the right and to the left of the Pronoun to be predicted
  - Target sentence WordPOS context to the right and to the left and to the right of the Pronoun to be predicted



# Our system #3



#### **Building The System**

- While the model relies on learned embeddings instead of predefined set of features, a process similar to feature engineering takes place while designing the system architecture
- Design choices were made in a greedy manner and mostly the system was built additively, testing new features and adding the promising ones to the final system
- Not all design choice combinations were properly tested during the system development
- That is because of the huge search space, and also because of the fact we had limited time in our hands
- But let's look at a few on the next slide
- Implemented in Keras
  - o http://keras.io

#### **Training and Tuning The System**

- Only the training data provided by the shared task organizers was used
- Our primary submission is trained to optimize Macro Recall, the official metric for the task
  - Done by weighting the loss of the training examples relative to the frequencies of the classes, so that misclassifying a rare class is seen by the network as more serious mistake than misclassifying a common class.
  - O Decision to do this was made on the last minute
  - We also delivered a contrastive system without
- We decided, mainly for congruency related reasons, to not carry out any language specific optimization for the models in the final submission
  - So the model parameters were the same for all language pairs in our submission

## Training and Tuning The System #2

- The final model used for test set prediction was selected simply by its performance on the development set
- The final architecture of the system and the way training data was used was also selected on its performance on the development set
- All models were trained in the fantastic resource offered by CSC, the taito GPU cluster

## The Effect of A Few Hyperparameters on the Model

- To illustrate the effect of the hyperparameter values on the model a few parameters were tested
- To use hyperbolic tangent activation instead of relu on the final dense layer decreases system performance on all language pairs by average of 5 pp
- The effect of modifying the size of the said last dense layer between yields differences on the order of 5 pp on all language pairs
- Swapping the GRU for LSTM generally decreases performance on all language pairs except French-English
- So, just these few simple hyperparameters affect the system performance quite dramatically

## Feature Evaluation #1

|                | De-En   |         | En-De   |         | Fr-En   |         | En-Fr   |         |
|----------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Architecture   | Macro R | Micro F |
| primary        | 73.91   | 75.36   | 64.41   | 71.54   | 72.03   | 80.79   | 65.70   | 70.51   |
| no stacking    | 65.63   | 75.98   | 61.84   | 73.37   | 68.84   | 77.74   | 70.00   | 74.26   |
| only in-domain | 59.18   | 75.36   | 50.72   | 66.06   | 57.80   | 74.09   | 58.09   | 65.15   |
| short context  | 61.29   | 73.50   | 65.66   | 71.80   | 65.84   | 79.59   | 69.27   | 70.51   |
| cross-sentence | 60.76   | 70.81   | 46.91   | 49.61   | 60.46   | 78.05   | 61.33   | 69.17   |
| contrastive    | 72.60   | 80.54   | 58.39   | 72.85   | 66.54   | 85.06   | 61.46   | 72.39   |
| no stacking    | 65.35   | 79.30   | 59.71   | 76.76   | 61.23   | 81.71   | 70.88   | 77.75   |

#### Oh, okay

- So, this was to demonstrate that on a relatively typical neural model, much like those seen in MT-tasks, these choices matter surprisingly much
- And these were just a very few example parameters / design-choices
- There's plenty:
  - Dropouts for RNNs
  - Dropout layers
  - Embedding sizes
  - Layer sizes
  - Regularization parameters
  - Batch sizes
  - o ...

## On Building Models

- As mentioned earlier, our modus operandi for building the system was a simple greedy, explorative and additive development
- That simply means we started small and simple, tried something and if it worked it was added in
- Parameters such as vector sizes were tested with very small scale grid searches during development
- Everything was tested against development set and overfitting was tried to be avoided by comparing loss with training and dev sets
- Very Simple Stuff!
- I have to admit that when you put it out there, it sounds very messy, raw and not too theoretically sound
  - Part of the messiness of the process is explained by our relative hurry to get the system done

## On Building Models #2

- So, in a nutshell; for architectural types of decisions we just tried things, and for numerical parameters we basically did small grid searches
- While the approach just described doesn't sound like something to write home about and most certainly isn't a silver bullet for anything, something like this is a very typical tool of the trade
- Is that it? Is there nothing being done about this?
  - Yes, there is

## Hyperparameter Optimization Methods for NNs

- Methods for optimizing parameters which are not part of the parameters to be learned by the model
- Grid Search
  - Brute force search through all relevant data points. Computationally intensive and subject to limitations on the feature space
- Random Search
  - Instead of doing a full search, search feature space by sampling. Uses fraction of the computational time for similar performance when compared to grid search (Bergstra & Bengio, 2012).
- Bayesian Optimization
  - Application of generic bayesian black-box optimization methods for neural network hyperparameters. (Snoek, 2012)
- Gradient based optimization methods
  - o (Maclaurin et al., 2015)

#### What about architectonic choices?

- What about network architecture?
  - An insane idea!
  - Endless search spaces
- Previous work exists:
  - The gradient method (Maclaurin et al., 2015) is able to optimize parts of network architecture
  - Genetic algorithms and reinforcement learning for creating neural networks (Stanley et al., 2002)
  - Genetic algorithms to create recurrent neural network topologies (Blanco et al., 2000)
- Of course none of these is able to create the modern fine-tuned monster networks
- Intuition, experience & experimentation still lives
- But maybe, just maybe, in the future

