A Short RNN talk

Juhani Luotolahti FinMT 2016
mjluot@utu.fi

Optimizing Recurrent Neural Network Models

e So, what’s the topic of this presentation?

e Optimizing Recurrent Neural Networks
o Could mean many things:
o Maybe optimizing the performance of these models on let’s say GPU?
m Those matrix calculation tricks used by the deep-learning libraries?
m Nope, don’t know much about that

m But here’s a nice link from NVidia for those interested:

https://devblogs.nvidia.com/parallelforall/optimizing-recurrent-neural-networks-cudnn-

o So it must be about hyperparameter optimization then, right?
m Well, yes.
m Complex theoretical methods to solve all problems related to model selection and tuning?
m No, sorry.

https://devblogs.nvidia.com/parallelforall/optimizing-recurrent-neural-networks-cudnn-5/
https://devblogs.nvidia.com/parallelforall/optimizing-recurrent-neural-networks-cudnn-5/

Optimizing Recurrent Neural Networks #2

e So what will be presented?
e 1) A short introduction

e 2) TurkuNLP system for shared task on cross-lingual pronoun prediction
o The task
o The model
o How the model came to be
o How much does its architecture affect its performance
o How much do a few hyperparameters affect its performance

e 3) A few closing words

The TurkuNLP Pronoun system

® TurkuNLP System for Cross-Lingual Pronoun Prediction (Luotolahti, Kanerva,
Ginter, 2016)

Took part in WMT16 Shared Task on CrossLingual Pronoun Prediction
MT-related task

A deep recurrent neural network architecture

Achieves the best macro recall (official task metric) on all four language pairs

Margin to the next best system ranges between less than 1pp and almost 12pp
depending on the language pair

The Pronoun Prediction Task #1

e Translating pronouns across language poses problems for machine translation
systems

e How is a pronoun, for example “That’ translated to another language given a
circumstances

e C(Can be seen as a subtask of machine translation

e The task contained four language pairs:

o En-Fr
o Fr-En
o De-En
o En-De

e And sufficiently parallel data for each one of the pairs

The Pronoun Prediction Task #2

e The task setting simulating a processing step in a machine translation system
e The data, for each sentence contains:

o The original, tokenized, source sentence
o Target sentence, lemmatized with POS-tags

(@)

REPLACE placeholder tokens for pronouns to be predicted in the target sentence
o Alignments between source and target sequences

e The data is based on three different datasets:

o The Europarl dataset (Koehn, 2005)
o news commentary corpora (IWSLT15, NCv9),
o TED corpus

The Pronoun Prediction Task #3

Typical training example:
Source:
That ’s how they like to live .
Target:

ce|PRON etre " [VER comme|ADV cela| PRON que|PRON REPLACE_3
aimer|VER vivre|VER .|.

Our System

e Basically a deep recurrent neural network model with learned token-level
embeddings, two layers of Gated Recurrent Units (GRUs), a dense network layer
with rectified linear unit (ReLU) activation, and a softmax layer

e Altogether 16 GRUs

e Embeddings for:

Source Pronoun,
Source Token,
Target Lemma
Target POS-tag
Target wordpos

O O O O O

Our System #2

e The network has 9 inputs

o Source sentence token context to the right of the Pronoun and separately to the left

o Target sentence lemma context to the right of the Pronoun to be predicted and separately to the

left
o Target sentence POS context to the right and to the left of the Pronoun to be predicted

o Target sentence WordPOS context to the right and to the left and to the right of the Pronoun to be
predicted

o0—

| thought that it was quite superb . je]PRON avoir|VER trouver|VER REPLACE tout|ADV a|PRP fait|NOM ...

Our system #3

u
GRU GRU U GRU G
source pronoun emb m target lemma emb target pos emb

o0— -0
| thought that it was quite superb . je|PRON avoir|VER trouver|VER REPLACE tout|ADV a|PRP fait|NOM ...

T T]

RU

Building The System

While the model relies on learned embeddings instead of predefined set of
features, a process similar to feature engineering takes place while designing the
system architecture

Design choices were made in a greedy manner and mostly the system was built
additively, testing new features and adding the promising ones to the final system
Not all design choice combinations were properly tested during the system
development

That is because of the huge search space, and also because of the fact we had
limited time in our hands

But let’s look at a few on the next slide

Implemented in Keras
o http://keras.io

Training and Tuning The System

e Only the training data provided by the shared task organizers was used
e QOur primary submission is trained to optimize Macro Recall, the official metric
for the task
o Done by weighting the loss of the training examples relative to the frequencies of the classes, so

that misclassifying a rare class is seen by the network as more serious mistake than misclassifying a

common class.
o Decision to do this was made on the last minute
o We also delivered a contrastive system without

e We decided, mainly for congruency related reasons, to not carry out any language
specific optimization for the models in the final submission

o So the model parameters were the same for all language pairs in our submission

Training and Tuning The System #2

e The final model used for test set prediction was selected simply by its
performance on the development set

e The final architecture of the system and the way training data was used was also
selected on its performance on the development set

e All models were trained in the fantastic resource offered by CSC, the taito GPU
cluster

The Effect of A Few Hyperparameters on the Model

To illustrate the effect of the hyperparameter values on the model a few
parameters were tested

To use hyperbolic tangent activation instead of relu on the final dense layer
decreases system performance on all language pairs by average of 5 pp

The effect of modifying the size of the said last dense layer between yields
differences on the order of 5 pp on all language pairs

Swapping the GRU for LSTM generally decreases performance on all language
pairs except French-English

So, just these few simple hyperparameters affect the system performance quite
dramatically

Feature Evaluation #1

Architecture MacroR MicroF | MacroR MicroF | MacroR Micro F | MacroR Micro F
primary 71.54 65.70 70.51
no stacking 1337 70.00 74.26
only in-domain . 66.06 58.09 65.15

short context . 71.80 69.27 70.51
cross-sentence 49.61 61.33 69.17
contrastive 58.39
no stacking 39.71

Oh, okay

e So, this was to demonstrate that on a relatively typical neural model, much like
those seen in MT-tasks, these choices matter surprisingly much
e And these were just a very few example parameters / design-choices

e There’s plenty:

o Dropouts for RNNs
Dropout layers
Embedding sizes
Layer sizes
Regularization parameters
Batch sizes

O O O O O O

On Building Models

As mentioned earlier, our modus operandi for building the system was a simple
greedy, explorative and additive development

That simply means we started small and simple, tried something and if it worked
it was added in

Parameters such as vector sizes were tested with very small scale grid searches
during development

Everything was tested against development set and overfitting was tried to be
avoided by comparing loss with training and dev sets

Very Simple Stuff!

I have to admit that when you put it out there, it sounds very messy, raw and not
too theoretically sound

o Part of the messiness of the process is explained by our relative hurry to get the system done

On Building Models #2

e So, in a nutshell; for architectural types of decisions we just tried things, and for
numerical parameters we basically did small grid searches

e While the approach just described doesn’t sound like something to write home
about and most certainly isn’t a silver bullet for anything, something like this is a
very typical tool of the trade

e I[sthatit? Is there nothing being done about this?

o Yes, there is

Hyperparameter Optimization Methods for NNs

Methods for optimizing parameters which are not part of the parameters to be
learned by the model
Grid Search

o Brute force search through all relevant data points. Computationally intensive and subject to

limitations on the feature space
Random Search
o Instead of doing a full search, search feature space by sampling. Uses fraction of the computational
time for similar performance when compared to grid search (Bergstra & Bengio, 2012).
Bayesian Optimization
o Application of generic bayesian black-box optimization methods for neural network
hyperparameters. (Snoek, 2012)

Gradient based optimization methods
o (Maclaurin et al., 2015)

What about architectonic choices?

e What about network architecture?
o An insane idea!
o Endless search spaces

e Previous work exists:

o The gradient method (Maclaurin et al., 2015) is able to optimize parts of network architecture
o Genetic algorithms and reinforcement learning for creating neural networks (Stanley et al., 2002)
o Genetic algorithms to create recurrent neural network topologies (Blanco et al., 2000)

e Of course none of these is able to create the modern fine-tuned monster networks
e Intuition, experience & experimentation still lives
e But maybe, just maybe, in the future

Thanks!

http://bionlp.utu.fi

