Modelling inflection for SMT into Finnish

Fabienne Cap, Sara Stymne, Jenna Kanerva, Marion Di Marco, Filip Ginter, Jörg Tiedemann

Uppsala, Turku, Stuttgart and Helsinki

Motivation: SMT into Finnish

English	Finnish	Case
the house	talo	nominative
of the house	$\mathrm{talo}_{\mathbf{\underline{n}}}$	genitive
the house	talo	accusative
part of the house	$\mathrm{talo}_{\mathbf{\underline{a}}}$	partitive
in the house	talossa	inessive
out of the house	talo	elative
into the house	taloon	illative
at the house	talo <u>lla</u>	adessive
away from the house	talo <u>lta</u>	ablative
to the house	talo <u>lle</u>	allative
as the house	talo <u>na</u>	essive
to become the house	talo <u>ksi</u>	translative
without the house	$\mathrm{talo} \underline{\mathrm{tta}}$	abessive
with houses	talo <u>in</u>	instructive
with (all his) houses	talo <u>ineen</u>	komitative

Inspiration

- System based on Fraser, Weller-Di Marco, Cap, Cahill Morphological inflection and word formation for German
 - Standard phrase-based SMT on modified data
 - Preprocessing: "lemmatize" the input and split compounds die<+ART><Def> Tür<+NN><Fem><Sg> ist<+V> blau<+ADJ><Pos>
 - Post-processing:
 - Predict inflection features using CRF Generate inflected forms using finite-state technology Merge compounds
- Adapted to **Finnish** in this work

Underspecified Representation in German

English	German	Analysed	Reduced
The	Die	die<+ART> <def><Fem><nom><sg><st></st></sg></nom></def>	die<+ART> <def></def>
door	Tür	Tür<+NN> <fem><nom><sg></sg></nom></fem>	$T\ddot{u}r<+NN>$
is	ist	sein<+V><3> <sg><pres><ind></ind></pres></sg>	ist < +V >
blue	blau	blau<+ADJ> <pos><Pred></pos>	blau<+ADJ> <pos></pos>
		.<+PUNCT> <norm></norm>	.<+PUNCT> <norm></norm>

- Use a rule based morphological analyser
- Remove **case** from nouns
- Remove **gender**, **gender**, **number** and **strength** from adjectives and determiners
- Leave morphological features that are inherent to the word

Translation Step, German

English	\rightarrow	Underspecified	Generated
the	\rightarrow	die<+ART>< Def > <neut><sg><nom></nom></sg></neut>	das
blue	\rightarrow	blau<+ADJ> <pos><neut><sg><wk><nom></nom></wk></sg></neut></pos>	blau <u>e</u>
house	\rightarrow	$Haus<+NN><\mathbf{Neut}><\mathbf{Sg}><\mathbf{Nom}>$	Haus
with	\rightarrow	mit<+PREP>< Dat >	mit
the	\rightarrow	$die<+ART><\mathbf{Def}><\mathbf{Fem}><\mathbf{Sg}><\mathbf{Dat}>$	$d\underline{\mathbf{er}}$
red	\rightarrow	rot < +ADJ > < Pos > < Fem > < Sg > < Wk > < Dat >	blau <u>en</u>
door	\rightarrow	$T\ddot{u}r<+NN><\mathbf{Fem}><\mathbf{Sg}><\mathbf{Dat}>$	Tür

German vs. Finnish

Feature	German	$\mathbf{Finnish}$
adjective noun agreement	√	√
inflects for gender	\checkmark	X
strong/weak inflection	\checkmark	X
use of articles	\checkmark	X
standalone prepositions	\checkmark	X
#cases	4	15 (!)

In the present work, we predict **cases** on Finnish **adjectives** and **nouns** Use placeholder prepositions Split and merge compounds

Placeholder Prepositions

```
which appeared in a spanish newspaper

| jotka julkaistiin espanjalaisessa päivälehdessä
Inessive
```

Placeholder Prepositions

Advantages of placeholder prepositions:

- lacktriangle better alignment of prepositions
- help CRF case prediction

Feature Prediction with CRFs

Finnish is challenging:

- 12-16 labels to assign
- not tractable on Europarl corpus
- instead: 1/4 of Europarl

Clean data re-prediction results (on devset):

placeholders	precision
no	69.17%
all	86.51%
some	83.59%

(For German: 94.29% accurracy)

Goals

- improve SMT quality
- reduce data sparsity
- better word alignment
- more coherent and fluent sequences
- produce unseen inflectional variants
- create standalone prepositions in order to improve word alignment to English, and thus improve SMT quality

SMT Experiments

- Data taken from WMT 2015
 - Training: Europarl
 - LM: Europarl
 - Dev/Test: News
- Preprocessing:
 - OmorFi rule-based morphological analyser
 - Data-driven method as back-off
 - Turku Finnish dependency parser
- Moses phrase-based SMT system
- Tuning of feature weights against lemmatised reference
- No compound processing in this variant

SMT Results

system	BLEU
baseline	9.60
no prepositions	9.39
all prepositions	9.74
some prepositions	9.89

SMT results

- Modest improvements on Bleu
- Manual evaluation of 100 sentences:
 - Baseline preferred: 24
 - Inflection system preferred: 41
- Around 300 novel word forms

Sample of merged compounds

From system with added compound processing:

kokonaisnousu	kokonainen nousu
total increase	total increase
ulkomaalaisia	ulko maalainen
foreigner	outside country-from
verensokeritasoa	veren sokeri taso
blood sugar level	blood (Gen) sugar level
suomalaiselokuva	suomalainen elo kuva
Finnish movie	Finnish living picture
ihmissalakuljetusbisnekseen	ihminen sala kuljetus bisnes
people smuggling business	human secret transportation business
maailmanmestaruuskilpailuissa	maa ilman mestaruus kilpailu
world championship competition	ground air championship competition
	(maailma / world)

Questions for the future

- Can these challenges be better solved by NMT than SMT?
- Can any of these techniques be useful for NMT?
 - Placeholder prepositions
 - Lemma representations
 - Compound processing
 - Case prediction
- Is there still a place for SMT?
 - Are these techniques worth persuing?