

Is Morphology Captured by Neural Machine Translation?

Arianna Bisazza

Motivation

Myth or fact?

- Neural language/translation models don't need feature engineering
- Continuous word representations capture fine-grained lexical properties
- Recurrent NNs capture long-range dependencies

History repeats itself

What's new

This time we're dealing with a (really) black box

- In pre-neural SMT we knew what could not work by model limitations (e.g. clearly flawed independence assumptions)
- Neural models have the potential to learn anything, but do they in practice?
- Harder to make explaining hypotheses, harder to test them

BLEU-like evaluation metrics becoming obsolete:

More correct translations not matching the reference

Today's talk

I - Overview of recent work investigating what linguistic phenomena are (not) captured by NMT models

II - On-going experiments on morphology features contained in NMT's internal representations

Part I

Many approaches

- (Semi-)manual error analysis
 - [Bentivogli & al. '16] detected reordering as a major strength of NMT vs PBMT

Analyzing human post-edited data

[Bentivogli, Bisazza, Cettolo, Federico. EMNLP 2016]

Aux	ciliary- SRC	main verb construction [aux:V]: in this experiment, individuals were shown hundreds of hours of YouTube videos	
(a)	HPB PE	in diesem Experiment , Individuen gezeigt wurden Hunderte von Stunden YouTube-Videos in diesem Experiment wurden Individuen Hunderte von Stunden Youtube-Videos gezeigt	X
	NMT PE	in diesem Experiment wurden Individuen hunderte Stunden YouTube Videos gezeigt in diesem Experiment wurden Individuen hunderte Stunden YouTube Videos gezeigt	√
Ver	b in su	bordinate (adjunct) clause [neb:V]:	
(b)	SRC	when coaches and managers and owners look at this information streaming	
		wenn Trainer und Manager und Eigentümer betrachten diese Information Streaming wenn Trainer und Manager und Eigentümer dieses Informations-Streaming betrachten	X
	NMT PE	wenn Trainer und Manager und Besitzer sich diese Informationen anschauen wenn Trainer und Manager und Besitzer sich diese Informationen anschauen	√
Pre	positio	onal phrase [pp:PREP det:ART pn:N] acting as temporal adjunct:	
	SRC	so like many of us, I 've lived in a few closets in my life	
(c)	SPB PE	so wie viele von uns, ich habe in ein paar Schränke in meinem Leben gelebt so habe ich wie viele von uns während meines Lebens in einigen Verstecken gelebt	X
	NMT PE	wie viele von uns habe ich in ein paar Schränke in meinem Leben gelebt wie viele von uns habe ich in meinem Leben in ein paar Schränken gelebt	X
Neg	gation	particle [adv:PTKNEG]:	
(d)	SRC	but I eventually came to the conclusion that that just did not work for systematic reasons	
	HPB PE	aber ich kam schlielich zu dem Schluss , dass nur aus systematischen Gründen nicht funktionieren aber ich kam schlielich zu dem Schluss , dass es einfach aus systematischen Gründen nicht funktioniert	√
	NMT PE	aber letztendlich kam ich zu dem Schluss , dass das einfach nicht aus systematischen Gründen funktioniert ich musste aber einsehen , dass das aus systematischen Gründen nicht funktioniert	e 🗶

Many approaches

- (Semi-)manual error analysis
 - [Bentivogli & al. '16] detected reordering as a major strength of NMT vs PBMT
- Provide linguistic annotation to the model, see if quality improves
 - mixed results; typically best on small data
- **Test suites**: design tasks needing linguistic competence to be solved contrastive sentence pairs [Linzen & al. '16][Sennrich'17][Burlot & Yvon '17]
- Examine NMT's representations by transfer learning
 - parser/morph.classifier trained on NMT encoded vectors [Shi & al.'16][Belinkov & al.'17][this talk]
- Modify the model to be more interpretable
 - (self-)attention, memory networks, representation erasure

Recurrent Memory Network

[Tran, Bisazza, Monz. NAACL 2016]

wie wirksam die daraus resultierende strategie sein wird , hängt daher von der genauigkeit dieser annahmen ab Gloss: how effective the from-that resulting strategy be will, depends therefore on the accuracy of-these measures Translation: how effective the resulting strategy will be, therefore, depends on the accuracy of these measures

Attention visualization on 100 word samples (de)

Recurrency vs. Attention

wie wirksam die daraus resultierende strategie sein wird , hängt daher von der genauigkeit dieser annahmen ab Gloss: how effective the from-that resulting strategy be will, depends therefore on the accuracy of-these measures Translation: how effective the resulting strategy will be, therefore, depends on the accuracy of these measures

Mixed findings

Positive evidence:

- NMT spots subj-verb & det-noun agreement errors with near-human accuracy [Sennrich'17]
- Parse tree extracted from NMT sentence vector with high accuracy [Shi&al.'16]

Negative/conflicting evidence:

- Memory-augmented LM doesn't give particular attention to agreement triggers [Tran & al.'16]
- Supervised morph. segmentation always better than unsupervised for LM perplexity [Vania & Lopez '17]
- BPE-based NMT vs. morphology-aware NMT: no clear winner [Burlot&Yvon'17]
- Source morphology better captured when target language is 'easier' even if morphologically poor [Belinkov & al.'16]
- Character-level NMT captures morphological features better than word-level NMT [Belinkov & al.'16] but is worse at agreement [Sennrich'17]

Part II

Morphological features in NMT embeddings

[Bisazza&Tump. On-going]

- Research Question: Does the model learn linguistic features to understand the source text and render it in the target language as we expect a human would?
- Approach: Transfer learning
- Data: French to Italian/German/English

Method (1)

- Train NMT on FR→IT, FR→DE, FR→EN
- NMT model: word-level, 3-layer LSTM, |h|=1000, |dict| = 30K
- Take out word embedding and LSTM state for each French token

Target word (train time) or

Sampled word (test time)

E'

DECODER

necessario incoraggiare

*BLEU scores: 32.6 (FR-IT), 25.4 (FR-DE), 39.4 (FR-EN)

Method (2)

- Build a linear classifier
- Labels from morphological lexicon
- Randomly split vocabulary into 2 non-overlapping parts (train/test)*
- Repeat 5 times and average

^{*}Essential step to avoid major overfitting!

Results (1)

- Are source words' morphological features encoded at all?
- Are some features better captured than others?
- Is morphology captured as a word type property or only in context?

Results (2)

- What's the impact of the target language?
- Does that vary among different morphological features?

The curious case of Gender

- An intrinsic property of nouns. Triggers agreement in other word classes (adjectives, articles, etc.)
- Present in French, Italian, German, but not in English
- Noun gender is often arbitrary, i.e. no semantic or syntactic value (cf. number and case)

The curious case of Gender (2)

 Explaining factors: language relatedness? gender marking in the target language?

The curious case of Gender (3)

- Explaining factors: language relatedness? gender marking in the target language?
- Experiment with FR-IT*: modified Italian without any gender marking
- Answer: Mostly target gender marking, but not only

Summary

- Nominal and verbal morphology captured to a large extent by NMT encoder, but only in context, not as a word type property
- Semantic features (number, tense) encoded much better than purely grammatical features (gender)
- Gender encoding dramatically affected by target language:
 - explaining factors: (1st) target-side marking, (2nd) language relatedness
 - gender learnt to some extent even without any target-side marking (!)

The field needs ...

Interpretable models

The field needs more interpretable models:

- to deliver reliable technology
- to detect limitations and address them
- for scientific interest (does neural translation process resemble human translation or not at all?)

Good linguistic hypotheses

The field *also* needs to ask the right questions:

- the advances of NMT force us more than ever to reason about the object of our study: languages!
- less quantitative, more qualitative evaluation: an age shift?
- much to be done in order to generalize current findings to different phenomena and different types of morphology

Thanks for your attention

Join me in Leiden!
I am looking for a talented PhD student.
Come talk to me if you're interested, or spread the word.

