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Setting the Scene: 2014-2015

research trend: more linguistics for statistical machine translation
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[Sennrich, TACL 2015] [Sennrich, Haddow, EMNLP 2015]

a new challenger appears: neural machine translation
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Edinburgh’s* WMT Results over the Years
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*NMT 2015 from U. Montréal: https://sites.google.com/site/acli6nmt/
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What Now?

do we still need linguistics for MT?
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Today’s Talk

areas in which linguistics is helping neural MT research

@ linguistically motivated (but non-linguistic) models
@ linguistically informed models
@ targeted evaluation of neural MT
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Linguistically Motivated Models

i (water)

source indoor temperature

N .
reference Raumklima {ﬂ river
[Bahdanau ot L., 2015 UNK X N

doan et al, 2015] Innenpool X ﬁﬁ Iake
[Sennrich, Hagdow, Birch, AcL 201621 INNEN+ temperatur

/7  sea

subword segmentation  logographic input  structural alignment biases
[Sennrich et al., 2016b] [Costa-jussa et al., 2017] [Cohn et al., 2016]
[Cai and Dai, 2017]
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Linguistic Structure is Coming Back to (Neural) MT

segmentation  word

None perusasian

BPE perusasi: an

Omorfi perus: asia: n
Morphology

[Sanchez-Cartagena and Toral, 2016]
[Tamchyna et al., 2017]

[Huck et al., 2017]

[Pinnis et al., 2017]

Rico Sennrich

Syntax
[Sennrich and Haddow, 2016]
[Eriguchi et al., 2016]
[Bastings et al., 2017]
[Aharoni and Goldberg, 2017]
[Nadejde et al., 2017]
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Targeted Evaluation of Neural MT
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What Hypotheses Do We Test?

hypothesis: \ model A obtains higher BLEU than model B on data set X
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What Hypotheses Do We Test?

hypothesis:
evidence:

model A is better model of translation than model B
model A obtains higher BLEU than model B on data set X
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What Hypotheses Do We Test?

hypothesis:
evidence:

model A is better model of translation than model B
model A obtains higher BLEU than model B on data set X

Tim Sheerman-Chase / CC BY 2.0
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What Hypotheses Do We Test?

many languages have long-distance interactions.
hypothesis: | model A produces disfluent output because it models these interactions poorly.
model B can better model long-distance interactions, and produces more fluent output.
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What Hypotheses Do We Test?

@ being able to test our hypotheses is beauty of empirical NLP
@ complex, interesting hypotheses need targeted evaluation

@ | want to see more interesting hypotheses
— we need more targeted evaluation
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Human Evaluation of Neural MT g etar, 2016

Fluency Adequacy
is translation good English? is meaning preserved?
+13% +1%

CS—EN DE—EN RO—EN RU—EN CS—EN DE—EN RO—EN RU—EN

11 ONLINE-BIRUEDIN-NMT I1ONLINE-BIRUEDIN-NMT

Figure: WMT16 direct assessment results
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Human Evaluation in TraMOOC

[Castilho, Moorkens, Gaspari, Sennrich, Sosoni, Georgakopoulou, Lohar, Way, Miceli Barone, Gialama, MT Summit XVI, 2017]

@ direct assessment of NMT (vs. PBSMT):

o fluency: +10%
e adequacy: +1%

Error Annotation

category SMT NMT | difference
inflectional morphology | 2274 1799 -21%
word order 1098 691 -37%
omission 421 362 -14%
addition 314 265 -16%
mistranslation 1593 1552 -3%
"no issue" 449 788 +75%
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Human Evaluation of Neural MT

Neural Machine Translation is very fluent.
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Human Evaluation of Neural MT

Neuwra-MachineTranstatien is very fluent.

Attentional encoder-decoder with BPE segmentation and recurrent GRU decoder

what about...?
@ character-level models [Lee et al., 2016]

@ convolutional models [Gehring et al., 2017]
@ models with self-attention [Vaswani et al., 2017]
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Human Evaluation of Neural MT

Neuwra-MachineTranstatien is very fluent.

Attentional encoder-decoder with BPE segmentation and recurrent GRU decoder

what about...?
@ character-level models [Lee et al., 2016]

@ convolutional models [Gehring et al., 2017]
@ models with self-attention [Vaswani et al., 2017]

Adequacy remains a major problem in Neural Machine Translation

...using a shallow NMT model at WMT 2016

@ do we compare different architectures?

@ do we measure improvement over time?
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How to Assess Specific Aspects in MT?

@ human evaluation

x costly; hard to compare to previous work
@ automatic metrics (BLEU)

x too coarse; blind towards specific aspects
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How to Assess Specific Aspects in MT?

@ human evaluation
x costly; hard to compare to previous work

@ automatic metrics (BLEU)
x too coarse; blind towards specific aspects

contrastive translation pairs

@ NMT models assign probability to any translation

@ binary classification task: which translation is better?

@ choice between reference translation and contrastive variant
— corrupted with single error of specific type

@ =~ minimal pairs in linguistics
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Assessment with Contrastive Translation Pairs

workflow example

@ researcher wants to analyse difficult
translation problem

@ researcher predicts what errors
NMT system might make

@ researcher creates test set with
correct translations and corrupted
variants

@ test set allows automatic,
quantitative, and reproducible
analysis of NMT model
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@ researcher predicts what errors number of verb to
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Assessment with Contrastive Translation Pairs

workflow example

@ researcher wants to analyse difficult @ subject—verb agreement
@ researcher predicts what errors number of verb to
NMT system might make introduce agreement
@ researcher creates test set with error
correct translations and corrupted @ 35000 contrastive pairs
variants created with simple
o test set allows automatic, linguistic rules
quantitative, and reproducible
analysis of NMT model
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Contrastive Translation Pairs

| sentence | prob.
English [...] that the plan will be approved
German (correct) [...], dass der Plan verabschiedet wird 01 v/

German (contrastive) | *[...], dass der Plan verabschiedet werden | 0.01

subject-verb agreement
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LingEval97: A Test Set of Contrastive Translation Pairs

LingEval97

@ 97000 contrastive translation pairs

@ based on English—German WMT test sets
@ rule-based, automatic creation of errors

@ 7 error types

@ metadata for in-depth analysis:

e error type
e distance between words
e word frequency in WMT15 training set
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Case Study: Some Open Questions in Neural MT
ﬁ Kyunghyun Cho m

Fully char-level NMT! It works well on all four
language pairs we've considered ({Cs, De, Ru,
Fi}->En), and we... fo.me/10RwyQvZD

32 83 feTe] <ESE- Bl B
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Case Study: Some Open Questions in Neural MT

ﬁ Kyunghyun Cho
hor

Fully char-level NMT! It works well on all four
language pairs we've considered ({Cs, De, Ru,
Fi}->En), and we... fo.me/10RwyQvZD

& 1 Emiel Miltenb! N
32 83 Lelel] ESEE AR me;‘\aa?w enburg 2 Follow

o : @kchonyc Are there any benefits to using these
models for longer dependencies?

ﬁ Kyl:nghyun Cho
"

@evanmiltenburg ah well that's a difficult
question!

text representation

word-level but as the example of Mobilking in Poland shows
| 5 steps |
subword-level but as the example of Mobil+ king in Poland shows
(byte-pair encoding) | 6 steps |
character-level but_as_the_example_of_Mobilking_in_Poland_shows

| 29 steps |
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Case Study: Some Open Questions in Neural MT

does network architecture affect learning of long-distance dependencies?

architectures

RNN vs. GRU vs. LSTM

Christopher Olah http: //colah. github. io/ps 08 Understanding LSTHs, /
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Case Study: Some Open Questions in Neural MT

does network architecture affect learning of long-distance dependencies?

architectures

Probabilties

? e \\/ s
T e deddd
RNN vs. GRU vs. LSTM (convolution) (self-attention)
[Gehring et al., 2017] [Vaswani et al., 2017]
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Results: Architecture

100.0

L 93.4 94.0 §
89.0

accuracy (%)

subject-verb
agreement
n=35105

I1RNN
GRU
liLsT™

Rico Sennrich NMT: what’s linguistics got to do with it? 21/39



Results: Architecture

~ 1
C
a) -
IS
g 09}
(@] L
©
Ko}
5 08[
7
..8. - B
o 07 1
3>
R L B
> --- LSTM
g 06 [ GRU n
3 | — RNN 1
© ] L L
0'50 4 8 12 > 16

distance

Rico Sennrich NMT: what’s linguistics got to do with it? 21/39



Results: Text Representation

100.0

accuracy (%)

subject-verb
agreement
n=35105

I 1 BPE-to-BPE
word-to-word
Iichar-to-char [Lee et al., 2016]
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Results: Text Representation
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Results: Text Representation
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What Did We Learn?

@ method verifies strength of LSTM and GRU
— future work: test of convolutional model and self-attention

@ word-level model is poor for rare words
@ character-level model is poor for long distances
@ BPE subword segmentation is good compromise
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Targeted Analysis: Adequacy

adequacy is open problem

system sentence

source Dort wurde er von dem Schlédger und einer weiteren mannl. Person erneut angegriffen.
reference | There he was attacked again by his original attacker and another male.

our NMT There he was attacked again by the racket and another male person.

Google There he was again attacked by the bat and another male person.

[ Schlager }
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Targeted Analysis: Adequacy

focus on two types of adequacy errors:
@ lexical word sense disambiguation:
translate ambiguous word with wrong word sense

@ polarity:

deletion or insertion of negation marker ("not", "no", "un-")
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Polarity

manual error analysis [Fancellu and Webber, 2015]

translation errors (Chinese—English hierarchical PBSMT):
@ insertion of negation (1-2%)
@ deletion of negation (10-20%)
@ reordering errors (1-20%)
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Polarity

manual error analysis [Fancellu and Webber, 2015]

translation errors (Chinese—English hierarchical PBSMT):
@ insertion of negation (1-2%)
@ deletion of negation (10-20%)
@ reordering errors (1-20%)

automatic analysis (Lingeval97; NMT)

accuracy (%)

negation insertion negation deletion
n=22760 n=4043
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Word Sense Dlsamblguathn [Rios, Mascarell, Sennrich, WMT 2017]

test set (ContraWSD)
@ 35 ambiguous German nouns

@ 2—4 senses per source noun
@ contrastive translation sets (1 or more contrastive translations)

@ =~ 100 test instances per sense
— =~ 7000 test instances

source: Also nahm ich meinen amerikanischen Reisepass
und stellte mich in die Schlange fiir Extranjeros.
reference: So I took my U.S. passport and got in the line for Extranjeros.

contrastive:  So I took my U.S. passport and got in the snake for Extranjeros.
contrastive:  So I took my U.S. passport and got in the serpent for Extranjeros.
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Word Sense Accuracy
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Word Sense Accuracy
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WSD is challenging, especially for rare word senses
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Word Sense Disambiguation: Measuring Progress

UEDIN-NMT at WMT (German—English)

[Sennrich, Birch, Currey, Germann, Haddow, Heafield, Miceli Barone, Williams, WMT 2017]
@ at WMT16, UEDIN-NMT was top-ranked

@ large lead in fluency; small lead in adequacy

o for WMT17, we improved our MT system in several ways:
deep transition networks

layer normalization

better hyperparameters

better ensembles

(slightly) more training data

@ are we getting better at word sense disambiguation?
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Results: Word Sense Disambiguation

accuracy (%)

60.0 2

word sense disambiguation accuracy
n=7359

IRUEDIN-NMT @ WMT186: single
UEDIN-NMT @ WMT17: single

IRUEDIN-NMT @ WMT17: ensemble

1~ human performance (sentence-level)
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What Did We Learn?

@ word sense disambiguation remains challenging problem in MT,
but measurable progress in last year

@ On sentence-level, even humans may find it challenging
German Sehen Sie die Muster?

reference Do you see the patterns?
contrastive Do you see the examples?

— new possibility for targeted evaluation of document-level modelling
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Targeted Analysis: Coreference

background

antecedent agreement can often not be predicted based on source
sentence, but requires extra-sentential context:

English | made a decision. Please respect it.
French  J’ai pris une décision. Respectez-la s’il vous plait.
French  J’ai fait un choix. Respectez-le s'il vous plait.
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Targeted Analysis: Coreference

previous work: red task on pronoun prediction

[Hardmeier et al., 2015, Guillou et al., 2016, Loaiciga et al., 2017]

@ focus on correctness of pronouns, which are often coreferent.
@ pronoun errors impact meaning, but only have small effect on BLEU.

@ limitations of shared task:
e many pronouns do not require extra-sentential context; sentence-level
system still best at DiscOMT17 [Losiciga et al., 2017].
e we want to analyze NMT systems’ ability to model coreference,
without training specifically for this task, but:

@ task gives lemmatized target side
@ long tail of possible pronouns handled via OTHER category
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Contrastive Pairs for Analysis of Coreference in MT

[Bawden, Sennrich, Birch, Haddow, in preparation]

Source:

context: Oh, I hate flies. Look, there's another one!
current sent.. Don’t worry, I'll kill it for you.

Target:
1 context: O je déteste les mouches. Regarde, il y en a une autre !
correct: T'inquiete, je la tuerai pour toi.
incorrect: T'inquiete, je le tuerai pour toi.
2 context: O je déteste les moucherons. Regarde, il y en a un autre !
correct: T'inquigte, je le tuerai pour toi.
incorrect: T'inquicte, je la tuerai pour toi.

design of test set

@ hand-crafted set of 200 contrastive pairs
@ previous sentence required for correct prediction
@ balanced so that sentence-level system scores 50%
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Coreference Models

baseline setup

@ training on OpenSubtitles EN-FR [riegemann, 2012)
@ attentional encoder-decoder (Nematus) with BPE

architectures

@ sentence-level baseline

@ 2-TO-1: concatentation of previous source sentence
@ 2-TO-2: concatentation of previous source and target sentence
@ S-MULTI: separate encoder for previous source; hierarchical attention

@ S-MULTI-TO-2: separate encoder for previous source; previous target
sentence concatenated

related work

@ [Tiedemann and Scherrer, 2017] (2-TO-*)
@ [Zoph and Knight, 2016, Libovicky and Helcl, 2017] (S-MULT]I)
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Targeted Analysis: Coreference: Results
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Coreference Models: BLEU Results

System BLEU 1
Comedy Crime Fantasy Horror

Single-encoder, non-contexual model

BASELINE 19.52 22.07 26.30 33.05
Single-encoder with concatenated input

2-TO-2 20.09 22.93 26.60 33.59

2-TO-1 19.51 21.81 26.78 34.37
Multi-encoder, multi-attention models (+previous source sentence)

S-MULTI 20.22 21.90 26.81 34.04
Multi-encoder, multi-attention models with concatenated output

S-MULTI-TO-2 20.85 22.81 2717 34.62
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What Did We Learn?

@ target context is crucial for prediction of correct pronoun
(partially due to test set, in which source words are ambiguous)

@ targeted evaluation can guide our exploration of architectures
— multi-encoder architecture only works in some conditions (*-to-2)
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Conclusions

@ neural machine translation does not need linguistic knowledge...
@ ...but linguistics should play an important role for

inspiring research informing models targeted evaluation

source indoor temperature R g it~

reference Raumkli o ix‘;\“\*\:\éﬁ - -

pm———— UNK x| o
Weanetal, 2015] Innenpool X 2{ ™
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Resources

(] LlngEvaI97 https://github.com/rsennrich/lingeval97
@ ContraWSD: https://github.com/a-rios/ContraWsD
@ Discourse test set: https://diamt.limsi.fr/eval.html

@ pre-trained models:

© WMT16: http://data.statmt.org/wmt16_systems/
@ WMT17: nttp://data.statmt.org/wmt17_systems/
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