# Beyond Softmax: Sparsity, Constraints, Latent Structure

... all end-to-end differentiable!!

André Martins





FOTRAN Workshop, Helsinki, 28/9/18

André Martins (Unbabel/IT)

**Beyond Softmax** 

Helsinki, 28/9/18 1 / 57

### In a Nutshell

The **softmax** transfomation is prevalent in language generation:

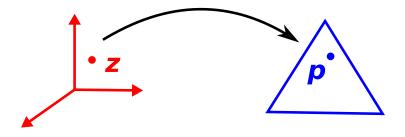
- **I** Softmax over the vocabulary to obtain a distribution over words
- 2 Attention mechanisms to condition of some property of the input (Bahdanau et al., 2015; Sukhbaatar et al., 2015)

This talk: new transformations that capture sparsity, constraints, and structure

- Sparsemax, Constrained Softmax/Sparsemax, SparseMAP
- All differentiable (efficient forward and backward propagation)
- Can be used at hidden or output layers.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ○ ○ ○

#### This talk is about...



Transformations from the Euclidean space  $\mathbb{R}^{K}$  to the simplex.

Joint work with Ramon Astudillo, Julia Kreutzer, Chaitanya Malaviya, Pedro Ferreira, Vlad Niculae, Mathieu Blondel, and Claire Cardie.

# Outline

#### 1 Sparsity

#### **2** Constraints

**B** Latent Structure

#### 4 Conclusions

André Martins (Unbabel/IT)

3

イロト イポト イヨト イヨト

### Sparse Attention with Sparsemax

André F. T. Martins and Ramon Astudillo.

"From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification."

ICML 2016.

### **Recap: Softmax**

 $\blacksquare$  The transformation softmax :  $\mathbb{R}^{\mathcal{K}} \rightarrow \Delta^{\mathcal{K}-1}$  is defined as:

$$\operatorname{softmax}_i(\boldsymbol{z}) = \frac{\exp(z_i)}{\sum_{k=1}^{K} \exp(z_k)}$$

- Resulting distribution has full support: softmax(z) > 0,  $\forall z$
- A disadvantage if a *sparse* probability distribution is desired
- Common workaround: threshold and truncate

3

# Sparsemax (Martins and Astudillo, 2016)

■ We propose as an alternative:

$$ext{sparsemax}(oldsymbol{z}) := \operatorname*{argmin}_{oldsymbol{p} \in \Delta^{K-1}} \|oldsymbol{p} - oldsymbol{z}\|^2.$$

- In words: Euclidean projection of z onto the probability simplex
- Likely to hit the boundary of the simplex, in which case sparsemax(z) becomes sparse (hence the name)
- We'll see that sparsemax retains many of the properties of softmax, having in addition the ability of producing sparse distributions!

### Sparsemax in Closed Form

Projecting onto the simplex amounts to a soft-thresholding operation:

$$sparsemax_i(z) = max\{0, z_i - \tau\}$$

where au is a normalizing constant such that  $\sum_j \max\{0, z_j - \tau\} = 1$ 

- $\blacksquare$  To evaluate the sparsemax, all we need is to compute  $\tau$
- Runtime is O(KlogK) with a naive sort; O(K) using linear-time selection (Pardalos and Kovoor, 1990; Duchi et al., 2008)
- Evaluating softmax costs O(K) too

### What about Backprop?

- Sparsemax is differentiable almost everywhere
- Backprop is more efficient than softmax: runtime linear in the number of nonzeros
- See Martins and Astudillo (2016) for details

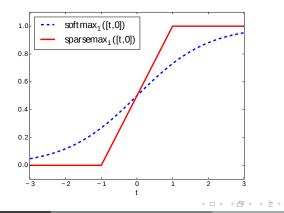
# **Two Dimensions**

• Parametrize  $\boldsymbol{z} = (t, 0)$ 

The 2D softmax is the logistic (sigmoid) function:

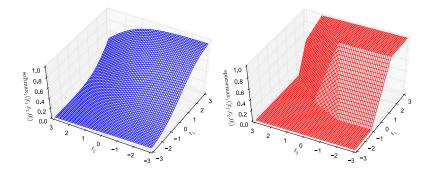
$$\mathsf{softmax}_1(oldsymbol{z}) = (1 + \mathsf{exp}(-t))^{-1}$$

■ The 2D sparsemax is the "hard" version of the sigmoid:



# **Three Dimensions**

- Parameterize  $z = (t_1, t_2, 0)$  and plot softmax<sub>1</sub>(z) and sparsemax<sub>1</sub>(z) as a function of  $t_1$  and  $t_2$
- sparsemax is piecewise linear, but asymptotically similar to softmax



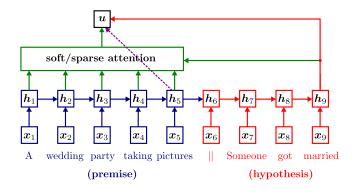
■ This gives us all the ingredients to use sparsemax inside a neural network (e.g. a "sparse" attention mechanism)

< □ > < □ >

3

# Neural Networks with Attention Mechanisms

- SNLI corpus (Bowman et al., 2015): 570K sentence pairs (a premise and an hypothesis), labeled as entailment, contradiction, or neutral
- We used an attention-based architecture as Rocktäschel et al. (2015)



# **Experimental Results**

Four neural attention strategies:

- **NoAttention**, a RNN-based system without attention
- **LogisticAttention**, which uses independent logistic activations
- SoftAttention, using a softmax attention-based system
- SparseAttention, using a sparsemax attention-based system

|                   | Dev Acc. | Test Acc. |
|-------------------|----------|-----------|
| NoAttention       | 81.84    | 80.99     |
| LogisticAttention | 82.11    | 80.84     |
| SoftAttention     | 82.86    | 82.08     |
| SparseAttention   | 82.52    | 82.20     |

- Soft and sparse-activated attention systems perform similarly
- Both outperform the **NoAttention** and **LogisticAttention** systems

# Some Examples

- *In blue*, the premise words selected by **SparseAttention**
- In red, the hypothesis
- Only a few words are selected, which are key for the system's decision
- The sparsemax activation yields a compact and more interpretable selection, which can be particularly useful in long sentences

| A boy <i>rides on</i> a <i>camel</i> in a crowded area while talking on his cellphone.                |                 |  |
|-------------------------------------------------------------------------------------------------------|-----------------|--|
| —— A boy is riding an animal.                                                                         | [entailment]    |  |
| A young girl wearing <i>a pink coat</i> plays with a <i>yellow</i> toy golf club.                     |                 |  |
| A girl is wearing a blue jacket.                                                                      | [contradiction] |  |
| Two black dogs are <i>frolicking</i> around the <i>grass together</i> .                               |                 |  |
| Two dogs swim in the lake.                                                                            | [contradiction] |  |
| A man wearing a yellow striped shirt <i>laughs</i> while <i>seated next</i> to another <i>man</i> who |                 |  |
| is wearing a light blue shirt and <i>clasping</i> his hands together.                                 |                 |  |
| Two mimes sit in complete silence.                                                                    | [contradiction] |  |
|                                                                                                       |                 |  |

# More: Sparsemax as a Loss Function

- Sparsemax can also be used in the **output layer**, replacing logistic/cross-entropy loss
- There is a continuous family of transformations that includes both softmax and sparsemax
- The corresponding loss functions are called **Fenchel-Young losses**

Mathieu Blondel, André F. T. Martins, and Vlad Niculae.

"Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms."

Arxiv preprint 2018.

# Outline



#### 2 Constraints

**B** Latent Structure

#### 4 Conclusions

André Martins (Unbabel/IT)

**Beyond Softmax** 

Helsinki, 28/9/18 17 / 57

Э

◆ロト ◆聞ト ◆臣ト ◆臣ト

# **Sparse and Constrained Attention**

- André F. T. Martins and Julia Kreutzer.
   "Fully Differentiable Neural Easy-First Taggers."
   EMNLP 2017
- Chaitanya Malaviya, Pedro Ferreira, and André F. T. Martins.
   "Sparse and Constrained Attention for Neural Machine Translation." ACL 2018.

# **Constrained Softmax**

**Constrained softmax** resembles softmax, but it allows imposing hard constraints on the maximal probability assigned to each word

Given scores  $z \in \mathbb{R}^{K}$  and upper bounds  $u \in \mathbb{R}^{K}$ :

$$\begin{aligned} \operatorname{csoftmax}(\pmb{z};\pmb{u}) &= \operatorname{argmin}_{\pmb{p}\in\Delta^{K-1}} \mathsf{KL}(\pmb{p} \parallel \operatorname{softmax}(\pmb{z})) \\ & \operatorname{s.t.}_{\pmb{p}} \leq \pmb{u} \end{aligned}$$

Related to posterior regularization (Ganchev et al., 2010)
Particular cases:

If u ≥ 1, all constraints are loose and this reduces to softmax
 If u ∈ Δ<sup>K-1</sup>, they are tight and we must have p = u

・ロト ・ 一日 ト ・ 日 ト ・ 日 ト

### How to Evaluate?

**Forward computation takes**  $O(K \log K)$  **time** (Martins and Kreutzer, 2017):

- Let  $A = \{i \in [K] \mid p_i^* < u_i\}$  be the constraints that are met strictly
- Then by writing the KKT conditions we can express the solution as:

$$p_i^{\star} = \min\left\{rac{\exp(z_i)}{Z}, u_i
ight\} \quad orall i \in [K], \quad ext{where } Z = rac{\sum_{i \in \mathcal{A}} \exp(z_i)}{1 - \sum_{i \notin \mathcal{A}} u_i}.$$

■ Identifying the set A can be done in  $O(K \log K)$  time with a sort

#### How to Backpropagate?

We need to compute gradients with respect to both z and u

**Can be done in** O(K) **time** (Martins and Kreutzer, 2017):

- Let  $L(\theta)$  be a loss function,  $d\mathbf{p} = \nabla_{\alpha}L(\theta)$  be the output gradient, and  $d\mathbf{z} = \nabla_{\mathbf{z}}L(\theta)$  and  $d\mathbf{u} = \nabla_{\mathbf{u}}L(\theta)$  be the input gradients
- Then, the input gradients are given as:

$$dz_i = \mathbb{1}(i \in \mathcal{A})p_i(dp_i - m)$$
  
$$du_i = \mathbb{1}(i \notin \mathcal{A})(dp_i - m),$$

where  $m = (\sum_{i \in \mathcal{A}} p_i \, \mathrm{d} p_i)/(1 - \sum_{i \notin \mathcal{A}} u_i)$ .

This opens the door for using constrained softmax attention in a neural network, backpropagating through the scores and the upper bounds...

Martins and Kreutzer (2017): usage as a module in **neural easy-first decoders**.

# Constrained Sparsemax (Malaviya et al., 2018)

Similar idea, but replacing softmax by sparsemax:

Given scores  $z \in \mathbb{R}^{K}$  and upper bounds  $u \in \mathbb{R}^{K}$ :

$$\begin{aligned} \operatorname{csparsemax}(\boldsymbol{z}; \boldsymbol{u}) &= \underset{\boldsymbol{p} \in \Delta^{K-1}}{\operatorname{argmin}} \|\boldsymbol{p} - \boldsymbol{z}\|^2 \\ &\text{s.t.} \quad \boldsymbol{p} \leq \boldsymbol{u} \end{aligned}$$

- Both sparse and upper bounded
- If  $u \geq 1$ , all constraints are loose and this reduces to sparsemax
- If  $\boldsymbol{u} \in \Delta^{K-1}$ , they are tight and we must have  $\boldsymbol{p} = \boldsymbol{u}$

# How to Evaluate?

Forward computation can be done with a sort in  $O(K \log K)$  time

**Can be reduced to** O(K) (Malaviya et al., 2018; Pardalos and Kovoor, 1990):

■ Let  $\mathcal{A} = \{i \in [K] \mid 0 < p_i^* < u_i\}$  be the constraints that are met strictly

• Let 
$$\mathcal{A}_R = \{i \in [K] \mid p_i^* = u_i\}$$

■ Then by writing the KKT conditions we can express the solution as:

 $p_i^{\star} = \max\{0, \min\{u_i, z_i - \tau\}\} \quad \forall i \in [K], \quad \text{where } \tau \text{ is a constant.}$ 

■ Identifying the sets A and A<sub>R</sub> can be done in O(KlogK) time with a sort

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

#### How to Backpropagate?

We need to compute gradients with respect to both z and u

Can be done in sublinear time  $O(|\mathcal{A}| + |\mathcal{A}_R|)$  (Malaviya et al., 2018):

- Let  $L(\theta)$  be a loss function,  $d\mathbf{p} = \nabla_{\alpha}L(\theta)$  be the output gradient, and  $d\mathbf{z} = \nabla_{\mathbf{z}}L(\theta)$  and  $d\mathbf{u} = \nabla_{\mathbf{u}}L(\theta)$  be the input gradients
- Then, the input gradients are given as:

$$\begin{aligned} \mathrm{d} z_i &= \mathbb{1}(i \in \mathcal{A})(\mathrm{d} p_i - m) \\ \mathrm{d} u_i &= \mathbb{1}(i \in \mathcal{A}_R)(\mathrm{d} p_i - m), \end{aligned}$$

where  $m = \frac{1}{|\mathcal{A}|} \sum_{i \in \mathcal{A}} \mathrm{d} p_i$ .

Next, we show how to use these constrained attentions in neural machine translation decoders, inspired by the idea of **fertility** (IBM Model 2)...

< ロ > < 同 > < 三 > < 三 >

Э

# Modeling Fertility in NMT

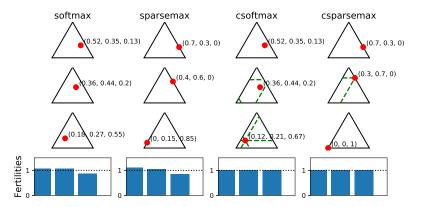
We do the following procedure:

- Align the training data with fast\_align
- **2** Train a separate BILSTM to predict fertility  $f_i$  for each word
- **3** At each decoder step, use upper bound  $u_i = f_i \beta_i$  for each word, where  $\beta_i$  is the cumulative attention

See Malaviya et al. (2018) for more details.

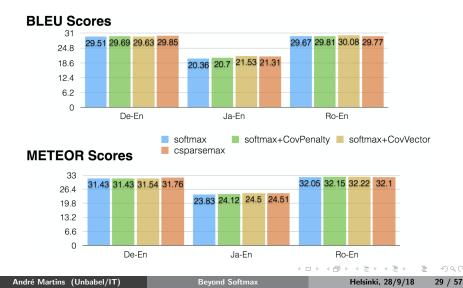
# **Example: Source Sentence with Three Words**

Assume each word is given fertility 1:



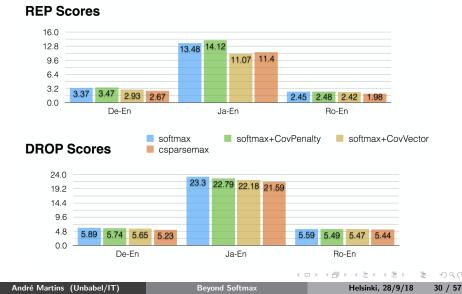
# **BLEU Scores**

Baselines are softmax and two other coverage models (Wu et al., 2016; Tu et al., 2016)



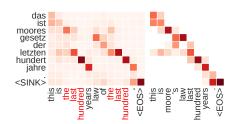
# **Coverage Scores**

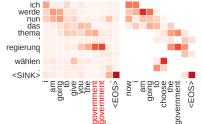
Account for repetitions and dropped source words (lower is better):



### **Attention Maps**

#### Softmax (left) vs Constrained Sparsemax (right) for De-En:





# **Sentence Examples**

| input      | so ungefähr , sie wissen schon . |  |
|------------|----------------------------------|--|
| reference  | like that , you know .           |  |
| softmax    | so , you know , you know .       |  |
| sparsemax  | so , you know , you know .       |  |
| csoftmax   | so , you know , you know .       |  |
| csparsemax | like that , you know .           |  |

| input      | und wir benutzen dieses wort mit solcher verachtung . |  |
|------------|-------------------------------------------------------|--|
| reference  | and we say that word with such contempt .             |  |
| softmax    | and we use this word with such contempt contempt .    |  |
| sparsemax  | and we use this word with such contempt .             |  |
| csoftmax   | and we use this word with like this .                 |  |
| csparsemax | and we use this word with such contempt .             |  |

∃ >

Image: A matrix and a matrix

3

Code (Pytorch + OpenNMT):

www.github.com/Unbabel/sparse\_constrained\_attention

Image: A matrix and a matrix

# Outline



#### **2** Constraints

#### **3** Latent Structure

#### **4** Conclusions

Э

イロト イポト イヨト イヨト

# **SparseMAP**

Vlad Niculae, André F. T. Martins, Mathieu Blondel, and Claire Cardie. "SparseMAP: Differentiable Sparse Structured Inference." ICML 2018.

1

# **SparseMAP**

- Generalizes sparsemax to sparse structured prediction
- Works both as output layer and hidden layer
- With latent models, similar to structured attention networks (Kim et al., 2017), but **sparse**
- Efficient forward/backprop requiring only an argmax (MAP) oracle!

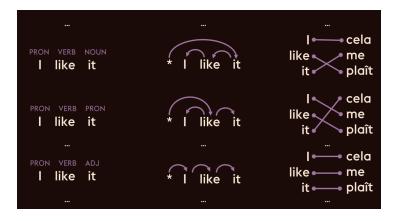
Two Scenarios:

- Structured output prediction
- Latent structured inference

Э

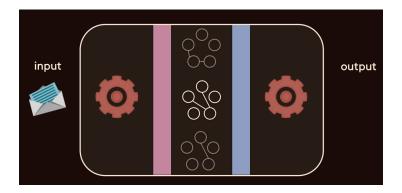
# **Structured Output Prediction**

Many NLP tasks require predicting linguistic structure as output
 Examples: sequence tagging, dependency parsing, alignments



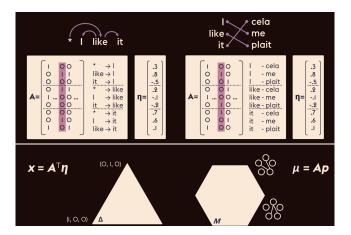
#### Latent Structured Inference

- Sometimes it's convenient to induce linguistic structure as a latent variable for some downstream task
- Examples: latent syntax for MT; latent alignments for NLI



# **Marginal Polytope**

- Vertices are codewords of combinatorial structures
- Points correspond to marginal distributions over those structures



1

< 17 ▶

∃ ► < ∃ ►</p>

#### **Structured Inference**

| Unstructured | Structured         |
|--------------|--------------------|
| argmax       | MAP inference      |
| softmax      | Marginal inference |
| sparsemax    | ?                  |

3

<ロ> <同> <同> < 同> < 同>

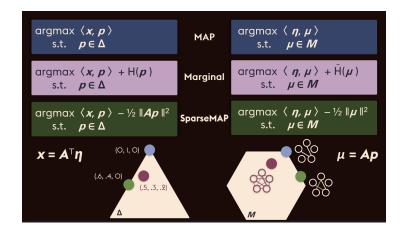
#### **Structured Inference**

| Unstructured | Structured         |
|--------------|--------------------|
| argmax       | MAP inference      |
| softmax      | Marginal inference |
| sparsemax    | SparseMAP          |

3

<ロ> <同> <同> < 同> < 同>

## **Sparse Structured Prediction**



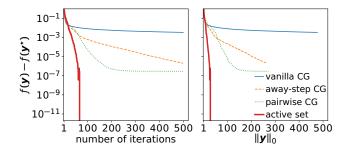
**SparseMAP** yields a **sparse combination of vertices**, hence it selects only a small number of structures (out of exponentially many)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

## Efficiently Computing SparseMAP

Boils down to projecting onto the marginal polytope

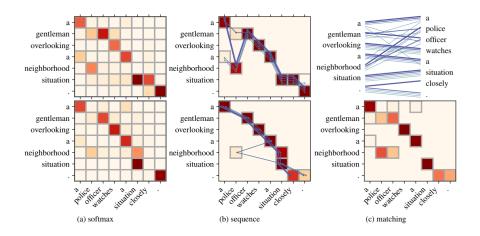
Key Result: can be solved as a (small) sequence of argmax (MAP) calls



Gradient backprop comes for free once we have done forward!

| André N | Aartins ( | Unbabel | /IT) | ) |
|---------|-----------|---------|------|---|
|---------|-----------|---------|------|---|

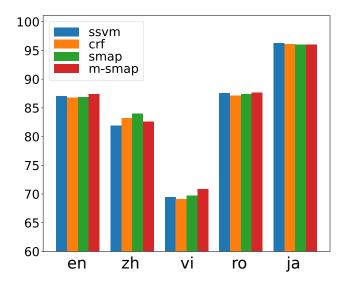
## **Example: Latent Structured Alignments in SNLI**



- < ∃ →

・ロト ・ 同ト ・ ヨト

## **Example: Dependency Parsing**



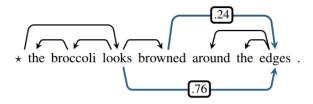
André Martins (Unbabel/IT)

Helsinki, 28/9/18 45 / 57

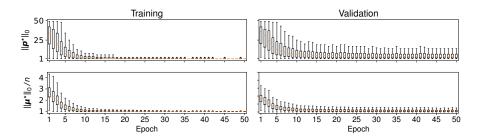
Э

#### **Example: Dependency Parsing**

Suitable for capturing ambiguity in natural language!

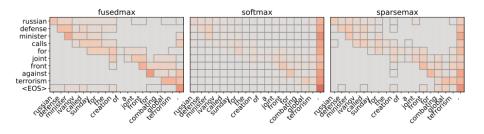


#### Learning to be Sparse



## **Related Work**

- Structured attention networks (Kim et al., 2017): not sparse
- SPIGOT (Peng et al., 2018): different framework, same building blocks (our active set algo for polytope projection applies there too)
- ... but SPIGOT gradients are *inexact* while ours are exact
- Fusedmax (and other structured sparse) attention (Niculae and Blondel, 2017):



→ Ξ ► < Ξ ►</p>

## Outline



**2** Constraints

**B** Latent Structure

#### 4 Conclusions

3

イロト イポト イヨト イヨト

## Conclusions

- Transformations from real numbers to distributions are ubiquitous
- We introduced new transformations that handle sparsity, constraints, and structure
- All are differentiable and their gradients are efficient to compute
- Can be used as hidden layers or as output layers
- Various experiments in NMT and sentence pair tasks, with improved interpretability
- Recent work: dynamically determining the computation graph based on the SparseMAP selected structures

# **To Appear**

Vlad Niculae, André F. T. Martins and Claire Cardie "Towards Dynamic Computation Graphs via Sparse Latent Structure" EMNLP 2018

1

# DeepSPIN

ERC project **DeepSPIN** (Deep Structured Prediction in NLP)

- ERC starting grant, started in 2018
- Post-doc positions may open next year
- Topics: deep learning, structured prediction, NLP, machine translation
- Involving Unbabel and the University of Lisbon
- More details: https://deep-spin.github.io



## We're Hiring at Unbabel!

Excited about MT, NLP, and Lisbon?  $\Rightarrow$  jobs@unbabel.com.

Open positions: ML/NLP Software Engineer, Sr Research Scientist





#### Lisbon 5 Day Weather

4:20 pm WEST 📄 Print

| DAY               |          | DESCRIPTION   | HIGH / LOW | PRECIP | WIND        | HUMIDITY |
|-------------------|----------|---------------|------------|--------|-------------|----------|
| TONIGHT<br>SEP 27 | (++      | Clear         | ⁄21°       | 0%     | NNW 23 km/h | 57%      |
| FRI<br>SEP 28     | *        | Mostly Sunny  | 31°⁄18°    | 0%     | NNE 22 km/h | 54%      |
| SAT<br>SEP 29     | *        | Sunny         | 30°⁄17°    | 0%     | N 13 km/h   | 55%      |
| SUN<br>SEP 30     | *        | Sunny         | 30°⁄18°    | /10%   | NNW 16 km/h | 59%      |
| MON<br>OCT 1      | <u>*</u> | Partly Cloudy | 30°⁄18°    | 0%     | NNW 19 km/h | 49%      |
| TUE<br>OCT 2      | *        | Sunny         | 31°⁄17°    | 0%     | ENE 18 km/h | 33%      |

<ロ> <部> <部> <=> <=> <=> <=> <=> <=> <=</p>

#### **References I**

- Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural Machine Translation by Jointly Learning to Align and Translate. In *International Conference on Learning Representations*.
- Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A Large Annotated Corpus for Learning Natural Language Inference. In Proc. of Empirical Methods in Natural Language Processing.
- Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient Projections onto the L1-Ball for Learning in High Dimensions. In Proc. of International Conference of Machine Learning.
- Ganchev, K., Graça, J. a., Gillenwater, J., and Taskar, B. (2010). Posterior regularization for structured latent variable models. *Journal of Machine Learning Research*, 11:2001–2049.
- Huber, P. J. (1964). Robust Estimation of a Location Parameter. *The Annals of Mathematical Statistics*, 35(1):73–101.
- Kim, Y., Denton, C., Hoang, L., and Rush, A. M. (2017). Structured attention networks. arXiv preprint arXiv:1702.00887.
- Liu, D. C. and Nocedal, J. (1989). On the Limited Memory BFGS Method for Large Scale Optimization. *Mathematical programming*, 45(1-3):503–528.
- Malaviya, C., Ferreira, P., and Martins, A. F. T. (2018). Sparse and Constrained Attention for Neural Machine Translation. In Proc. of the Annual Meeting of the Association for Computation Linguistics.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

## **References II**

- Martins, A. F. T. and Astudillo, R. (2016). From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification. In Proc. of the International Conference on Machine Learning.
- Martins, A. F. T. and Kreutzer, J. (2017). Fully differentiable neural easy-first taggers. In Proc. of Empirical Methods for Natural Language Processing.
- Nesterov, Y. (1983). A Method of Solving a Convex Programming Problem with Convergence Rate  $O(1/k^2)$ . Soviet Math. Doklady, 27:372–376.
- Niculae, V. and Blondel, M. (2017). A regularized framework for sparse and structured neural attention. *arXiv preprint arXiv:1705.07704*.
- Pardalos, P. M. and Kovoor, N. (1990). An Algorithm for a Singly Constrained Class of Quadratic Programs Subject to Upper and Lower Bounds. *Mathematical Programming*, 46(1):321–328.
- Peng, H., Thomson, S., and Smith, N. A. (2018). Backpropagating through Structured Argmax using a SPIGOT. In Proc. of the Annual Meeting of the Association for Computation Linguistics.
- Rocktäschel, T., Grefenstette, E., Hermann, K. M., Kočiský, T., and Blunsom, P. (2015). Reasoning about Entailment with Neural Attention. *arXiv preprint arXiv:1509.06664*.
- Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. (2015). End-to-End Memory Networks. In Advances in Neural Information Processing Systems, pages 2431–2439.
- Tsallis, C. (1988). Possible generalization of boltzmann-gibbs statistics. Journal of Statistical Physics, 52:479–487.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

#### References III

- Tu, Z., Lu, Z., Liu, Y., Liu, X., and Li, H. (2016). Modeling coverage for neural machine translation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.
- Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.
- Zhang, T. (2004). Statistical Behavior and Consistency of Classification Methods Based on Convex Risk Minimization. *Annals of Statistics*, pages 56–85.

< ロ > < 同 > < 三 > < 三 >