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   Quantity… SMT era1
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Automatic Building of MT (2013-16)

HR
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Monolingual data (web)

●  Motivation: Big LMs in SMT (Heafield et al., ACL’13)

●  Massive crawling from TLDs with Spiderling

●  ~ 2 weeks → 1 billion words
–  HrWaC (Ljubešić & Erjavec, TSD’11), caWaC 

(Ljubešić & Toral, LREC’14), etc.
●  Still useful for NMT? Backtranslation

Seed URLs Monolingual corpus
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Monolingual data (Twitter)

● Motivation
– Cheap domain adaptation
– Scarcity of parallel data

● Tool: TweetCat (Ljubešić et al., 2014)

– Crawl tweets, tailored for small languages

● Application: Tweet MT (Toral et al., 2015)

– CA, ES, EU, GL, PT
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Parallel Data

● Spidextor: joint crawl of mono and parallel data 
from TLDs (Ljubešić et al, LREC’16)
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Parallel Data

● Spidextor: joint crawl of mono and parallel data 
from TLDs (Ljubešić et al, LREC’16)

Language
Pair

Crawling 
time

# segments # words

EN--FI 7 days 4M 100M

EN--HR NA 2.4M 72M

EN--SL 3 days 1M 38M

EN--SR NA 0.6M 27M
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Parallel Data

● Use in MT (Rubino et al., WMT’15)

– Crawling
● Monolingual: Spiderling
● Parallel: Bitextor + ILSP-FC

Source: http://matrix.statmt.org/matrix/systems_list/1775
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Cleaning Noisy Corpora

● Many publicly available parallel corpora are 
potentialy useful

● But... they are too noisy
– Missalignments

– Encoding errors

– etc

● E.g. OpenSubtitles
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Cleaning Noisy Corpora

● Automatic cleaning (Forcada et al., 2014)

– Fixing (sparsity)

– Removing sentences (noise)
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Cleaning Noisy Corpora

● Automatic cleaning (Forcada et al., 2014)

– Fixing (sparsity)
● Converting Cyrillic characters to their Latin counterparts
● Converting encoding to UTF-8
● Spelling errors
● Inconsistent punctuation marks, numbers and spacing

– Removing sentences (noise)
● Without alphabetical characters
● Too different in length
● Not in the right language
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Cleaning Noisy Corpora

● Data
– Corpora: OpenSubtitles EN—HR

– Input: 30M sentence pairs

– Output: 17M

● Extrinsic Evaluation
– Train MT system with OpenSubs as is vs cleaned

– Test set: news domain (WMT13)
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Cleaning Noisy Corpora

● SMT results (BLEU)

● Use for NMT: dedicated shared task at WMT18

EN-to-HR HR-to-EN

OpenSubs as is 0.09 0.22

OpenSubs cleaned 0.22 0.31

Relative 
improvement

145% 37%
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   Quality and Translationese2
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Quality and Translationese

● MT performs better if training data consists on 
original SL text translated directly into TL (Kurokawa 
et al., 2009)

– But that is not how MT practitioners use corpora, e.g. 
Europarl

● Idea: given a crawled document, identify:
– Original or translationese

– If translationese, its original language
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Source language identification

● Halteren (2008): token-based features
– Up to 87% accuracy on Europarl

● Koppel and Ordan (2011): function words
– 93% accuracy on Europarl, 65% out-domain (news)

● Matroos (2018): PoS tags
– Works out-of-the-box for the 73 languages in UD

– Vs Halteren (2008)
– Worse on in-domain (Europarl)  → 0.69 vs 0.88
– Better on out-domain (Books)   → 0.74 vs 0.69
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Token-based features
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PoS-based features
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Translationese in Test

● Reassessing human parity (Toral et al., WMT’18)
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   Ebooks and Transcreations3
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Ebooks as a source to crawl parallel data?

Question

https://www.mentimeter.com/s/b27ac9ed9122af1351692a1343bbdb1c/4f7e6162c5dc
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Parallel Data from Ebooks

≠
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Motivation

● Literary-adapted MT for EN→CA (Toral and Way, 
2018)

EN—CA corpora on http://opus.nlpl.eu/

http://opus.nlpl.eu/
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Pipeline

Given an ebook in EN and its translation in CA 

1. Epub (or mobi) to text Calibre tools

2. Normalisation Moses

3. Sentence splitting NLTK/Freeling

4. Sentence alignment Hunalign, Apertium dict
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Result

● Training
– Parallel: 133 book pairs

● 1.2M sentence pairs

– Mono: 1,000 books
● >5M sentences

● Test
– 12 books: 86K sentence pairs
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Result

● Advantages
– Clean data and easy to process. EPUB ≠ PDF

– High quality translations

– Present day language (vs Gutenberg)

● Disadvantages
– Tedious: find and buy books, DRM, …

– Copyright
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Open Questions

● Can this be useful...
– … as out-domain data? How domain-specific is it?

– … for better resourced language pairs?
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Translation Options

French

J’étais épuisé et je me suis jeté sur ma couchette.
Je crois que j’ai dormi parce que je me suis réveillé avec 
des étoiles sur le visage.

English – Prof. Translation 1

But all this excitement had exhausted me and I dropped 
heavily on to my sleeping plank.

I must have had a longish sleep, for, when I woke, the 
stars were shining down on my face.

English – Prof. Translation 2

I was exhausted and threw myself on my bunk.
I must have fallen asleep, because I woke up with the 

stars in my face.

Which translation
do you prefer?
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Translation Options

French

J’étais épuisé et je me suis jeté sur ma couchette.
Je crois que j’ai dormi parce que je me suis réveillé avec 
des étoiles sur le visage.

English – Gilbert (1946)
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heavily on to my sleeping plank.

I must have had a longish sleep, for, when I woke, the 
stars were shining down on my face.

English – Ward (1989)

I was exhausted and threw myself on my bunk.
I must have fallen asleep, because I woke up with the 

stars in my face.
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Translation Options

French
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Domesticating
Transcreation
Free translation

Foreignising
Literal translation



38

Translation Options

French

J’étais épuisé et je me suis jeté sur ma couchette.
Je crois que j’ai dormi parce que je me suis réveillé avec 
des étoiles sur le visage.

English – Gilbert (1946)

But all this excitement had exhausted me and I dropped 
heavily on to my sleeping plank.

I must have had a longish sleep, for, when I woke, the 
stars were shining down on my face.

English – Ward (1989)

I was exhausted and threw myself on my bunk.
I must have fallen asleep, because I woke up with the 

stars in my face.

BLEU 0.11
TER 0.80

BLEU 0.28
TER 0.56
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Translation Options

● A human translation falls somewhere between
– Domesticated / transcreation / free translation

– Foreignising / literal

● Which school of thought is prevalent nowadays?

● Is this important when crawling data?
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Ideas and Discussion4
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Ideas and Discussion

● Monolingual data
– Not (that) important anymore with NMT?

● Bracktranslate vs unsupervised NMT

● Quality
– Filtering (dedicated shared task at WMT’18)

– Translation options

– Identification
● Original Language
● Translated? Human- or machine-translated?

– Classifiers worked well to identify translations by SMT, but NMT output is more fluent and 
impredictable...
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Quantity or Quality?

Quantity and Quality
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Quantity and quality

● Quantity: crawl as much as possible

● Quality
– Filter out

● Not parallel, dirty, etc
● MT

– Augment crawled data with metadata
● Translationese: original or translated (+ confidence)
● If translated → original language (+ confidence)
● Translation type → from literal to transcreation (continuous)
● Provenance → domain information (Tars and Fishel, 2018)
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Thanks!
Questions?

Antonio Toral
a.toral.ruiz@rug.nl
@_atoral
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