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Meaning?

A widely cultivated plant,
Solanum lycopersicum, having
edible fruit.

potato

Russian

tomato

?

"tomato"
�

Today’s talk:
▶ Are word embeddings more like definitions or spelling?
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Theoretical Background
Chronology

1940 2022

Harris (1954),
“Distributional
structure”

3

Seminal paper in Distributional Semantics
▶ Distributional Hypothesis (DH): Meaning should correlate with distribution
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First large-scale vector model
▶ Designed for document vectors, not word vectors
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First widely adopted Distributional Semantics Models (DSMs)
▶ Count-based models
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First neural word embeddings
▶ Bengio et al. (2003): Start of neural word embeddings
▶ Collobert andWeston (2008): Word embeddings as a multi-task framework
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Wide adoption of neural word embeddings
▶ Revolutionary
▶ Static (=word-type) representations
▶ Shallow neural network-based
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First contextualized word embeddings
▶ Contextualized (=word-token) embeddings
▶ Often based on Transformer architecture (Vaswani et al., 2017)
▶ “One size fits all”



Theoretical Background
Different types of embeddings

Distributional semantics models ≠word embedding models
▶ Word embedding models are algorithms that convert words into vectors
▶ Distributional Semantics Models (DSMs) are meaningful vectors computed from

distribution
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Theoretical Background
Definitions, dictionaries & embeddings

▶ How do word embeddings compare to dictionaries?

▶ First: what is a dictionary?

▶ Here:
1. a dictionary is a list of definitions
2. a definition links a definiendum to a gloss

Dict=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

mirth
Theemotionusually followinghumour
and accompanied by laughter.

delight Joy; pleasure.

unquenched Not quenched.
… …

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪
⎭

▶ Multiple patterns: Genus + Differentia, lists of near-synonyms, negated antonyms...
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Theoretical Background
Side-by-side comparison

Lexical theory

Implementation
Representation

Lexicography

Dictionaries
Definitions

DS

DSMs
Embeddings

▶ Lexicography assumes language suffices to
describe meaning

▶ Definitions are sequences of words

▶ Definitions are hand-crafted

▶ Different dictionaries make different
assumptions about meaning

▶ DS assumes distribution suffices to describe
meaning

▶ Embeddings are vectors

▶ Embeddings are computed automatically

▶ Different embedding models make different
assumptions about meaning
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Shopping list

To what extent are word embeddings
lexical semantic representations?

1. Lexical semantic theories should be
comparable

If theory A says “ducks” and “geese” are similar, theory
B shouldn’t say they’re unrelated

2. Lexical semantic representations should be
distinguishable from non-semantic ones

We should be able to distinguish a definition from a
string of randomwords

3. Lexical semantic representations should match
predictions from their theory

We don’t want a definition for a word that says “this
word can’t be defined”

4. Lexical semantic representations should not
encode non-semantic information

Definitions need note include the price of the
dictionary

7
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Experiments
Starting point

▶ In our shopping list:
1. Lexical semantic theories should be

comparable

▶ How can we compare different types
of representations such as vectors &
sequences of words?

▶ Let’s try to be exhaustive and look at multiple
languages

en, es, fr, it, ru

8
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Experiments
Comparing vectors & sequences

▶ We can rely on distances and use topographic similarity (Kirby, Cornish, and Smith, 2008) using a Mantel test

⃗tool

⃗Thursday

⃗Friday

A mechanical device
to make a task
easier

The fifth day
of the week

The sixth day
of the week

▶ We compute the correlation of all pairwise distance measurements

▶ Statistical significance is derived by comparing the observed correlation to random pairings

▶ Testing cosine & Euclidean distance for embeddings, and Levenshtein distance with or without normalization for
definitions

9
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Experiments
What this looks like
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As far as our shopping list is
concerned:

1. Lexical semantic theories
should be comparable
⚠ We find low
correlations to low
anti-correlations

2. Lexical semantic
representations should be
distinguishable from
non-semantic ones
3 Character-based
representations are
worse than distributional
ones

10
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Experiments
Pause for thoughts

▶ We could (and have) tested more complex
metrics

▶ That would shift us from a non-parametric
method to a parametric method

▶ That would shift us frommeasuring a
correlation tomodeling a metric

▶ We might as well go all out: rather than
modeling the metric, modeling the space

11
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Experiments
As inverse functions

▶ Under a modeling perspective, we’d convert definitions into embeddings and back

tomato

Definition Modeling

Reverse Dictionary

A widely cultivated plant,
Solanum lycopersicum,
having edible fruit.

▶ Shared task at SemEval 2022: CODWOE – Comparing Dictionaries andWord Embeddings
159 valid submissions, 15+ different users, 11 system papers

▶ Focusing on DefMod BLEU results

12
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Cf. Noraset et al. (2017)
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Cf. Zanzotto et al. (2010), Hill et al. (2016)
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CODWOE
Definition Modeling results

▶ Using simple LM baselines, seeded with definiendum embeddings

▶ 3 char embeddings rank
systematically lower thanW2V
embeddings

▶ ⚠ Results are quantitatively low
Nonsensical outputs such as ", or ."
yield BLEU scores between 0.0189 and
0.0306 (Chen and Zhao, 2022)

▶ Baselines are roughly in the middle of the
submissions we received

▶ Can we explain that?
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Why DefMod fails
Examples of usage

▶ Word tokens & types do not necessarily coincide with word senses
Define “tie”

▶ This could be fixed by examples of usage:
Define “tie” as in “I wear a tie.”

▶ Using sequence-to-sequence models

𝑟1 𝑟2 𝑟3 𝑟4 𝑟5

I⃗+
C⃗

⃗
we

ar
+

C⃗
a⃗+

C⃗
⃗ti
e+

D⃗
.⃗+

C⃗

▶ Results in perplexity (how unlikely the
productions are)

with context: 33.6775
without: 39.4279

In line with the rest of the literature, e.g.
Gadetsky, Yakubovskiy, andVetrov (2018)

▶ 7 DefinitionModeling can’t work with
embeddings alone
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Why DefMod fails
Quality of embeddings

▶ DefinitionModeling doesn’t discriminate between embeddings

▶ Let’s compare sequence-to-sequence models trained on various embeddings with results
on an analogy benchmark
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▶ 3 DefMod distinguishes random& trained embeddings
▶ 7 Unlike analogy,DefMod doesn’t clearly distinguish between embeddings
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Experiments
To recap

▶ Back to our shopping list:
1. Lexical semantic theories should be

comparable
⚠ We get at best a low correlation
between embeddings & definition spaces
7 Word embeddings do not coincide
with word senses

2. Lexical semantic representations should be
distinguishable from non-semantic ones
3 We do distinguish char-based &
random embeddings from distributional
embeddings

16



Experiments
What next?

▶ Next up on the list:
3. Lexical semantic representations should

match predictions from their theory

▶ Let’s have a look at Harris (1954)
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Distributional Substitutability
What we expect of DSMs

Substitutability (parallel). It will in general appear that various elements have identical types of
occurrence-dependence. We group A and B into a substitution set whenever A and B each have the
same (or partially same) environments X (X being at first elements, later substitution sets of elements)
within a statable domain of the flowof speech. This enables us to speak of the occurrence-dependence
of a whole set of elements in respect to other such sets of elements.

Harris (1954)

▶ “Friday” and “Thursday” should be substitutable with one another, but not with “tool”

▶ We can tweak it to test embedding algorithms:

Pr(𝑤1|𝑐) > Pr(𝑤2|𝑐)

For substitutable words, this difference should be small, and large otherwise

▶ We can compare human intuitions to word embedding predictions

18
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BlankCrack

▶ Basically a fill-in-the-gaps test:

best way to dissect the aortic
.

the and pericardium have
both been recorded as points of
outlet.
if the be implicated,
greater expansion of the upper
and outside portion of the left
side of the chest in inspiration
takes place.

pleura? diaphragm? elevator?

▶ We can turn this into an online game:
https://blankcrack.atilf.fr
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BlankCrack
Data
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▶ ⚠ Still a small dataset
▶ 3 Some very hard pairs

baseball vs. basketball, aquarelle vs. gouache...
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BlankCrack
Results

How do human intuitions compare to word embedding predictions?
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▶ 3 Embeddings perform better than
n-grams

▶ ⚠ Noticeable gap with human
performance

en es fr it ru

0

50

100

M
CC

w
ith

hu
m

an
ju

dg
m

en
ts

(in
%

)

1-gram 2-gram
BERTs W2Vs

▶ 3 Positive correlation with human
behavior

▶ 7 Embeddings do not contrast with
n-grams
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Experiments
Second pause for thoughts

▶ We were looking at
3. Lexical semantic representations should

match predictions from their theory
▶ 7 Embeddings underperfom humans on

substitutability judgments

▶ 7 Embeddings do not model human
behavior any better than n-grams

▶ Embeddings nonetheless perform decently

▶ Should we instead analyze their
behavior algorithmically?
i.e., check

4. Lexical semantic representations should
not encode non-semantic information

22
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Muppet Dissection
Sentence bias

▶ We focus on BERT

▶ BERT is a Transformer
▶ a stack of sublayers
▶ multihead attention /

feed-forwards sublayer
functions

▶ vector inputs
▶ layer-normalizations &

residual connections

▶ Relies on a MLM objective
Pr([MASK]=𝑤|𝑐)

and a NSP objective:
Pr(𝑆𝐴 ≺ 𝑆𝐵|𝑆𝐴,𝑆𝐵)

with ⃗seg𝐴, ⃗seg𝐵 to
distinguish 𝑆𝐴,𝑆𝐵

▶ Residual connections create a
pathway

Sub𝐿

+

Norm

…

𝑜⃗𝐿𝑖Output

𝑤⃗𝑖Input ⃗𝑝(𝑖)

⃗seg𝑖

+
S𝐿

+

Norm

S𝐿

+

Norm

S𝐿

+

Norm

S𝐿

+

Norm

…

𝑜⃗𝐿𝑖Output

𝑤⃗𝑖Input ⃗𝑝(𝑖)

⃗seg𝑖

+
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Muppet Dissection
Sentence bias

▶ The residual pathway means vector inputs bear a trace on the output

▶ Each embedding is shifted by a scaled segment encoding

E.g., for the vectors: BERT(“My dog barks. It’s a pooch.”)

⃗dog

M⃗y

⃗barks ⃗It’s

⃗pooch

a⃗

Toy example without bias

⃗dog

M⃗y

⃗barks

⃗It’s

⃗pooch

a⃗

Toy example with bias

▶ Is this bias noticeable?
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Muppet Dissection
Sentence bias

▶ Let’s measure whether there’s a noticeable difference between embeddings of the same
type but different segments
two occurences of “tie” in the same segment vs. two occurences of “tie” in different segments

▶ MSE scores systematically favor the mean
of the token’s own segment

▶ Wrt. our last shopping list item:
4. Lexical semantic representations

should not encode non-semantic
information

7 This bias is noticeable
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Muppet Dissection
But wait, it generalizes!

▶ The residual pathway means the output is a sum of sub-vectors
▶ We can decompose transformer embeddings in four terms: 𝑒𝑡 = 𝐼+𝐹+𝐻⃗+ 𝐶⃗

1. a term related to the input, 𝐼
2. a term related to the feed-forward modules, 𝐹
3. a term related to the multihead attentions, 𝐻⃗
4. a term where we collect biases and offsets, 𝐶⃗

▶ We can visualize the proportion of the embedding 𝑒𝑡 corresponding to these four terms:

0 1 2 3 4 5 6 7 8 9 10 11 12

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Layers

Pr
op

or
tio

n

𝐼 𝐹 𝐻⃗ 𝐶⃗

▶ Do these different termsmodel lexical semantics differently?
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Muppet Dissection
Word Sense Disambiguation

▶ UsingWSD: lexical semantic representations should encode word senses
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▶ The different terms all yield different results

▶ The full embedding isn’t the one that performs best
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Muppet Dissection
Back to the shopping list

▶ When looking at:
4. Lexical semantic representations should

not encode non-semantic information

7 There are obvious biases in Transformer
embeddings due to their implementations
7 These biases impact the quality of the
overall embedding

28



Conclusions

To what extent are word embeddings lexical semantic representations?

1. Lexical semantic theories should be comparable
⚠ We get at best a low correlation between embeddings & definition spaces
7 We have an alignment problem

2. Lexical semantic representations should be distinguishable from non-semantic ones
3 Char-based & random embeddings are distinct from distributional ones

3. Lexical semantic representations should match predictions from their theory
7 Embeddings don’t match our expectations for distributional substitutability

4. Lexical semantic representations should not encode non-semantic information
7 We find obvious detrimental biases due to embedding implementation

In a nutshell:
▶ We can make quantitative statements about the fitness of DSMs as a semantic theory of

the lexicon
▶ We should be more cautious about how we talk about DSMs and word embeddings
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Thanks for your attention!
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