No Language Left Behind (NLLB) **Scaling Human-Centered Machine Translation**

NLLB Team, Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shannon Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán, Philipp Koehn, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, Jeff Wang

Maha Elbayad **Research Scientist, FAIR**

There are more than **3000**^a written languages in the world.

Google Translate supports **133^b & Microsoft Translator supports 110^b**

South America

SOUTH PACIFIC OCEAN

SOUTH ATLANTIC OCEAN Africa

https://cainesap.shinyapps.io/langmap/ - map of living languages [a] Eberhard et al. 202 [b] As of Dec 7th, 2022

in the world. anslator supports **110**^b

Australia

INDIAN OCEAN

NORTH STAR

Develop a general-purpose **universal** machine translation model capable of translating between **any two** languages in various domains.

- The majority of improvements in MT are for high-resource languages.
- Handling low-resource, underserved languages brings additional challenges:
 - Creating training data
 - Training multilingual MT models
 - Properly evaluating performance

nigh-resource languages. es brings additional

How we structured our project to take on these challenges?

Multilingual Machine Translation is a multi-faceted problem. Our research effort is taken on by an interdisciplinary team:

- Humanities i.e., Philosophy, Ethics
- Social scientific i.e., Sociology, Linguistics
- Technical i.e., Computer Science, Statistics

Our team was structured around our key challenges

Data

Research Question How can we collect enough training data for low-resource languages?

Deliverables

High quality aligned sentences covering 200 languages

Modeling

How can we scale multilingual MT to 200 languages?

Final MT model with optimum architecture and training strategy

Evaluation

How can we evaluate across 200 languages with confidence and mitigate toxicity in the model outputs?

High quality evaluation benchmark Toxicity lists covering 200 languages

- 1. Multilingual Benchmark Dataset (FLORES-200)
- 2. Bitext Seed Data (NLLB-SEED)

1. FLORES-200 (Benchmark)

A high-quality evaluation dataset or a reliable benchmark can help assess progress. The ability to evaluate allows us to compare different approaches and understand what requires further research and development.

- High quality, **many-to-many** benchmark dataset.
- The same 3,001 sentences in 204 languages (> 40,000 directions).
- English source collected from Wikinews, Wikijunior, Wikivoyage.
- Translated and reviewed by professional translators and reviewers.
- Focus on **low resource languages.**

Mflores

2. NLLB-SEED

Human-translated bitext data in 39 low-resource languages to train models that require parallel data

Purpose:

- Supporting language identification for new languages
- Aligned bitext to help train translation models
- Domain finetuning (Ex: adapting general-purpose translation models to the Wikipedia domain)

Data Collection Process:

- Sampled from Wikimedia's List of articles every Wikipedia should have¹
- Sampled triplets of continuous sentences from English Wikipedia articles in 11 categories incl. People, History, Philosophy and Religion, Geography, etc.

- 1. Bitext Mining
- 2. Back-translation
- 3. Training large models

1. Bitext Mining

We extend existing datasets with large-scale data mining (Schwenk et al. 2021) i.e., collecting non-aligned monolingual data and identifying sentences that have a high probability of being translations of each other.

1. Bitext Mining

There are two components to the data mining pipeline:

- a. Language IDentification (LID) systems to predict the primary language for a span of text -**FastText** (Grave et al. 2018)
- b. Multilingual Sentence Encoders to embed sentences and find similar semantically similar sentences in different languages – LASER3 (Heffernan et al. 2022)

Language identification

Monolingual data

- 1. Bitext Mining
- **Multilingual Sentence Encoders** to embed sentences and find semantically similar ones in different b. languages – LASER (Artexte and Schwenk, 2019), LaBSE (Feng et al, 2020).

Sentences with similar meaning are *close*.

Sentences with similar meaning are *close* independently of their language

- 1. Bitext Mining
- **Multilingual Sentence Encoders** LASER3 encoders are trained independently via distillation b. (Heffernan et al. 2022)

2. Back-translation

Create parallel corpora noisy on the source side via machine translation (Sennrich et al. 2016; Edunov et al. 2018).

We generate BT data with two models:

- **MmtBT**, a multilingual neural MT model.
- **SmtBT**, a series of bilingual MOSES models.

Target language

Target language **natural**

Summary-sources of training data

Source	Human Aligned?	Noisy?	Limited Size?	Model-Dependent?	Models Used
NLLB-Seed	✓	×	~	×	
PublicBitext	×	\checkmark	\checkmark	×	
Mined	×	\checkmark	×	\checkmark	Sentence Encoders
MmtBT	×	\checkmark	×	\checkmark	Multilingual
SmtBT	×	1	×	\checkmark	Bilingual MOSES
Ideal Data	\checkmark	×	×	×	

High-resource \rightarrow

High-resource \rightarrow

3. Training large models - Mixture of Experts

Target sentence prefixed with

<target_language>

Source sentence prefixed with <source_language>

Replace every other FFN in the Transformer model with an MoE FFN layer

3. Training large models - the issue of overfitting low-resource languages

3. Training large models - the issue of overfitting low-resource languages

3. Training large models - Addressing overfitting

We combine these methods with **Curriculum learning**, where we introduce translation directions that overfit early, later in the training process.

Results

Modeling Results - seed datasets

Experimental setup. We train small bilingual models on 8 directions, we first train on the small amounts of pre-existing publicly available parallel data (primary) and then adding seed datasets

Back-translation as well as a number of		public	c bitext	seed	d data	combined
other augmentation approaches, rely		#data	chrF++	#data	chrF++	chrF++
on the presence of a " seed model " to bootstrap the system.	ban-eng eng-ban	10.2k	13.1 15.9	6.2k	20.8 20.6	22.2 21.9
	dik-eng eng-dik	16.9k	12.9 9.0	6.2k	16.1 13.7	17.0 13.1
	fuv-eng eng-fuv	12.1k	15.6 9.2	6.2k	16.3 9.8	18.1 13.5
	mri-eng	31.3k	16.7 27.2	6.2k	17.4 24 7	26.8

Results

Experimental setup. We train dense 3.3B Transformer encoder-decoder models with model dimension 2048, FFN dimension 8192, 16 attention heads and 48 layers (24 encoder, 24 decoder) for these data ablation experiments.

(b) xx-eng_Latn pairs

(a) eng_Latn-xx pairs

(c) xx-yy pairs

Experimental setup. We train dense 3.3B Transformer encoder-decoder models with model dimension 2048, FFN dimension 8192, 16 attention heads and 48 layers (24 encoder, 24 decoder) for these data ablation experiments.

(a) eng_Latn-xx pairs

Experimental setup. We train dense 3.3B Transformer encoder-decoder models with model dimension 2048, FFN dimension 8192, 16 attention heads and 48 layers (24 encoder, 24 decoder) for these data ablation experiments.

(a) eng_Latn-xx pairs

(c) xx-yy pairs

Experimental setup. We train dense 3.3B Transformer encoder-decoder models with model dimension 2048, FFN dimension 8192, 16 attention heads and 48 layers (24 encoder, 24 decoder) for these data ablation experiments.

(a) eng_Latn-xx pairs

Experimental setup. We train dense 3.3B Transformer encoder-decoder models with model dimension 2048, FFN dimension 8192, 16 attention heads and 48 layers (24 encoder, 24 decoder) for these data ablation experiments.

(a) eng_Latn-xx pairs

Results - NLLB-200 significantly outperforms previous SOTA.

		Flores-10	1 devtest (spB	LEU/chrF ++)
4	eng_Latn-xx	xx-eng_Latn	xx-yy	Avg.
87 languages				
M2M-100 Deepnet NLLB-200	-/- -/- 35.4 /52.1	-/- -/- 42.4 /62.1	-/- -/- 25.2 /43.2	13.6/- 18.6/- 25.5 /43.5
101 language	S			
DeltaLM NLLB-200	26.6/- 34.0 /50.6	33.2/- 41.2 /60.9	16.4/- 23.7 /41.4	16.7/- 24.0 /41.7

We also compare favorably to models trained on one language family (e.g. African languages with MMTAfrica and Mafand-MT or Indic languages with IndicBART and IndicTrans) - see tables 31 & 32 of the NLLB paper.

Results - Performance on the new Flores-200

									Flores-20	00 devtest	: (chrF++)
			eng_L	atn-xx			xx-en	g_Lat	n	xx-yy	Average
		$\overline{\mathrm{all}}$	high	low	v.low	all	high	low	v.low	all	all
	chrF++	45.3	54.9	41.9	39.5	56.8	63.5	54.4	54.4	35.6	35.7
	spBLEU	27.1	38.3	23.1	21.3	38.0	44.7	35.5	35.6	17.3	17.5
				xx-yy	(superv	rised)		xx-y	ry (zero-s	shot)	
			$\overline{\mathrm{all}}$	high	n low	v.low	v al	l hi	gh low	v v.low	
		chrF-	+ 39.'	7 43.9) 39.3	38.6	35	.4 46	5.3 34.0	6 33.3	_
		spBL	EU 20.3	3 24.3	3 19.9	20.0	17	.2 28	3.3 16.4	15.3	
	-										_
			Flo	res-200	devtest	- 102 L	_ow-Re	esource	Direction	ns (spBLEU	J/chrF++)
			eng	_Latn-:	xx	x	x-eng_	Latn		Aver	rage
			low	v	.low	low	7	v.lo	w	low	v.low
G N	oogle Tran LLB-200	slate 3	2.3/50. 30.3/48.2	3 27. 2 25.	0/46.5 7/45.0	35.9/5 41.3 /6	57.1 5 0.4	35.8/5 41.1/6	57.0 34 5 0.3 35	4.1/53.7 5 .8/54.3	31.3/51.7 33.4/52.6

Results - Out-of-domain generalization

Evaluation and comparison to state-of-the-art on sampled directions from WMT, IWSLT, WAT, Floresv1, TICO, Mafand, Autshumato and Madar. These benchmarks cover domains other than wikipedia (e.g., health, news, scripted talks, ...)

	enį	g-xx	xx	-eng		en	g-xx	xx·	-eng
	Published	NLLB-200	Published	NLLB-200		Published	NLLB-200	Published	NLLB-200
<u>khm</u> npi pbt sin	^(b) 5.9/- ^(c) 7.4/- ^(b) 9.3/- ^(c) 3.3/-	0.4/27.4 10.4 /39.0 10.5 /34.3 11.6 /40.9	^(b) 10.7/- ^(c) 14.5/- ^(b) 15.7/- ^(c) 13.7/-	16.8 /36.5 29.3 /54.8 22.0 /46.8 23.7 /49.8	hin <u>khm</u> mya	⁽¹⁾ 22.1/- ⁽¹⁾ 43.9/- ^(c) 39.2 /-	27.2 /51.5 45.8 /42.3 23.5/31.5	⁽¹⁾ 32.9/- ⁽¹⁾ 27.5/- ^(c) 34.9/-	37.4 /61.9 39.1 /61.1 32.7/57.9

(a) Flores(v1)

(b) WAT

											07	a-vv	vv	-ong
	eng	g-xx	xx	-eng		en	g-xx	xx	-eng			g_vv		eng
	Published	NLLB-200	Published	NLLB-200		Published	NLLB-200	Published	NLLB-200		Published	NLLB-200	Published	NLLB
		IIIID-200		11LLD-200			NLLD-200		11LLD-200	arb	15.2/-	34.1 /59.4	28.6/-	49.6
ces	^(b) 26.5 /-	25.2/50.6	^(d) 35.3 /-	33.6/56.8	arb	^(b) 22.0/-	25/47.2	^(b) 44.5/-	44.7/63.7	fra	37.6/-	44.9 /64.4	39.4/-	47.3
deu	^(a) 44.9/-	33.0/59.2	^(a) 42.6/-	37.7/60.5	deu	$^{(k)}25.5/-$	31.6 /57.8	$^{(k)}28.0/-$	36.5 /57.5	gaz	0.6/-	10.7/440	21/-	35.9
est	$^{(a)}26.5/-$	27.0 /55.7	^(a) 38.6 /-	34.7/59.1	fra	^(g) 40.0/-	43.0 /65.6	$^{(g)}39.4/-$	45.8 /64.8	bin	6.4/-	46 2 /65 8	18.9/-	58.0
fin	^(a) 32.1 /-	27.7/57.7	^(a) 40.5 /-	28.8/53.7	ita	^(b) 38.1/-	42.5 /64.4	^(b) 43.3/-	48.2/66.5	ind	41.3/-	55 1 /74 8	34 9/-	54.3
fra	^(a) 46.7/-	44.2/65.7	^(a) 43.9 /-	41.9/63.9	jpn	^(c) 19.4/-	19.5 /21.5	$^{(c)}19.1/-$	22.6 /46.1	lin	7.8/-	24.6 /51.5	6.7/-	33.7
guj	^(d) 17.8/-	17.6/46.6	$^{(f)}25.1/-$	31.2/56.5	kor	^(c) 22.6/-	22.5/27.9	^(c) 24.6/-	25.4/48.0	lug	3.0/-	22.1 /48.6	5.6/-	39.0
hin	$^{(f)}25.5/-$	26.0 /51.5	$^{(f)}29.7/-$	37.4 /61.9	nld	^(c) 34.8/-	34.9/60.2	^(c) 43.3 /-	41.0/60.9	mar	0.2/-	16.1 /46.3	$1.2^{'}$ -	44.3
kaz	⁽ⁱ⁾ 15.5/-	34.8/61.5	⁽ⁱ⁾ 30.5 /-	30.2/56.0	pes	$^{(j)}06.5/-$	15.5/39.2	$^{(j)}18.4/-$	42.3/61.3	pes	8.5/-	30.0 /55.6	15.1/-	45.5
lit	$^{(a)}17.0/-$	37.0 /63.9	^(a) 36.8/-	29.7/56.4	pol	$^{(j)}16.1/-$	21.1/48.3	$^{(j)}18.3/-$	27.1/48.2	por	47.3/-	52.9 /72.9	48.6/-	58.7
lvs	^(a) 25.0/-	21.3/50.8	^(a) 28.6/-	24.8/50.8	ron	$^{(k)}25.2/-$	29.4/55.5	$^{(k)}31.8/-$	42.0/62.0	rus	28.9/-	35.7 /59.1	28.5/-	41.2
ron	^(a) 41.2/-	41.5/58.0	^(h) 43.8 /-	43.4/64.7	rus	^(j) 11.2/-	24.0 /47.0	$^{(j)}19.3/-$	30.1/51.3	spa	48.7/-	57.2/74.9	46.8/-	57.5
rus	^(a) 31.7/-	44.8/65.1	^(a) 39.8/-	39.9 /61.9	vie	^(c) 35.4 /-	34.8/53.7	$^{(c)}36.1/-$	36.6 /57.1	swh	22.6/-	34.1/59.1	0.0/-	49.6
spa	$^{(e)}33.5/-$	37.2 /59.3	$^{(e)}34.5/-$	37.6 /59.9					·	urd	2.8/-	27.4/53.3	0.0/-	44.7
tur	^(a) 32.7 /-	23.3/54.2	^(a) 35.0/-	$34.3^{\prime}/58.3$	(b) I	WSLT				zho	33.7/-	42.0/33.3	28.9/-	37.6
zho	^(b) 35.1 /-	33.9/22.7	^(a) 28.9/-	28.5/53.9						zsm	6.3/-	52.4/73.4	0.0/-	58.8
	/	/	1	/						Z 11	11.7/-	22.4/55.1	25.5/-	50.6

(a) WMT

	eng-xx		xx-eng	
	Adelani et al. (2022)	NLLB-200	Adelani et al. (2022)	NLLB-20
hau_Latn	15.9/42.1	8.2/34.8	18.2/40.2	13.5/37
ibo_Latn	${f 26.0/51.3}$	23.9/50.4	21.9/48.0	21.9 /46
lug_Latn	15.7/46.9	25.8/55.2	22.4/48.5	30.9/54
luo_Latn	12.0/39.4	14.0/40.4	14.3/38.3	15.9/38
swh_Latn	27.7/ 57.2	30.7 /56.0	30.6/55.8	39.3/60
tsn_Latn	31.9/59.5	28.5/55.6	27.8/54.0	37.3/60
yor_Latn	13.9/37.4	14.4/36.3	18.0/41.0	24.4/46
zul_Latn	22.9/56.3	16.1/47.3	38.1/57.7	40.3/5
	fra-xx		xx-fra	
	Adelani et al. (2022)	NLLB-200	Adelani et al. (2022)	NLLB-2
bam_Latn	24.7/49.9	7.7/29.9	25.8/49.0	14.6/3
ewe_Latn	8.9/37.5	8.3/36.4	11.6/37.2	19.4/42
	7.4/28.5	3.4/21.8	9.9/28.9	8.9/28
fon_Latn				
fon_Latn mos_Latn	2.2/16.8	5.4/27.6	4.1/18.8	6.1/23

7/66.9/61.9

/76.1

/68.4

Results - Out-of-domain generalization with **Finetuning**

An additional dataset released, dubbed NLLB-MD (multi-domain) in 6 languages covering 3 domains (chat, news and health, scripted).

Results - Out-of-domain generalization with **Finetuning**

An additional dataset released, dubbed NLLB-MD (multi-domain) in 6 languages covering 3 domains (chat, news and health, scripted).

Project webpage: https://ai.facebook.com/research/no-language-left-behind/ The Paper: https://arxiv.org/abs/2207.04672 Demo with children stories https://nllb.metademolab.com/story/1

Codebases

Modeling: https://github.com/facebookresearch/fairseq/tree/nllb LASER3 (sentence encoders): https://github.com/facebookresearch/LASER/blob/main/nllb Stopes (data and mining pipelines): https://github.com/facebookresearch/stopes/

Models checkpoints

Final NMT models: https://github.com/facebookresearch/fairseq/tree/nllb#multilingual-translation-models

- Different model sizes (1.3B, 3.3B and 54.5B) + distilled models (600M and 1.3B) +
- NLLB-200 translations, first and only instance of open sourcing model translations on such a large scale +LASER3 encoders: https://github.com/facebookresearch/LASER/blob/main/nllb

Data

Flores-200, NLLB-Seed, NLLB-MD, Toxicity-200: https://github.com/facebookresearch/flores Mined bitexts: https://huggingface.co/datasets/allenai/nllb

Meta Al

1. Data Collection Processes: FLORES-200 (Benchmark)

Data Creation Process:

- 1. Translator + Reviewer Alignments
- 2. Initial Translation + QA + Arbitration
- 3. Full Translation
- 4. Automated and Linguistic Checks
- 5. Full QA by Third Party Reviewer
- 6. Arbitration (if applicable)
- 7. Rework + Spot Check (if applicable)
- 8. Final Delivery

2. Data Collection Challenges

Resourcing Challenges

- Difficulty in finding qualified resources for low-resource languages
- Finding and retaining resources
 - Consistency/continuity
 needed if working with new
 resources

Linguistic Challenges

- Dialectal Variations
- Lower levels of industry-wide standardization
 - \circ Greater ambiguity
 - Higher subjectivity in assessing quality and consistent translations
- To tackle this:
 - Setting up alignments between translators and reviewers
 - Inevitable variations within an aligned dialect
 - How to balance preferential differences vs objective quality

Collection at Scale

- Language-specific challenges
- Long turnaround times
- Unexpected challenges

throughout the whole process