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Background

° — Online platform for language learning/tutoring
beyond the beginner level

o Collaboration with language teachers at several universities
e Available for several languages

o Finnish

o Russian

e ltalian (B)

o ...
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Background

Main principle:
@ User-selected content
o Learner can upload arbitrary, real texts to use as learning content
@ System automatically generates variety of exercises based on chosen

text
o Cloze (Fill-in-the-blank)
e Multiple choice
o Listening
o .
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Background

System Structure:
@ Domain model
o Representation of real-world concepts / tasks / skills to be learned
@ Student model
o Representation of the learner's knowledge and skills
@ Instruction model
o Representation of the learning goals and the learning process
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Background

Goal:
@ Support personalized language learning process

@ Provide feedback to learners and teachers

" Tasks that the learner cannot

—___ perform (even with assislance)i_J_,,,_,,-J-""”'"'

Figure: Zone of proximal development: blue area—tasks that the learner can
perform with some assistance are those that the learner is most prepared to learn
next.
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Core components

Linguistic Construct as a representation of domain model
@ Constructs are linguistic phenomena or rules, that vary in specificity

o Finnish verb government: verb tutustua (“to become acquainted”)
requires its argument to be in illative case
e Construction Grammar:
o Grammatical constructs
Multi-word expressions (MWEs)
Collocations
Idioms

@ We engage language teachers to create constructs for their language

@ Currently, Finnish and Russian have the most developed system of
constructs, each with over 200 constructs.
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Core components

Example of lingustic constructs

Constructs Examples

Finnish

(1) Necessive construction: Present Energiakriisin lahestyessd kaikki keinot on otettava kayntiin.

passive participle, with -ttava ending (With the energy crisis approaching, all means must be taken into action.)
(2) Transitive vs. intransitive verbs Voisitko sammuttaa valon? (Could you turn off the light?)

(3) Verb government: translative case  Kaupungit eivit ole muuttuneet energiatehokkaammiksi.
(Cities have not become more energy efficient.)

(4) Substitute clause: participle Maija kertoi vanhempien asuvan kaupungissa.
substitutes for “that”-relative clause (Maija said that her parents live in the city.)
Russian
(5) Verb Conjugation Irregular M1 ckopo yBugum socxog. (We will see the sunrise soon.)
(6) Complex pronoun: Ham HyxHo koe o 4em norosoputs. (We need to talk about something)
(7) Perfective vs. imperfective aspect CTpaHbl COr1acoBany npoekT o byayLmux OTHOLIEHUSIX.
(The countries agreed on a draft on future relations.)
(8) Dative subject & impersonal verb Mme Heobxogumo norosoputs ¢ Bpadom. (I need to talk to a doctor.)
German
(9) Past perfect tense Ich wére mit ihm gekommen, aber er wurde krank.
(I would have come with him, but he got sick.)
(10) Weak masculine nouns Ich méchte den Jungen kennenlernen. (1 want to meet the boy.)

(11) Prepositions governing dative case  Wir sind aus dem Haus gelaufen. (We ran out of the house.)
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Core components

Construct detection
@ Token level — Token features

o HFST analyzer
o NN-based morphological analyzer
o ...

e Phrase/sentence level — Context features

e Dependency parsing
e Rule-based pattern detection

Potential exercises are based on detected constructs in text
@ Selected according to learner's level and construct difficulty

o Highlighted in Reading View
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Core components

Exercise generation: Exercise type
o Cloze — Lemma
e Morphological analyzers
@ Multiple choice — Distractor generation

o Rules
e Morphological generators
e Morphological analyzers (e.g., UDAR for stress in Russian)

o Listening exercise — Context

e Dependency parsing
o Text-to-speech synthesis

Each exercise is associated with a construct
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Core components

Feedback
@ lterative, increasing specificity

@ Based on constructs
@ Based on learner's answer

o Grammatical features
o Potential context features

@ Based on language-specific hierarchy

e — Feature
o — Order

Each hint is associated with a construct as well
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System demo
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System demo
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System demo
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System demo

Question: 1/137

Choose the best fitting word or expression.

Han rupesi _ _

_ tatéa kirjaa eilenillalla.
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n e 26
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Data

Russian:
o Exercise
o Generated from any arbirary text
@ No explicit item bank

o Selected according to learner’s level
o 214K exercise responses from 1.5K learners
@ Including information about hints
@ Involve multiple constructs
o Test
o Dichotoumous (correct/incorrect) multiple choice questions
o Exhausitve assessment follows a fixed template (300 questions)
e 750K test responses from 1.8K learners
e Manual difficulty labeled by teachers
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Modeling language mastery

@ Techniques to model user’s proficiency:
o Bayesian Knowledge Tracing
@ model learner’'s mastery in a Hidden Markov Model as latent variables
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Modeling language mastery
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@ combine concepts / skills into knowledge states
o build a graph (knowledge space) of states to represent learning path
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Modeling language mastery

@ Techniques to model user's proficiency:
o Bayesian Knowledge Tracing
@ model learner’'s mastery in a Hidden Markov Model as latent variables
e Knowledge Space Theory
@ combine concepts / skills into knowledge states
o build a graph (knowledge space) of states to represent learning path
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Modeling language mastery

@ Techniques to model user’s proficiency:
o Bayesian Knowledge Tracing
@ model learner’'s mastery in a Hidden Markov Model as latent variables
o Knowledge Space Theory

@ combine concepts / skills into knowledge states
o build a graph (knowledge space) of states to represent learning path

e Dynamic Key-value Memory Network
@ model learner’s mastery with single-head attention
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Modeling language mastery

@ Techniques to model user’s proficiency:
o Bayesian Knowledge Tracing
@ model learner’'s mastery in a Hidden Markov Model as latent variables
Knowledge Space Theory

@ combine concepts / skills into knowledge states
o build a graph (knowledge space) of states to represent learning path

Dynamic Key-value Memory Network

@ model learner’s mastery with single-head attention

Item Response Theory
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ltem Response Theory

° (IRT) — psychometric theory that models the
relationship the latent trait and observed performance

@ IRT is applied in many settings including stress testing, psychological
and medical testing, etc.

Anxiety

Neurosis

Personality

Language proficiency
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ltem Response Theory

3PL: “Three-parameter logistic model”

Probability that student s with current ability estimate 65 will give a
correct answer to Q— Question item 1.
The probability function is expressed as:

1

P(6s, Qi) =ci+(1—ci)- 1+ exp(—ai(0s — b;)) W

where the parameters—the properties of Q;—are:
@ a;: discrimination factor,
@ b;: estimate of difficulty,

@ ¢;: probability that a random guess is correct.
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ltem Response Theory

Item information: measures the amount of information a question Q;
yields, based on the learner’s current ability estimate 65

1(6s, Q) = a2

1-P(6s, Qi) [P(f?s?Qi)—C'r (2)

P(6s, Qi) l—g
Information function: used during the adaptive test to select the most
informative item, for given value of ability 6.
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Challenges: Test

@ Test question as an item
o Easy to assign credit
@ Long and exhausting process

e 300 questions overall
e 15 sec for each question
o Stressful for students
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Challenges: Test

@ Test question as an item
o Easy to assign credit
@ Long and exhausting process

e 300 questions overall
e 15 sec for each question
o Stressful for students

Research questions:
@ RQ1: Does imperfect learner data still provide robust assessment of
learner ability?

@ RQ2: How do estimates of ability from a model trained on learner
data compare with estimates of ability based on question difficulty
assessed manually by teachers?
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Challenges: Exercises

o Compared with test items:

e [tem not as clearly defined as test questions
o Not clear judgement on answers when assigning credit and penalty
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Challenges: Exercises

o Compared with test items:
e [tem not as clearly defined as test questions
o Not clear judgement on answers when assigning credit and penalty
@ Construct as an item
o Map exercise to constructs
o Detect learner's error as constructs
e 1-N mapping
@ Rely on NLP components
Dependency parser

Morphological analyzer
Rule-based pattern matching
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Challenges: Exercises

o Compared with test items:

e [tem not as clearly defined as test questions

o Not clear judgement on answers when assigning credit and penalty
@ Construct as an item

o Map exercise to constructs

o Detect learner's error as constructs

e 1-N mapping
@ Rely on NLP components

o Dependency parser

e Morphological analyzer

o Rule-based pattern matching
o ...

Research questions:

@ RQ3: Can we reliably model learner ability based on the learner
responses to exercises — without testing?
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Experiments and Simulations: RQ1

@ RQ1: Does imperfect learner data still provide robust assessment of
learner ability?

@ RQ2: How do estimates of ability from a model trained on learner
data compare with estimates of ability based on question difficulty
assessed manually by teachers?

@ RQ3: Can we reliably model learner ability based on the learner
responses to exercises?
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Experiments and Simulations: RQ1

Simulation process: Adaptive test
@ Initialize ability 68y randomly
@ Pick the most informative question from item bank
o i =argmax;/(6n, Q)
© User answers selected question — re-estimate 6,11

@ Repeat from step 2 and 3 until 6, converges
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Experiments and Simulations: RQ1

@ Trained with 750K test responses
@ Simulate with “artificial” user

o 5 different ability levels
e 3 simulations each
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Experiments and Simulations: RQ1

@ Trained with 750K test responses
@ Simulate with “artificial” user

o 5 different ability levels
o 3 simulations each
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Experiments and Simulations: RQ1

@ Simulate with real data

e ~ 200 students with grades assigned by teachers
e pick question from previous test session instead of entire item bank
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Experiments and Simulations: RQ1

@ Simulate with real data

e ~ 200 students with grades assigned by teachers
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Experiments and Simulations: RQ1

Does imperfect learner data still provide robust assessment of learner
ability?
@ Imperfect exhaustive test process
o Feasible for IRT
o Correlates well with manually assigned grade
@ More efficient than exhaustive testing

e Vast majority of tests converge in 60 questions or less.
o Default exhaustive test length is 300 questions.
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Experiments and Simulations: RQ2

@ RQ1: Does imperfect learner data still provide robust assessment of
learner ability?

@ RQ2: How do estimates of ability from a model trained on learner
data compare with estimates of ability based on question difficulty
assessed manually by teachers?

@ RQ3: Can we reliably model learner ability based on the learner
responses to exercises?
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Experiments and Simulations: RQ2

o ltem difficulty — manually set by teachers
@ Similar simulation as RQ1
o Cutoff: 100 questions
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Experiments and Simulations: RQ2

o ltem difficulty — manually set by teachers
@ Similar simulation as RQ1

o Cutoff: 100 questions
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Experiments and Simulations: RQ2

o ltem difficulty — manually set by teachers

@ “Full benefit of the doubt” — estimate with full test session
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Experiments and Simulations: RQ2

o ltem difficulty — manually set by teachers

@ “Full benefit of the doubt” — estimate with full test session

AL n Bl B2 c (=]

Figure: X-axis—the 6 CEFR levels; Y-axis—ability estimate
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Experiments and Simulations: RQ2

How do estimates of ability from a model trained on learner data compare

with estimates of ability based on question difficulty assessed manually by
teachers?

@ Far worse than applying item difficulty learned by the model

@ Item parameters learned from data are more accurate than the
question levels labeled by experts in language teaching
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Experiments and Simulations: RQ3

@ RQ1: Does imperfect learner data still provide robust assessment of
learner ability?

@ RQ2: How do estimates of ability from a model trained on learner
data compare with estimates of ability based on question difficulty
assessed manually by teachers?

@ RQ3: Can we reliably model learner ability based on the learner
responses to exercises?

32/37



Experiments and Simulations: RQ3

@ Train model with data from reliable students
o Data from students who have done over mineyer €xercises
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Experiments and Simulations: RQ3

@ Train model with data from reliable students
o Data from students who have done over mineyer €xercises
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IRT estimations of student

(a) minexer =50, Mincopstr =4, p = .663  (b) Mingxer = 100, Mincopstr = 4, p = .724
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Experiments and Simulations: RQ3

@ Evaluate with reliable constructs
o Estimate with constructs that have over minconstr responses
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Experiments and Simulations: RQ3

@ Evaluate with reliable constructs
o Estimate with constructs that have over minconstr responses
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(2) minexer =100, mincopstr =1, p =.608  (b) Minexer = 100, Mincopstr =7, p = .75
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Experiments and Simulations: RQ3

Can we reliably model learner ability based on the learner responses to
exercises?

@ No explicit item bank as we have for test
@ As good as scores from adaptive test

@ Higher mingye, and minconsty — better model
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Summary

@ Present language learning platform Revita
@ Linguistic constructs as Revita's domain model

@ lllustrate the use of IRT to model learner mastery

o Imperfect learner data from tests is usable to build a reliable adaptive
model

o Item parameters learned from data are more accurate than manual
item difficulty

o Model learner ability from responses to exercises

o No explicit item
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Thank you!

revita.cs.helsinki.fi
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