Linguistic Constructs Represent the Domain Model in Intelligent Language Tutoring

Jue Hou

University of Helsinki

June 1, 2023

(日) (四) (注) (注) (正)

1/37

Outline

- Background
- Core Components
- System demo
- Data
- Modeling language mastery
 - Item Response Theory
- Challenges
- Experiments and Simulations
- Summary

 helsinki.fi/revita — Online platform for language learning/tutoring beyond the beginner level

イロト 不得 トイヨト イヨト 二日

3/37

- Collaboration with language teachers at several universities
- Available for several languages
 - Finnish
 - Russian
 - Italian (β)
 - ...

Main principle:

- User-selected content
 - Learner can upload arbitrary, real texts to use as learning content
- System automatically generates variety of exercises based on chosen text
 - Cloze (Fill-in-the-blank)
 - Multiple choice
 - Listening
 - ...

System Structure:

- Domain model
 - Representation of real-world concepts / tasks / skills to be learned
- Student model
 - Representation of the learner's knowledge and skills
- Instruction model
 - Representation of the learning goals and the learning process

Background

Goal:

- Support personalized language learning process
- Provide feedback to learners and teachers

Figure: *Zone of proximal development*: blue area—tasks that the learner can perform with some assistance are those that the learner is most prepared to learn next.

Linguistic Construct as a representation of domain model

- Constructs are linguistic phenomena or rules, that vary in specificity
 - *Finnish verb government:* verb *tutustua* ("to become acquainted") requires its argument to be in illative case
 - Construction Grammar:
 - Grammatical constructs
 - Multi-word expressions (MWEs)
 - Collocations
 - Idioms
 - ...
- We engage language teachers to create constructs for their language
- Currently, Finnish and Russian have the most developed system of constructs, each with over 200 constructs.

Example of lingustic constructs

Constructs	Examples
Finnish	
Necessive construction: Present	Energiakriisin lähestyessä kaikki keinot <u>on otettava</u> käyntiin.
passive participle, with -ttava ending	(With the energy crisis approaching, all means <u>must be taken</u> into action.)
(2) Transitive vs. intransitive verbs	<i>Voisitko</i> <u>sammuttaa</u> <i>valon?</i> (Could you <u>turn off</u> the light?)
(3) Verb government: translative case	Kaupungit eivät ole muuttuneet energiatehokkaammiksi.
	(Cities have not become more energy efficient.)
(4) Substitute clause: participle	Maija kertoi vanhempien asuvan kaupungissa.
substitutes for "that"-relative clause	(Maija said that her parents live in the city.)
Russian	
(5) Verb Conjugation Irregular	<i>Мы скоро увидим восход.</i> (We <u>will see</u> the sunrise soon.)
(6) Complex pronoun:	Нам нужно кое о чем поговорить. (We need to talk about something)
(7) Perfective vs. imperfective aspect	Страны <u>согласовали</u> проект о будущих отношениях.
	(The countries agreed on a draft on future relations.)
(8) Dative subject & impersonal verb	<u>Мне необходимо поговорить</u> с врачом. (<u>I need to talk</u> to a doctor.)
German	
(9) Past perfect tense	lch <u>wäre</u> mit ihm gekommen, aber er wurde krank.
	(I <u>would have come</u> with him, but he got sick.)
(10) Weak masculine nouns	Ich möchte den Jungen kennenlernen. (I want to meet the boy.)
(11) Prepositions governing dative case	Wir sind aus dem Haus gelaufen. (We ran out of the house.)

Core components

Construct detection

- Token level \rightarrow Token features
 - HFST analyzer
 - NN-based morphological analyzer
 - ...
- Phrase/sentence level \rightarrow Context features
 - Dependency parsing
 - Rule-based pattern detection

Potential exercises are based on detected constructs in text

- Selected according to learner's level and construct difficulty
- Highlighted in Reading View

Core components

Exercise generation: Exercise type

- Cloze → Lemma
 - Morphological analyzers
- Multiple choice \rightarrow Distractor generation
 - Rules
 - Morphological generators
 - Morphological analyzers (e.g., UDAR for stress in Russian)
- Listening exercise \rightarrow Context
 - Dependency parsing
 - Text-to-speech synthesis

Each exercise is associated with a construct

Core components

Feedback

- Iterative, increasing specificity
- Based on constructs
- Based on learner's answer
 - Grammatical features
 - Potential context features
- Based on language-specific hierarchy
 - \rightarrow Feature
 - \rightarrow Order

Each hint is associated with a construct as well

Revita Hom	e Library Flashcar	rds Groups	
Add new stories		☆ 1150 Practiced hours	
Library	LessonsBETA	Dive In!	2
Flashcards	Adaptive test	Notes	maddalena.bellia 5.2h 9.4h 9.4h
			💍 Capricollins 0.9h

Revito Home Library Flashcards Groups	පු- 🎛 🛈- 🗘 🕸
2. Aurinkoenergia tulevalsuuden kaupungeissa. Highlight exercises and difficulty levels Z Edit story Practice grammar	Working with this story helps you master especially these topics: Sort by:
Ehergamismi sihestyessa (kasik kennot on otertava kayntiin. Euroopassa stostaan ahkersisi riikaisuja (jaakkon hinnan nousuun) Esimerkiksi asiantuntijat kertovat Espanjan aikovan najoitta (juliisten sisälöijen viilemnystä) kesäisin ja lämmitystä talvisin. Myös Soomessa kaupungit ovat halukkaita lähtemään mukaan energiansääsiöta vakuuttavat ryhtyneensä lisäämään aurinkopaneleja rakennuksiinsa ollakseen va	Passive (impersonal) 4 Adverbs 4 Conditional mood 3 Adposition. Case government (of 3 Nour+Pronoun) Ettà-lauseervastike past (sama tekija) 2
(Aurinkopaneellen pystyttäminen) leää (omavaraista sähköntuotantoa). Aurinkosähköjärjestehmiä <mark>avennetaan</mark> uusiin (aupungin toimittiohin ja päivelurakennuksiin). Niden tulisi olla taloudellisesti kannattavia, ja kannattavius olikin hyvä jo ennen kuin (sähkön hintä) lähti kallistumaan.	Translate into → English →
Paneeleita on asenneltu jo useamman (ruoden ajan) esimerkiksi (alaraaloiden, koulujen ja kulttuurirakennusten) katolla. EU-komission (jukistaman toimenpidepaketiin) avula <mark>tähdätään</mark> (venälläisestä energiasta) luopumiseen lähvuosina.	 49 asentaa 27 - ? install fit set up
(Komission ehdotuksen mukaan) "energiakatoista" tulisi pakoliisia tasteittain vuodesta 2025 lähtien. Sekä (uusiin asuinrakennuksiin) että (julkisiin rakennuksiin) läytyisiä asentaia aurinkopaneelit vuodesta 2029 lähtien, ja uusissa yli 250 (neliömetrin julkisissa rakennuksissa) on syytä olla aurinkokennot jo vuonna 2025 EU-alueella.	 put in erect assemble rig up

System demo

		_	~
Question: 1 / 137	"	-	26
Choose the best fitting word or expression.			
Hän rupesi tätä kirjaa eilen illalla.			
lukea			
lukee			
lukemaan			
luki			
	a c	Report	problem

Data

Russian:

- Exercise
 - Generated from any arbirary text
 - No explicit item bank
 - Selected according to learner's level
 - 214K exercise responses from 1.5K learners
 - Including information about hints
 - Involve multiple constructs
- Test
 - Dichotoumous (correct/incorrect) multiple choice questions
 - Exhausitve assessment follows a fixed template (300 questions)
 - 750K test responses from 1.8K learners
 - Manual difficulty labeled by teachers

• Techniques to model user's proficiency:

- Bayesian Knowledge Tracing
 - model learner's mastery in a Hidden Markov Model as latent variables

- Techniques to model user's proficiency:
 - Bayesian Knowledge Tracing
 - model learner's mastery in a Hidden Markov Model as latent variables
 - Knowledge Space Theory
 - combine concepts / skills into knowledge states
 - build a graph (knowledge space) of states to represent learning path

Modeling language mastery

- Techniques to model user's proficiency:
 - Bayesian Knowledge Tracing
 - model learner's mastery in a Hidden Markov Model as latent variables
 - Knowledge Space Theory
 - combine concepts / skills into knowledge states
 - build a graph (knowledge space) of states to represent learning path

- Techniques to model user's proficiency:
 - Bayesian Knowledge Tracing
 - model learner's mastery in a Hidden Markov Model as latent variables
 - Knowledge Space Theory
 - combine concepts / skills into knowledge states
 - build a graph (knowledge space) of states to represent learning path
 - Dynamic Key-value Memory Network
 - model learner's mastery with single-head attention

- Techniques to model user's proficiency:
 - Bayesian Knowledge Tracing
 - model learner's mastery in a Hidden Markov Model as latent variables
 - Knowledge Space Theory
 - combine concepts / skills into knowledge states
 - build a graph (knowledge space) of states to represent learning path
 - Dynamic Key-value Memory Network
 - model learner's mastery with single-head attention
 - Item Response Theory
 - ...

- Item Response Theory (IRT) psychometric theory that models the relationship the latent trait and observed performance
- IRT is applied in many settings including stress testing, psychological and medical testing, etc.
 - Anxiety
 - Neurosis
 - Personality
 - Language proficiency

3PL: "Three-parameter logistic model" Probability that student *s* with current ability estimate θ_s will give a correct answer to Q_i — Question item *i*. The probability function is expressed as:

$$P(\theta_s, Q_i) = c_i + (1 - c_i) \cdot \frac{1}{1 + exp(-a_i(\theta_s - b_i))}$$
(1)

where the parameters—the properties of Q_i —are:

- *a_i*: discrimination factor,
- *b_i*: estimate of difficulty,
- c_i: probability that a random guess is correct.

I

Item information: measures the amount of information a question Q_i yields, based on the learner's current ability estimate θ_s

$$P(\theta_s, Q_i) = a_i^2 \frac{1 - P(\theta_s, Q_i)}{P(\theta_s, Q_i)} \left[\frac{P(\theta_s, Q_i) - c_i}{1 - c_i} \right]^2$$
(2)

Information function: used during the adaptive test to select the most informative item, for given value of ability θ_s .

Challenges: Test

- Test question as an item
 - Easy to assign credit
- Long and exhausting process
 - 300 questions overall
 - 15 sec for each question
 - Stressful for students

Challenges: Test

- Test question as an item
 - Easy to assign credit
- Long and exhausting process
 - 300 questions overall
 - 15 sec for each question
 - Stressful for students

Research questions:

- **RQ1**: Does imperfect learner data still provide robust assessment of learner ability?
- **RQ2**: How do estimates of ability from a model trained on learner data compare with estimates of ability based on question difficulty assessed *manually* by teachers?

Challenges: Exercises

- Compared with test items:
 - Item not as clearly defined as test questions
 - Not clear judgement on answers when assigning credit and penalty

Challenges: Exercises

- Compared with test items:
 - Item not as clearly defined as test questions
 - Not clear judgement on answers when assigning credit and penalty
- Construct as an item
 - Map exercise to constructs
 - Detect learner's error as constructs
 - 1-N mapping
- Rely on NLP components
 - Dependency parser
 - Morphological analyzer
 - Rule-based pattern matching
 - ...

Challenges: Exercises

- Compared with test items:
 - Item not as clearly defined as test questions
 - Not clear judgement on answers when assigning credit and penalty
- Construct as an item
 - Map exercise to constructs
 - Detect learner's error as constructs
 - 1-N mapping
- Rely on NLP components
 - Dependency parser
 - Morphological analyzer
 - Rule-based pattern matching
 - ...

Research questions:

• **RQ3**: Can we reliably model learner ability based on the learner responses to exercises — without testing?

- **RQ1**: Does imperfect learner data still provide robust assessment of learner ability?
- **RQ2**: How do estimates of ability from a model trained on learner data compare with estimates of ability based on question difficulty assessed *manually* by teachers?
- **RQ3**: Can we reliably model learner ability based on the learner responses to exercises?

Simulation process: Adaptive test

- **1** Initialize ability θ_0 randomly
- Pick the most informative question from item bank

• $i = \arg \max_i I(\theta_n, Q_i)$

- **③** User answers selected question \rightarrow re-estimate θ_{n+1}
- Repeat from step 2 and 3 until θ_n converges

- Trained with 750K test responses
- Simulate with "artificial" user
 - 5 different ability levels
 - 3 simulations each

- Trained with 750K test responses
- Simulate with "artificial" user
 - 5 different ability levels
 - 3 simulations each

Simulate with real data

- $\bullet~\sim 200$ students with grades assigned by teachers
- pick question from previous test session instead of entire item bank

Simulate with real data

- $\bullet~\sim 200$ students with grades assigned by teachers
- pick question from previous test session instead of entire item bank

Does imperfect learner data still provide robust assessment of learner ability?

- Imperfect exhaustive test process
- Feasible for IRT
 - Correlates well with manually assigned grade
- More efficient than exhaustive testing
 - Vast majority of tests converge in 60 questions or less.
 - Default exhaustive test length is 300 questions.

- **RQ1**: Does imperfect learner data still provide robust assessment of learner ability?
- **RQ2**: How do estimates of ability from a model trained on learner data compare with estimates of ability based on question difficulty assessed *manually* by teachers?
- **RQ3**: Can we reliably model learner ability based on the learner responses to exercises?

- Item difficulty manually set by teachers
- Similar simulation as RQ1
- Cutoff: 100 questions

- Item difficulty manually set by teachers
- Similar simulation as RQ1
- Cutoff: 100 questions

< ロ > < 同 > < 回 > < 回 >

- Item difficulty manually set by teachers
- "Full benefit of the doubt" \rightarrow estimate with full test session

- Item difficulty manually set by teachers
- "Full benefit of the doubt" \rightarrow estimate with full test session

Figure: X-axis-the 6 CEFR levels; Y-axis-ability estimate

How do estimates of ability from a model trained on learner data compare with estimates of ability based on question difficulty assessed *manually* by teachers?

- Far worse than applying item difficulty learned by the model
- Item parameters learned from data are more accurate than the question levels labeled by experts in language teaching

- **RQ1**: Does imperfect learner data still provide robust assessment of learner ability?
- **RQ2**: How do estimates of ability from a model trained on learner data compare with estimates of ability based on question difficulty assessed *manually* by teachers?
- **RQ3**: Can we reliably model learner ability based on the learner responses to *exercises*?

- Train model with data from reliable students
 - Data from students who have done over *min_{exer}* exercises

• Train model with data from reliable students

• Data from students who have done over *min_{exer}* exercises

• Evaluate with reliable constructs

• Estimate with constructs that have over *minconstr* responses

Evaluate with reliable constructs

• Estimate with constructs that have over *minconstr* responses

 Can we reliably model learner ability based on the learner responses to exercises?

- No explicit item bank as we have for test
- As good as scores from adaptive test
- Higher min_{exer} and $min_{constr} \rightarrow$ better model

- Present language learning platform Revita
- Linguistic constructs as Revita's domain model
- Illustrate the use of IRT to model learner mastery
 - Imperfect learner data from tests is usable to build a reliable adaptive model
 - Item parameters learned from data are more accurate than manual item difficulty
 - Model learner ability from responses to exercises
 - No explicit item

Thank you!

revita.cs.helsinki.fi