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Neural Machine Translation (NMT)

e Having some pairs of source and target sentences (s;, ¢;) , we want the NMT
model to learn a probability distribution ps(t|s)
e The model predicts the most probable target sentence given source:

argmazxicr po(t|s; o)




Components of Basic NMT

e Encoder-Decoder Architecture

e CE/NLL Loss compares the model's
predicted probability distribution with
the true distribution ( 1-hot vector)
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Challenges of NMT

e The best results are usually achieved with

Ensemble Models or Large Networks. ®
e Deploying large models on edge devices is o
challenging due to limited computational
resources.
Large model,
e Assumption good SOTA
Time and cost of running inference a model is : performance
more important than the time and memory of Real-time or

training a model edge systems .
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e The best results are usually achieved with

Ensemble Models or Large Networks. ®
e Deploying large models on edge devices is o
challenging due to limited computational
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Large model,
e Assumption good SOTA
Time and cost of running inference a model is : performance
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training a model edge systems .

e Need to compress the large models
o Knowledge Distillation



What This Presentation Is About and Is Not About

e Goal: Provide an overview of the key knowledge distillation methods for
Machine Translation

e What this is not: Exhaustive
It's impossible to cover all related papers in one presentation

e What we do cover:
Knowledge distillation explicitly applied on Autoregressive NMT models
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What is Knowledge Distillation?



What is Knowledge Distillation?

Transferring the knowledge from a
(set of) large model(s) to a smaller
model w/o significant loss in
performance.

The small model is a student that
learns from the large teacher
model by imitating the teacher
predictions.

Knowledge
Distillation

SMALL
MODEL
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How is KD performed for NMT models?
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How is Knowledge Distillation performed for NMT models?

compares the model's
predicted probability

e Auto-regressive Negative Log-Likelihood (NLL) Los/ cstrioution with the

V]

Ly ==Y Y 1{t; = k}log p(t; = ks, t;)

j=1 k=1

12
*V is target vocabulary set



How is Knowledge Distillation performed for NMT models?

e Auto-regressive Negative Log-Likelihood (NLL) Loss
compares the student

Lyrr = — i%ﬂ {t; = k}log pe(t; = K|s, t;) predicted probability
o ’ ~ distribution with the

7=1 k=1
. Co . teacher’s (~data distr)
e Having access to a teacher distribution

V]

Lworp-kD = — ZZ =k |s, t<;) log pe(t; = kis, t<;)
7=1 k=1
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Word-Level Knowledge Distillation (Kim & Rush, 2016)

Auto-regressive Negative Log-Likelihood (NLL) Loss

V]

Ly ==Y Y 1{t; = k}log p(t; = ks, t;)

j=1 k=1

Having access to a teacher distribution
1 V]

Lworp-kD = — ZZ ti =k s, t<;) log pe(t; = kls, t<;)
7j=1 k=1

Interpolate these two losses to take ground truth labels into account

L = (]. — Q)LNLL +aLgp
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Sequence-Level Knowledge Distillation (Kim & Rush, 2016)
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Sequence-Level Knowledge Distillation (Kim & Rush, 2016)

Instead of minimizing word-level CE, minimize CE between sequence
distributions
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Sequence-Level Knowledge Distillation (Kim & Rush, 2016)

Instead of minimizing word-level CE, minimize CE between sequence
distributions

The sequence-level NLL for NMT involves matching the 1-hot distribution

over all complete sequences:
vi

Lyrr = —Z]l{t =y} logpe(t|s)
=1
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Sequence-Level Knowledge Distillation (Kim & Rush, 2016)

Instead of minimizing word-level CE, minimize CE between sequence
distributions

The sequence-level NLL for NMT involves matching the 1-hot distribution
over all complete sequences:

Vi The teacher’s sequence
LNLL = — E T {t =y } log pe(t | 3) distribution over the sample
k=1 space of all possible sequences
4

Lsgpg-xp = — Z q(t|s) log po(t|s)
=1
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Sequence-Level Knowledge Distillation (Kim & Rush, 2016)

Instead of minimizing word-level CE, minimize CE between sequence
distributions

The sequence-level NLL for NMT involves matching the 1-hot distribution
over all complete sequences:

Vi The teacher’s sequence
LNLL = — E T {t =y } log pe(t | 3) distribution over the sample
k=1 space of all possible sequences
\4
Lspg-kp = — E q(t|s) logpe(t|s)
k=1

The authors approximate the teacher distribution by:

o Replacing it by its mode
o Replacing by the results of a beam search on the teacher
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Sequence-Level Knowledge Distillation (Kim & Rush, 2016)

1)
2)

Run beam search over the training set with the teacher model
Train the student network with cross-entropy on this new dataset
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Sequence-Level Knowledge Distillation (Kim & Rush, 2016)

Run beam search over the training set with the teacher model

3)

2) Train the student network with cross-entropy on this new dataset
Sequence-Level Interpolation (Kim & Rush, 2016)
1) Run beam search over the training set with the teacher model
with K candidate translations
2) Select a sequence which is close to the training target sequence in

terms of similarity
Train the student network with cross-entropy on this new dataset
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How is Knowledge Distillation performed for NMT models?

Model BLEUI\':S Al\'::')
English — German WMT 2014
Teacher Baseline 4 x 1000 (Params: 221m) 19.5 —
Student Baseline 2 x 500 (Params: 84m) 17.6 —
Word-KD 17.7 +0.1
Seq-KD ) 19.0 +1.4
Student Baseline 2 x 300 (Params: 49m) 16.9 -
Word-KD 17.6 +0.7
+1.2

Seq-KD 18.1
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What makes sequence-level knowledge distillation effective in
compressing knowledge into the student model ?
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Why does Sequence-Level KD works?

e First hypothesis (Kim and Rush, 2016)

o Student models are smaller — more challenging to accurately fit the noisy training data
o SLKD simplifies the noisy data
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Why does Sequence-Level KD works?

e First hypothesis (Kim and Rush, 2016)
o Student models are smaller — more challenging to accurately fit the noisy training data
o  SLKD simplifies the noisy data and frees more capacity

e Second hypothesis (Gordon et al., 2019)

o  SLKD performs regularization through data augmentation
o SLKD does not restrict the model capacity
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Why does Sequence-Level KD works?

e First hypothesis (Kim and Rush, 2016)

o Student models are smaller — more challenging to accurately fit the noisy training data
o SLKD simplifies the noisy data and frees more capacity

e Second hypothesis (Gordon et al., 2019)

o  SLKD performs regularization through data augmentation
o SLKD does not restrict the model capacity
o To confirm the hypothesis:

SMALL Students LARGE Students

w/ Dropout No Dropout

Dataset | BLEU | PPLyyin | BLEU | PPL1mgin | BLEU | PPL1rain
baseline 26.79 4.86 25.37 4.24 31.75 4.99
kd 27.70 2.17 26.45 2.09 30.38 1.93
base+kd 27.74 3.53 27.84 3.02 32.52 3.33
base+kd+bt | 27.87 3.41 28.38 293 32.99 3.29
base+best-2 | 27.92 3.12 28.03 2.64 32.59 2.73

Table 3: The tokenized test BLEU scores (Beam=5)® and BPE train perplexities for student models trained on
concatenations of datasets. SMALL students are trained for 100 checkpoints, rather than the initial 30.



Why does Sequence-Level KD works?

e First hypothesis (Kim and Rush, 2016)
o Student models are smaller — more challenging to accurately fit the noisy training data
o  SLKD simplifies the noisy data and frees more capacity

e Second hypothesis (Gordon et al., 2019)

o  SLKD performs regularization through data augmentation
o SLKD does not restrict the model capacity
o To confirm the hypothesis:

Analysis
1. Regularizing via dropout can help
SMALT Stodenty LARGESindcnfe generalization at the cost of model
w/ Dropout No Dropout K
Dataset BLEU | PPL1pin | BLEU | PPLypin | BLEU | PPL1min capacity
baseline | 26.79 | 4.86 | 2537 | 4.24 | 31.75 | 4.99
kd 2770 | 217 | 2645 | 2.09 | 3038 1.93 .. .
basetkd | 2774 | 353 | 2784 | 302 | 3252 | 333 2. Regularizing via SLKD helps the
base+kd+bt | 27.87 3.41 28.38 2.93 32.99 3.29 model generalize without restricting
base+best-2 | 27.92 | 3.12 | 2803 | 264 | 3259 | 273

its capacity

Table 3: The tokenized test BLEU scores (Beam=5)® and BPE train perplexities for student models trained on
concatenations of datasets. SMALL students are trained for 100 checkpoints, rather than the initial 30.
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Why does Sequence-Level KD works?

e First hypothesis (Kim and Rush, 2016)
o Student models are smaller — more challenging to accurately fit the noisy training data
o  SLKD simplifies the noisy data and frees more capacity

e Second hypothesis (Gordon et al., 2019)

o  SLKD performs regularization through data augmentation
o SLKD does not restrict the model capacity

e Third hypothesis (Zhang et al., 2023)

o Almost all the knowledge of the teacher comes from the teacher’s top-1information
o To confirm the hypothesis:

candidate tokens candidate tokens candidate tokens candidate tokens

top-1 prediction

probability

probability
probability
probability

(a) vanilla word-level KD (b) w/o correlation info (c) w/o top-1 info (d) w/o KD

Figure 1: Removing different information from the original soft targets provided by the teacher during word-level
KD. Note that the soft target in “w/o KD” is equivalent to the soft target of label smoothing.
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Why does Sequence-Level KD works?

e Third hypothesis (Zhang et al., 2023)

o Almost all the knowledge of the teacher comes from the teacher’s top-1information

> top-1 prediction > > >
s 5 3 > 3
(] o © ©
Q e} Q2 e}
o <] < o
(=% o Q Q
candidate tokens candidate tokens candidate tokens candidate tokens
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Figure 1: Removing different information from the original soft targets provided by the teacher during word-level
KD. Note that the soft target in “w/o KD” is equivalent to the soft target of label smoothing.
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Why does Sequence-Level KD works?

e Third hypothesis (Zhang et al., 2023)

o Almost all the knowledge of the teacher comes from the teacher’s top-1information

top-1 prediction

probability
probability
probability

probability

candidate tokens candidate tokens candidate tokens candidate tokens

(a) vanilla word-level KD (b) w/o correlation info (c) w/o top-1 info (d) w/o KD

Figure 1: Removing different information from the original soft targets provided by the teacher during word-level
KD. Note that the soft target in “w/o KD” is equivalent to the soft target of label smoothing.

Task | Model | TA | BLEU
(a) vanilla word-level KD | 88.98 | 26.66 Top-1Agreement (TA) rate: overlap rate
(b) w/o correlation info 88.69 | 26.76 of the top-1 predictions between the. .
En-De (c) w/o top-1 info 8749 | 26.43 student and the teacher on each position
(d) w/o KD 87.22 | 26.37
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What are the alternative KD techniques available for NMT models?
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1. Selective Knowledge Distillation for NMT (Wang et al., 2021)
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1. Selective Knowledge Distillation for NMT (Wang et al., 2021)

e Not all knowledge from the teacher model is beneficial during KD
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1. Selective Knowledge Distillation for NMT (Wang et al., 2021)

e Not all knowledge from the teacher model is beneficial during KD
e Word CE measures how the student model agrees with the golden label
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1. Selective Knowledge Distillation for NMT (Wang et al., 2021)

e Not all knowledge from the teacher model is beneficial during KD
e Word CE measures how the student model agrees with the golden label
e Words with large CE are more difficult to learn
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1. Selective Knowledge Distillation for NMT (Wang et al., 2021)

e Not all knowledge from the teacher model is beneficial during KD
e Word CE measures how the student model agrees with the golden label
e Words with large CE are more difficult to learn

e Two Strategies proposed:
1. Batch-Level Selection Strategy
2. Global-Level Selection Strategy

36



1. Selective Knowledge Distillation for NMT (Wang et al., 2021)

A. Batch-Level Selection
Strategy

e Choose top r% words with
higher CE within current
mini-batch and distill them

e Hard samples get extra
supervision

v
Lrd = . |k:1 (1((/11) ' l(’)g p(llk) Yy e SHard
0 Y € SE(Isy

where we simplify the notation of p and ¢ for clar-
ity.
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1. Selective Knowledge Distillation for NMT (Wang et al., 2021)

A. Batch-Level Selection
Strategy

e Choose top r% words with
higher CE within current
mini-batch and distill them

e Hard samples get extra
supervision

=
fog— | =S alu) -ogp(ur), y € Shara
0 Y € SE(lsy

where we simplify the notation of p and ¢ for clar-
ity.

B. Global-Level Selection
Strategy

Approximate optimal global CE distribution
using a queue

Algorithm 1 Global-level Selection

Input: B: mini-batch, Q: FIFO global queue, 7
teacher model, S: student model

1: for each word; in B do

2:

9:

R Fiiey L W

Compute L. of word; by Equation 1
Compute L4 of word; by Equation 2
Push L. to Q
if L. in top_r%(Q) then

Loss; < Lee + - Lpyg
else

Loss; < L
Loss < Loss + Loss;

10: Update S with respect to Loss

38



1. Selective Knowledge Distillation for NMT (Wang et al., 2021)

Transformer 27.29 ref

Word-KD 28.14 +0.85
Seq-KD 28.15 +0.86
Batch-level Selection 28.42% +1.13
Global-level Selection 28.57*F +1.28

Table 2: BLEU scores (%) on WMT’14 English-
German (En-De) task. A shows the improvement com-
pared to Transformer (Base). ‘*’: significantly (p <
0.01) better than Transformer (Base). ‘i’: significantly
(p < 0.05) better than the Word/Seq-KD models.

—— Batch
10 —— Queue 30K
~—— Queue 100K

Loss
o

0 500 1000 1500 2000 2500 3000 3500 4000
Training Steps

Figure 6: Partition point for Syarqd and Sgasy, With
respect to different strategies. Batch-level selection
clearly suffers from large fluctuations and high vari-
ance.
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2. Nearest Neighbor Knowledge Distillation for NMT (Yang et al., 2022)
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2. Nearest Neighbor Knowledge Distillation for NMT (Yang et al., 2022)

e Overcorrection Phenomenon (Zhang et al., 2019)
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2. Nearest Neighbor Knowledge Distillation for NMT (Yang et al., 2022)

e Overcorrection Phenomenon (Zhang et al., 2019)
o The standard NMT models are typically trained with CE loss,
which requires a strict word-by-word matching between
the model prediction and the ground-truth

42



2. Nearest Neighbor Knowledge Distillation for NMT (Yang et al., 2022)

e Overcorrection Phenomenon (Zhang et al., 2019)

(@)

The standard NMT models are typically trained with CE loss,
which requires a strict word-by-word matching between
the model prediction and the ground-truth

Even when the model predicts a word that is reasonable but
deviates from the ground-truth, the CE loss will treat it as an
error and punish the model
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2. Nearest Neighbor Knowledge Distillation for NMT (Yang et al., 2022)

e Overcorrection Phenomenon (Zhang et al., 2019)

o The standard NMT models are typically trained with CE loss,
which requires a strict word-by-word matching between
the model prediction and the ground-truth

o Even when the model predicts a word that is reasonable but
deviates from the ground-truth, the CE loss will treat it as an
error and punish the model

e Two proposed solutions based on KNN:

A. kNN-MT(Khandelwal et al., 2021)
B. kNN-KD (Yang et al., 2022)



2. Nearest Neighbor Knowledge Distillation for NMT (Yang et al., 2022)

A- KN N = MT T mr—— Datastore
raining Translation Contexts Representation | Target Distances Nearest k Temperature Normalization
e Training Step: The context (s, by = 1615 [ =00 [ =k &=d/T | |pl) xerpi-)
- J'ai 6t a Paris. I have been | 4 my | 1 my |o1l— my |o40
. J’avais) é_Ié :yi’la) maison. Iha_d been ¥ 3 been | 3 —| been | 0.3 — been | 0.32
representations and target Jappréce ete tonoy | ©@@QQ) |summer~ 100 | Alpean | 4 [ boen | 0.4 |—] been | 028
. J'ai ma propre chambre. I have my [ 1 Il
tokens are stored into a — Agaregation
Test Input :ggz: Representation | Target PN (Yi) = Z Ly,=v; p(K;)
x P1si1 q = f(z,91:i-1) Yi &
|a rg e d a ta Sto re J'ai été dans ma propre lhave @0e0 - my 0.4
chambre. i been 0.6

Figure 1: An illustration of how the kNN distribution is computed. The datastore, which is con-
structed offline, consists of representations of training set translation contexts and corresponding
target tokens for every example in the parallel data. During generation, the query representation,
conditioned on the test input as well as previously generated tokens, is used to retrieve the k nearest
neighbors from the datastore, along with the corresponding target tokens. The distance from the
query is used to compute a distribution over the retrieved targets after applying a softmax tempera-
ture. This distribution is the final kNN distribution.



2. Nearest Neighbor Knowledge Distillation for NMT (Yang et al., 2022)

A. KNN-MT
e |Inference:

©)

k possible target
tokens are retrieved
by conducting
nearest search from
the datastore every
decoding step
KNN-MT interpolates
a base NMT model’s
probability with the
KNN model

Training Translation Contexts Daastore
9 Representation | Target Distances Nearest k Temperature Normalization
(s™,¢M) k= F(s@, 67 vy = M| |y = d(k;,q) dj =d;/T p(kj) o exp(—dj)
J'ai été a Paris. I have 000 been [~ 4 my |17 my |01 my |040
Javais $16 & la maison. I had QO@Q | been o 3 been | 3 —| been | 0.3 |—| been | 0.32
Japprecie Iéte. Lenioy (€] Jele) SUTHmCT 100 been | 4 —| been | 0.4 |— been | 0.28
J'ai ma propre chambre. I have my [ 1 Il
Aggregation
Test Input G(:g;erzlsed Representation | Target PN (Yi) = Z Ly,=v; p(K;)
x P1:i-1 q= f(z,91:i-1) Yi . o
J'ai été dans ma propre Ihave @000 % my 3
chambre. been 0.6

Figure 1: An illustration of how the kNN distribution is computed. The datastore, which is con-
structed offline, consists of representations of training set translation contexts and corresponding
target tokens for every example in the parallel data. During generation, the query representation,
conditioned on the test input as well as previously generated tokens, is used to retrieve the k nearest
neighbors from the datastore, along with the corresponding target tokens. The distance from the
query is used to compute a distribution over the retrieved targets after applying a softmax tempera-
ture. This distribution is the final NN distribution.
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2. Nearest Neighbor Knowledge Distillation for NMT (Yang et al., 2022)

KNN-MT

Problem: Each decoding

step of each beam
requires a KNN search
over the whole
datastore

— Hard to be deployed
in real-world
applications

Training Translation Contexts Daastore
9 Representation | Target Distances Nearest k Temperature Normalization
(s™,¢M) k= F(s@, 67 vy = M| |y = d(k;,q) dj =d;/T p(kj) o exp(—dj)
J'ai été a Paris. I have 000 been [~ 4 my |17 my |01 my |040
Javais $16 & la maison. I had QO@Q | been o 3 been | 3 —| been | 0.3 |—| been | 0.32
Japprecie Iéte. Lenioy (€] Jele) SUTHmCT 100 been | 4 —»| been | 0.4 —* been | 0.28
J'ai ma propre chambre. I have my [ 1 Il
Aggregation
Test Input G(teg;erzlsed Representation | Target PN (Yi) = Z Ly,=v; p(K;)
x P1:i-1 q= f(z,91:i-1) Yi . o
J'ai été dans ma propre Ihave @000 2 my 3
chambre. been 0.6

Figure 1: An illustration of how the kNN distribution is computed. The datastore, which is con-
structed offline, consists of representations of training set translation contexts and corresponding
target tokens for every example in the parallel data. During generation, the query representation,
conditioned on the test input as well as previously generated tokens, is used to retrieve the k nearest
neighbors from the datastore, along with the corresponding target tokens. The distance from the
query is used to compute a distribution over the retrieved targets after applying a softmax tempera-
ture. This distribution is the final kNN distribution.
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2. Nearest Neighbor Knowledge Distillation for NMT (Yang et al., 2022)

B. KNN-KD

Use the KNN-MT model as a
teacher and train a base NMT
model by approximating the
distribution of KNN and using
classical NMT-KD
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2. Nearest Neighbor Knowledge Distillation for NMT (Yang et al., 2022)

B. KNN-KD

e Use the KNN-MT model as a
teacher and train a base NMT
model by approximating the
distribution of KNN and using
classical NMT-KD

De-En

MGdELs BLEU  upd/s token/s

Transformer 34.11 2.02(1.00x) 3148.10(1.00x)
Word-KD 3426 1.77(0.88x) 3291.28(1.06x%)
Seq-KD 34.60 2.14(1.06x) 3409.86(1.08x)
Selective-KD | 34.38 1.72(0.85x) 3365.68(1.07x)
ENN-MT 36.17 - 920.72(0.29x%)
kKNN-KD 36.30 2.14(1.06x) 3321.24(1.05x%)
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3. Annealing Knowledge Distillation (Jafari et al., 2021)
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3. Annealing Knowledge Distillation (Jafari et al., 2021)

Capacity gap problem
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3. Annealing Knowledge Distillation (Jafari et al., 2021)

Capacity gap problem

Annealing-KD

Stage I: gradually
training the student to
mimic the teacher using
the Annealing-KD loss

Stage ll: fine-tuning the
student with hard labels
using the CE loss

Pre-trained Teacher “I,\/\
T(z) = o(=(z))
s> § 30o) >
; z(z)

2 = 2(2) X ST = Tinas) z' = #(@) x AT =) Hpem(e) X (i)

Student Student Student
\ 4
Tmag Ariaali SRS R SR T Ancseali et 3 Ty N
& _»S/w (w)_, L fAnnealing CEEEL D g o Slw (:L') > L Annealing R R SU) (w) >4 Assacling
back propagation back propagation back propagation

Figure 1: Illustrating the Stage I of the Annealing-KD technique. Given a pre-trained teacher network, we can
derive the annealed output of the teacher at different temperature using the annealing function ®(7")

. We start training of the student from 7 = 7,,,4, and goto 7 = 1.
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4. Top-1Information Enhanced Knowledge Distillation (zhang et al., 2023)

SLKD works because we distill Top-1 Information from the teacher (third
hypothesis)

The classic KD methods lack specialized learning of the most important top-1
information

|: top-1 prediction

candidate tokens candidate tokens candidate tokens

probability

probability
probability
—
Y
probability

candidate tokens
(a) vanilla word-level KD (b) w/o correlation info (c) w/o top-1 info (d) w/o KD

Figure 1: Removing different information from the original soft targets provided by the teacher during word-level
KD. Note that the soft target in “w/o KD” is equivalent to the soft target of label smoothing.
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4. Top-1 Information Enhanced Knowledge Distillation (zhang et al., 2023)

e T[IEKD combines

o Hierarchical Ranking Loss
o Iterative Knowledge Distillation
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4. Top-1 Information Enhanced Knowledge Distillation (zhang et al., 2023)

TIEKD combines
o Hierarchical Ranking Loss
o Iterative Knowledge Distillation

Hierarchical Ranking Loss

Boosts the learning of the top-1
information from the teacher

The student model can be enforced to
rank the top-1 predictions of the teacher
to its own top-1 places
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4. Top-1 Information Enhanced Knowledge Distillation (zhang et al., 2023)

e TIEKD combines Algorithm 1 Iterative Knowledge Distillation
o Hierarchical Ranking Loss Input: source and target data in current mini-batch
o Iterative Knowledge Distillation (,¥); student model S; teacher model 7 it-

eration times [V,
Initialize y° = y; Lrq = 0;

1:
Hierarchical Ranking Loss 2 Compute L. based on Eq.(1)
- 3: foriin1,2,...,N do
. 4: ot =S8yt 1) > probability
o Boosts the Iearnlng of the top—1 distributions from the student model
information from the teacher s ¢ =Ty™) > probability
distributions from the teacher model
® The student model can be enforced to 6:  Compute L} ,(p*,q") based on Eq.(7)
rank the top-1 predictions of the teacher o Lra ¢ Lrat Lig o
. : y' = argmax(p') © student predictions
to its own top-1 places as inputs in the next iteration
9: end for

10: cword-kd — (1 . a)cce + %[*kd
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4. Top-1Information Enhanced Knowledge Distillation (zhang et al., 2023)

WMT’14 En-De

WMT’14 En-Fr

WMT’16 En-Ro

ST BLEU | COMET | BLEU | COMET | BLEU | COMET

Student (Transf()rmerbase) 27.42:{:0_01 48.1 lil.04 40.97:{:0_14 62. 19:{:0_11 33.5910.15 50.96i0_43
+ Word-KD (Kim and Rush, 2016) 28.03+0.10 | 51.5940.23 | 41.1040.11 | 63.81+0.14 | 33.77+0.01 | 53.15+0.26
+ Seq—KD (Kim and Rush, 20]6) 28.22i()_()2 51.231(),15 41 .445:()_()2 63. 12:1:()_14 33.691(),()2 50.63i()_11
+ Annealing KD (Jafari et al., 202 l) 27.91:;:()_1() 51 .58:*:0,()3 41.20:;:()_13 63.59:;:0,()9 33.67:;:().()9 52.22:,:1.02
+ Selective-KD (Wang etal.; 202]) 28.24:9:0‘21 52.15:&0.42 41.25:|:0.04 64.24:{:0_01 33.74:|:0.02 53-0510‘28
+ TIE-KD (ours) 28465551 | 3268500 | NB5T505 | 6506554 | 347065 | 5576%5i

Teacher (Transformery; ) 28.81 53.20 42.98 69.58 34.70 57.04

Table 6: BLEU scores (%) and COMET (Rei et al., 2020) scores (%) on three translation tasks. Results with T
are taken from the original papers. Others are our re-implementation results using the released code with the same
setting in Sec.5.2 for a fair comparison. We report average results over 3 runs with random initialization. Results
with * are statistically (Koehn, 2004) better than the vanilla Word-KD with p < 0.01.
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Notes on Knowledge Distillation

e Knowledge distillation and data augmentation (Aji & Heafield, 2020)
1. Training data for students does not have to be the same as the teacher
as long as the domain agrees
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Notes on Knowledge Distillation

e Knowledge distillation and data augmentation (Aji & Heafield, 2020)
1. Training data for students does not have to be the same as the teacher
as long as the domain agrees
2. Generally, more training data often leads to better performance. In KD,
generating and mixing synthetic data is more important.
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Notes on Knowledge Distillation

e Knowledge distillation and data augmentation (Aji & Heafield, 2020)
1. Training data for students does not have to be the same as the teacher
as long as the domain agrees
2. Generally, more training data often leads to better performance. In KD,
generating and mixing synthetic data is more important.
3.  Augmenting the dataset with forward translated source text and
forward translated back-translated text improve BLEU depending on the

test set’s original language.
m Forward translating source originated text worked well if the test set was also
originated from the source language.
m In contrast, forward translating back translation data worked well if the test set was
originated from the target language.
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Other KD methods for NMT:

e Distill, Adapt, Distill: Training Small, In-Domain Models for Neural Machine Translation

e Target-Oriented Knowledge Distillation with |Language-Family-Based Grouping for
Multilingual NMT

e Continual Knowledge Distillation for Neural Machine Translation

e Collective Wisdom: Improving Low-resource Neural Machine Translation using Adaptive

Knowledge Distillation

e Combining Sequence Distillation and Transfer Learning for Efficient Low-Resource
Neural Machine Translation Models

e Life-long Learning for Multilingual Neural Machine Translation with Knowledge
Distillation
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https://aclanthology.org/2020.ngt-1.12.pdf
https://dl.acm.org/doi/pdf/10.1145/3546067
https://dl.acm.org/doi/pdf/10.1145/3546067
https://aclanthology.org/2023.acl-long.443.pdf
https://arxiv.org/pdf/2010.05445.pdf
https://arxiv.org/pdf/2010.05445.pdf
https://aclanthology.org/2020.wmt-1.61.pdf
https://aclanthology.org/2020.wmt-1.61.pdf
https://arxiv.org/pdf/2212.02800.pdf
https://arxiv.org/pdf/2212.02800.pdf

Other generic KD methods

e A Study on Knowledge Distillation from Weak Teacher for Scaling Up Pre-trained Language
Models

e ReAugKD: Retrieval-Augmented Knowledge Distillation For Pre-trained Language Models

e AD-KD: Attribution-Driven Knowledge Distillation for Language Model Compression

e Robustness Challenges in Model Distillation and Pruning for Natural Language
Understanding

e BERT Learns to Teach: Knowledge Distillation with Meta | earning

e Tailoring Instructions to Student’s Learning Levels Boosts Knowledge Distillation

e Parameter-Efficient and Student-Friendly Knowledge Distillation
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https://aclanthology.org/2023.findings-acl.714.pdf
https://aclanthology.org/2023.findings-acl.714.pdf
https://aclanthology.org/2023.acl-short.97.pdf
https://aclanthology.org/2023.acl-long.471.pdf
https://aclanthology.org/2023.eacl-main.129.pdf
https://aclanthology.org/2023.eacl-main.129.pdf
https://aclanthology.org/2022.acl-long.485.pdf
https://aclanthology.org/2023.acl-long.111.pdf
https://arxiv.org/pdf/2205.15308.pdf

Do you want to learn more about Knowledge Distillation?

- Join our reading group on Knowledge Distillation

Organized jointly with Ona De Gibert
- Every Tuesday at 11:00 AM starting November 7

- Join our Slack channel: #reading-group

64


https://join.slack.com/share/enQtNjA4NjQ2MTc5NjUwMi0xM2EzYjJjYjM4MTM2ZDczODA5MmE3NTRhYWY3YzM2MDdmZTg2Nzk4NGM2ZjFlOGNiMzVhOTMxNDhjZTBmZTEx
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Thanks for listening!
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