Studying the syntax and semantics of emergent languages

Timothée Bernard (LLF, Université Paris Cité)

2023/11/09, Research seminar in language technology, University of Helsinki

Prologue

 Agents in a 2D world, behaviour encoded by an neural network (the "DNA"), variation during reproduction → optimisation via natural selection/evolution

- Agents in a 2D world, behaviour encoded by an neural network (the "DNA"), variation during reproduction → optimisation via natural selection/evolution
- Can language emerge?

- Agents in a 2D world, behaviour encoded by an neural network (the "DNA"), variation during reproduction → optimisation via natural selection/evolution
- Can language emerge?
- First experiment around language (a signalling game).

- Agents in a 2D world, behaviour encoded by an neural network (the "DNA"), variation during reproduction → optimisation via natural selection/evolution
- Can language emerge?
- First experiment around language (a signalling game).
- But no interesting language, because of trivial winning strategies.

- Agents in a 2D world, behaviour encoded by an neural network (the "DNA"), variation during reproduction \rightarrow optimisation via natural selection/evolution
- Can language emerge?
- First experiment around language (a signalling game).
- But no interesting language, because of trivial winning strategies.
- ACL in Firenze, Timothee Mickus informs me that there is a field around such questions; we decide to collaborate.

Language emergence

Game theoretical experiments about the evolution of language

- Goal: understanding of how agents can develop a language.
- Into consideration: collaboration, competition, noise, cost, benefit, evolving environment, evolving population of agents, etc.
- Language games: experimental setups designed to test hypotheses about language emergence with human or artificial agents (Kirby 2002; Kirby, Cornish, and Smith 2008).

- Signalling game (Lewis 1969):
 - two agents: a sender and a receiver,
 - a mapping from world state to correct action,
 - $\cdot\,$ at each round:
 - 1. a world state is selected, only the sender knows which,
 - 2. the sender produces a signal, sent to the receiver,
 - 3. the receiver selects an action,
 - 4. both are informed of whether it is the correct action ightarrow common goal
- Neural implementations are possible (e.g. Lazaridou, Peysakhovich, and Baroni 2017).

Making signalling game work

Structured images with clear non-trivial semantics

- Artificial dataset of images (Bernard and Mickus 2023):
 - object on a grey background (with varying shade),
 - variation: shape (*cube* or *sphere*), size (*large* or *small*), colour (*red* or *blue*), and vertical (*top* or *bottom*) and horizontal position (*left* or *right*).
 - $\cdot \rightarrow$ 32 categories (background is irrelevant)
- Examples:

Receiver

Receiver

• Sender:

- $\cdot \hspace{0.1 cm} \text{CNN enc.: img} \mapsto \text{vec}$
- LSTM dec.: vec \mapsto msg
- \cdot |msg| \leq 10, |alphabet| = 16
- Receiver:
 - + CNN enc.: img \mapsto vec
 - $\cdot \text{ LSTM enc.: } \mathsf{msg} \mapsto \mathsf{vec}$
 - $\cdot \,$ dot product: (img vec, msg vec) \mapsto compatibility score
 - + softmax: compatibility scores \mapsto probability distribution

• Sender:

- Sender:
 - standard supervised training

- Sender:
 - standard supervised training
 - REINFORCE (Williams 1992):
 - one action per symbol generated, $(a_t)_{1 \le t \le |msg|}$
 - same reward r for all actions: r = 1 if success, r = -1 otherwise.
 - loss:

$$\mathcal{L} = -r \sum_{1 \leq t \leq |\mathsf{msg}|} \log p(a_t)$$

- Sender:
 - standard supervised training
 - REINFORCE (Williams 1992):
 - one action per symbol generated, $(a_t)_{1 \le t \le |msg|}$
 - same reward r for all actions: r = 1 if success, r = -1 otherwise.
 - loss:

$$\mathcal{L} = -r \sum_{1 \leq t \leq |\mathsf{msg}|} \log p(a_t)$$

• Receiver:

- Sender:
 - standard supervised training
 - REINFORCE (Williams 1992):
 - one action per symbol generated, $(a_t)_{1 \le t \le |msg|}$
 - same reward r for all actions: r = 1 if success, r = -1 otherwise.
 - loss:

$$\mathcal{L} = -r \sum_{1 \leq t \leq |\mathsf{msg}|} \log p(a_t)$$

- Receiver:
 - (standard supervised training)
 - REINFORCE; one action (pointing), same *r*.

· category(original) = category(target) \neq category(distractor)

- · category(original) = category(target) \neq category(distractor)
- small grid-search for the learning rate

- · category(original) = category(target) \neq category(distractor)
- small grid-search for the learning rate
- + 10 runs \times (100 000 batches \times 128 instances) \rightarrow 3 runs fail

- category(original) = category(target) ≠ category(distractor)
- small grid-search for the learning rate
- + 10 runs \times (100 000 batches \times 128 instances) \rightarrow 3 runs fail
- Super effective: + baseline term in the loss,

$$\mathcal{L} = -(r-b) \sum_{1 \le t \le |\mathsf{msg}|} \log p(a_t)$$

b = average of r over the last 1000 batches

- · category(original) = category(target) \neq category(distractor)
- small grid-search for the learning rate
- + 10 runs \times (100 000 batches \times 128 instances) \rightarrow 3 runs fail
- Super effective: + baseline term in the loss,

$$\mathcal{L} = -(r-b) \sum_{1 \le t \le |\mathsf{msg}|} \log p(a_t)$$

b = average of r over the last 1000 batches

 \cdot 10 runs \rightarrow 0 run fails

Main evaluation metric

• Categorical communication efficiency:

$$\text{c.c.e.} = \underset{\substack{\text{categories } c \neq c' \\ I_o, I_t \in c, \ I_d \in c'}}{\mathbb{E}} [p(I_t \mid I_t, I_d, msg_{I_o})]$$

Main evaluation metric

Categorical communication efficiency:

$$\text{c.c.e.} = \underset{\substack{\text{categories } c \neq c' \\ I_o, I_t \in C, \ I_d \in c'}}{\mathbb{E}} [p(I_t \mid I_t, I_d, msg_{I_o})]$$

- Dataset:
 - for each category: training and evaluation images
 - partition: *base* (train.+eval.) and *generalisation* (eval. only) categories

Main evaluation metric

Categorical communication efficiency:

c.c.e. =
$$\mathbb{E}_{\substack{\text{categories } c \neq c' \\ I_o, I_t \in C, \ I_d \in c'}} [p(I_t \mid I_t, I_d, msg_{I_o})]$$

- Dataset:
 - $\cdot\,$ for each category: training and evaluation images
 - partition: *base* (train.+eval.) and *generalisation* (eval. only) categories
- Twist: 2 base cat. differ by at least two features (same for gen.). \rightarrow one feature can be ignored

- With baseline term:
 - c.c.e.: 0.963;
 - base c.c.e.: 0.982; gen. c.c.e.: 0.980; mixed c.c.e.: 0.950.

(max. c.c.e., median over all runs)

- With baseline term:
 - c.c.e.: 0.963;
 - base c.c.e.: 0.982; gen. c.c.e.: 0.980; mixed c.c.e.: 0.950.

(max. c.c.e., median over all runs)

- Better perf. when training with *hard distractors*:
 - c.c.e.: 0.981;
 - base c.c.e.: 0.999; gen. c.c.e.: 0.997; mixed c.c.e.: 0.967.
- With pretraining, regularisation, etc.; higher perf. is possible (Bernard and Mickus 2023).

- mixed c.c.e.: 0.967 \rightarrow compatible with one feature (e.g. size) being systematically ignored

- mixed c.c.e.: 0.967 \rightarrow compatible with one feature (e.g. size) being systematically ignored
- Is it the case?

- mixed c.c.e.: 0.967 \rightarrow compatible with one feature (e.g. size) being systematically ignored
- Is it the case? Not exactly, but almost.
- Agents tend to focus significantly less on shape (*cube*|*sphere*).
- mixed c.c.e.: 0.967 \rightarrow compatible with one feature (e.g. size) being systematically ignored
- Is it the case? Not exactly, but almost.
- Agents tend to focus significantly less on shape (*cube*|*sphere*).
- How do we know?

Grammar in emergent languages

We'd like to understand how compositionality emerges

• Long-term goal: human language-like features in emergent languages.

- Long-term goal: human language-like features in emergent languages.
- Compositional language (Carnap 1947; Montague 1974):
 - syntax,
 - semantics,
 - principle of compositionality: the meaning of a compound structure is a function only of the meaning of its (direct) components and of the syntactic rule that binds them.

Compositionality is what makes a language productive

Some consequences:

- replacing a component with a paraphrase (irrespectively of their structure) has no impact on the meaning of the whole,
- semantics = one semantic combination rule per syntactic rule + lexical semantics,
- once one knows the meaning of a lexical item, they can use it in any structure/context.

Compositionality is what makes a language productive

- Some consequences:
 - replacing a component with a paraphrase (irrespectively of their structure) has no impact on the meaning of the whole,
 - semantics = one semantic combination rule per syntactic rule + lexical semantics,
 - once one knows the meaning of a lexical item, they can use it in any structure/context.
- $\cdot \Rightarrow$ productivity of natural language, which "can (in Humboldt's words) 'make infinite use of finite means'" (Chomsky 1965).

Compositionality is what makes a language productive

- Some consequences:
 - replacing a component with a paraphrase (irrespectively of their structure) has no impact on the meaning of the whole,
 - semantics = one semantic combination rule per syntactic rule + lexical semantics,
 - once one knows the meaning of a lexical item, they can use it in any structure/context.
- $\cdot \Rightarrow$ productivity of natural language, which "can (in Humboldt's words) 'make infinite use of finite means'" (Chomsky 1965).
- Interpreted formal languages are usually compositional (e.g. simply-typed λ -calculus, first-order logic, positional numeral systems, the language of arithmetic expressions).

Compositionality conflicts with contextuality and holism

- Stronger or less depending on the kind of composition rules and semantic entries that one is ready to accept.
- Can be seen as a methodological principle. E.g.,
 - to draw the line between semantics and pragmatics;
 - to define multiword expressions (to kick the bucket, ivory tower).
- Not compositional: any algorithm of the form

$$\operatorname{msg} \mapsto \left\{ \begin{array}{l} \operatorname{case \ string}_1 \Rightarrow \operatorname{meaning}_1 \\ \operatorname{case \ string}_2 \Rightarrow \operatorname{meaning}_2 \\ \cdots \end{array} \right.$$

- Our goal:
 - 1. observe a compositional language;

- Our goal:
 - 1. observe a compositional language;
 - 2. know when we do.

Grammar in emergent languages

Toward measuring compositionality

• *Meaning-form correlation* (or "topographic similarity"; Brighton and Kirby 2006) is interesting but not perfect (Mickus, Bernard, and Paperno 2020).

- *Meaning-form correlation* (or "topographic similarity"; Brighton and Kirby 2006) is interesting but not perfect (Mickus, Bernard, and Paperno 2020).
- Bernard and Mickus (2023):
 - \cdot c.c.e. and variants,

- *Meaning-form correlation* (or "topographic similarity"; Brighton and Kirby 2006) is interesting but not perfect (Mickus, Bernard, and Paperno 2020).
- Bernard and Mickus (2023):
 - $\cdot\,$ c.c.e. and variants,
 - abstractness,
 - scrambling resistance,
 - semantic probes.

$$\text{abs.} = 2 \underset{\substack{\text{category } c \\ I_o, I_t \in C}}{\mathbb{E}} [p(I_t \mid I_o, I_t, msg_{I_o})]$$

• Quantifies sensitivity to intra-category differences.

$$\text{abs.} = 2 \mathop{\mathbb{E}}_{\substack{\text{category } c \\ I_o, I_t \in C}} [p(I_t \mid I_o, I_t, msg_{I_o})]$$

- Quantifies sensitivity to intra-category differences.
- Natural language?
 - Hard to say (categories for sentences?).
 - But think about how the same caption may suit two different pictures.

Scrambling resistance: bag-of-words semantics

$$\text{s.r.} = \underset{\substack{\text{categories } c \neq c' \\ I_o, I_t \in C, \ I_d \in C' \\ \text{permutation } \sigma}}{\mathbb{E}} \left[\frac{p(I_t \mid I_t, I_d, \sigma(msg_{I_o}))}{p(I_t \mid I_t, I_d, msg_{I_o})} \right]$$

• Quantifies sensitivity to symbol order.

$$\text{s.r.} = \underset{\substack{\text{categories } c \neq c'\\ I_o, I_t \in C, I_d \in C'\\ \text{permutation } \sigma}}{\mathbb{E}} \left[\frac{p(I_t \mid I_t, I_d, \sigma(msg_{I_o}))}{p(I_t \mid I_t, I_d, msg_{I_o})} \right]$$

- Quantifies sensitivity to symbol order.
- Natural language?
 - Below 1 in general (Achilles beat the turtle vs the turtle beat Achilles, fake Malaysian ivory vs Malaysian fake ivory).
 - But high in our case (cube on blue the left corner big a image top of).

- Messages are converted into bag-of-symbols vectors ($\in \mathbb{N}^{16}$).
- For each of the five features, we train a decision tree to predict the corresponding value.

These metrics tell us a coherent story

• Baseline term, hard distractors, no pretraining (median values):

abs.	s.r.	semantic probes					
		shape	size	colour	h. pos.	v. pos.	
0.997	0.903	0.531	0.992	0.999	0.999	0.999	

- Shape:
 - either encoded in an exotic way
 - $\cdot\,$ or ignored. \rightarrow coherent with the c.c.e. values

These metrics tell us a coherent story

• Baseline term, hard distractors, no pretraining (median values):

abs.	s.r.	semantic probes					
		shape	size	colour	h. pos.	v. pos.	
0.997	0.903	0.531	0.992	0.999	0.999	0.999	

- Shape:
 - either encoded in an exotic way
 - $\cdot\,$ or ignored. \rightarrow coherent with the c.c.e. values
- With (auto-encoder) pretraining of the vision CNN: up to 0.651 for shape (and higher c.c.e.).

Grammar in emergent languages

Toward producing compositionality

Concepts emerge because they are needed

- Complex languages are made necessary by complex environments.
 - \rightarrow need for structured images as stimuli

Concepts emerge because they are needed

- Complex languages are made necessary by complex environments.
 - ightarrow need for structured images as stimuli
- Maybe not enough...
- Hypothesis: Without pressure towards high-level semantics, agents in a signalling game communicate about low-level, unstructured features of their stimuli.

ightarrow in our case, e.g. background colour

Concepts emerge because they are needed

- Complex languages are made necessary by complex environments.
 - ightarrow need for structured images as stimuli
- Maybe not enough...
- Hypothesis: Without pressure towards high-level semantics, agents in a signalling game communicate about low-level, unstructured features of their stimuli.
 → in our case, e.g. background colour
- Something of the sort has been observed by Bouchacourt and Baroni (2018).

• Three setups around this hypothesis:

- Three setups around this hypothesis:
 - topline models: category(original) = category(target) (as before)

Overview of the experiments

- Three setups around this hypothesis:
 - topline models: category(original) = category(target) (as before)
 - 2. baseline models: original = target
 - \rightarrow we don't expect high-level semantics to emerge

Overview of the experiments

- Three setups around this hypothesis:
 - topline models: category(original) = category(target) (as before)
 - baseline models: original = target
 → we don't expect high-level semantics to emerge
 - 3. adversarial models: original = target, + a third agent is introduced in order to foster the emergence of high-level semantics

- Three setups around this hypothesis:
 - topline models: category(original) = category(target) (as before)
 - baseline models: original = target
 → we don't expect high-level semantics to emerge
 - 3. adversarial models: original = target, + a third agent is introduced in order to foster the emergence of high-level semantics
- (Categories are partitioned differently so as to ensure that some pairs of base categories differ by only one feature.)

- Adversary:
 - $\cdot \text{ LSTM enc.: } \mathsf{msg} \mapsto \mathsf{vec}$
 - $\cdot \text{ CNN dec.: vec} \mapsto \text{img}$

- Sender: REINFORCE, r = 1 if the receiver retrieves the original against the distractor.
- Receiver: standard supervised learning, original against distractor and adversary.
- Adversary: adversarial training (Goodfellow et al. 2014), uses the receiver's loss to maximise the probability of the adversary image against the original.

- Sender: REINFORCE, r = 1 if the receiver retrieves the original against the distractor.
- Receiver: standard supervised learning, original against distractor and adversary.
- Adversary: adversarial training (Goodfellow et al. 2014), uses the receiver's loss to maximise the probability of the adversary image against the original.

Intuition

sender communicates a low-level feature \rightarrow adversary easily learns to replicate it \rightarrow receiver tries to rely on other features \rightarrow sender tries to communicate about other features

• Low abstractness × low c.c.e.: only image-level information that does not generalise to other images of the same category.

- Low abstractness × low c.c.e.: only image-level information that does not generalise to other images of the same category.
- Low abstractness × high c.c.e.: at least image-specific information (might be enough to achieve high c.c.e.).

- Low abstractness × low c.c.e.: only image-level information that does not generalise to other images of the same category.
- Low abstractness × high c.c.e.: at least image-specific information (might be enough to achieve high c.c.e.).
- High abstractness \times low c.c.e.: no image-specific nor category-level information. \rightarrow failed run

- Low abstractness × low c.c.e.: only image-level information that does not generalise to other images of the same category.
- Low abstractness × high c.c.e.: at least image-specific information (might be enough to achieve high c.c.e.).
- High abstractness \times low c.c.e.: no image-specific nor category-level information. \rightarrow failed run
- High abstractness \times high c.c.e.: no image-specific information but then category-level information.

- Low abstractness × low c.c.e.: only image-level information that does not generalise to other images of the same category.
- Low abstractness × high c.c.e.: at least image-specific information (might be enough to achieve high c.c.e.).
- High abstractness \times low c.c.e.: no image-specific nor category-level information. \rightarrow failed run
- High abstractness \times high c.c.e.: no image-specific information but then category-level information.
- + semantic probes to complete the picture (if high s.r.)

Results

- 40 runs of each models; trained on 1000 000 batches.
- Metrics obtained at max c.c.e., median over the 40 runs.
- REINFORCE with baseline term; auto-encoder pretraining of the vision CNNs.

Model	c.c.e.	abs.	s.r.	semantic probes				
				shape	size	colour	h. pos.	v. pos.
Topline	0.986	0.992	0.822	0.642	0.996	0.998	0.999	0.999
Baseline	0.992	0.853	0.949	0.818	0.993	0.993	0.999	0.999
Adversarial	0.991	0.876	0.937	0.806	0.995	0.992	0.999	0.999

Results

- 40 runs of each models; trained on 1000 000 batches.
- Metrics obtained at max c.c.e., median over the 40 runs.
- REINFORCE with baseline term; auto-encoder pretraining of the vision CNNs.

Model	c.c.e.	abs.	s.r.	semantic probes				
				shape	size	colour	h. pos.	v. pos.
Topline	0.986	0.992	0.822	0.642	0.996	0.998	0.999	0.999
Baseline	0.992	0.853	0.949	0.818	0.993	0.993	0.999	0.999
Adversarial	0.991	0.876	0.937	0.806	0.995	0.992	0.999	0.999

- Topline models:
 - $\cdot\,$ High abs. $\times\,$ high c.c.e.: category-level information only.
 - (still low shape? low s.r.?)

Model	c.c.e.	abs.	s.r.	semantic probes				
				shape	size	colour	h. pos.	v. pos.
Topline	0.986	0.992	0.822	0.642	0.996	0.998	0.999	0.999
Baseline	0.992	0.853	0.949	0.818	0.993	0.993	0.999	0.999
Adversarial	0.991	0.876	0.937	0.806	0.995	0.992	0.999	0.999

• Baseline models:

- Abs., c.c.e. and probe accuracy all higher than expected: category-level information and not too much image-specific information. \rightarrow against our hypothesis
- Caused by the pretraining? (we can show that pretraining helps) but is not necessary

The adversary does not seem to make a big difference

Model	c.c.e.	abs.	s.r.	semantic probes				
				shape	size	colour	h. pos.	v. pos.
Topline	0.986	0.992	0.822	0.642	0.996	0.998	0.999	0.999
Baseline	0.992	0.853	0.949	0.818	0.993	0.993	0.999	0.999
Adversarial	0.991	0.876	0.937	0.806	0.995	0.992	0.999	0.999

- Adversarial models:
 - similar to baseline models
 - not working? or baseline models are already too good?

Adversary images are revealing

• Each image in an even column is an adversary image corresponding to the original image immediately on its left:

• The adversary replicates the background colour. \rightarrow Communicating this information is a strategy developed by sender-receiver systems.

The adversary impacts the dynamics of learning

• Dynamics (solid green and orange lines): the adversary boosts abstractness early in the game.

Conclusion

- Evidence of baseline models developing high-level semantic concepts, even though this is not required.
- \cdot More training \Rightarrow less sensitivity to intra-category differences.
- The agents learn the concept of background colour \rightarrow easy strategy; so why?
- Maybe category(original) ≠ category(distractor) is enough for the agents to induce the categories.

- More effective training of the adversary \Rightarrow stronger impact on the emergent language?
- Reconstruction of the emergent grammar (grammatical inference, machine translation, etc.).
- Emergence of numerical systems?
- Emergence of pragmatics?
- Use of more structured input (multiple objects, subsequent frames, natural images, etc.).

References

Carnap, Rudolf (1947). Meaning and Necessity: A Study in Semantics and Modal Logic. University of Chicago Press. ISBN: 978-0-226-09347-5. URL: http://www.press.uchicago.edu/ucp/ books/book/chicago/M/bo3638630.html.

Chomsky, Noam (1965). Aspects of the Theory of Syntax. Massachusetts Institute of Technology. Research Laboratory of Electronics. Special technical report 11. The MIT Press. ISBN: 978-0-262-52740-8. URL:

https://www.jstor.org/stable/j.ctt17kk81z.

References ii

- Lewis, David K. (1969). *Convention: a philosophical study.* eng. Cambridge, MA, USA: Harvard University Press. ISBN: 978-0-631-23257-5 978-0-631-23256-8.
- Montague, Richard (1974). *Formal Philosophy. Selected Papers of Richard Montague*. Ed. by Richmond H. Thomason. New Haven: Yale University Press.
- Williams, Ronald J. (May 1992). "Simple statistical gradient-following algorithms for connectionist reinforcement learning". en. In: Machine Learning 8.3-4, pp. 229–256. ISSN: 0885-6125, 1573-0565. DOI: 10.1007/BF00992696. URL:

https://link.springer.com/article/10.1007/BF00992696.

References iii

 Kirby, Simon (Apr. 2002). "Natural Language From Artificial Life".
In: Artificial Life 8.2, pp. 185–215. ISSN: 1064-5462. DOI: 10.1162/106454602320184248. URL: https://doi.org/10.1162/106454602320184248 (visited on 07/31/2019).

 Brighton, Henry and Simon Kirby (Mar. 2006). "Understanding Linguistic Evolution by Visualizing the Emergence of Topographic Mappings". In: Artificial Life 12.2, pp. 229–242. ISSN: 1064-5462. DOI: 10.1162/106454606776073323. URL:

https://doi.org/10.1162/106454606776073323.

References iv

Kirby, Simon, Hannah Cornish, and Kenny Smith (Aug. 2008).
"Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language". en. In: Proceedings of the National Academy of Sciences 105.31. 00803, pp. 10681–10686. ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.0707835105. URL:

https://www.pnas.org/content/105/31/10681.

Goodfellow, Ian et al. (2014). "Generative Adversarial Nets". In: Advances in Neural Information Processing Systems 27. Ed. by Z. Ghahramani et al. Curran Associates, Inc., pp. 2672–2680. URL: http://papers.nips.cc/paper/5423-generativeadversarial-nets.pdf.

References v

Lazaridou, Angeliki, Alexander Peysakhovich, and Marco Baroni (2017). "Multi-Agent Cooperation and the Emergence of (Natural) Language". In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. URL:

https://openreview.net/forum?id=Hk8N3Sclg.

Bouchacourt, Diane and Marco Baroni (Oct. 2018). "How agents see things: On visual representations in an emergent language game". In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Ed. by Ellen Riloff et al. Brussels, Belgium: Association for Computational Linguistics, pp. 981–985. DOI: 10.18653/v1/D18-1119. URL:

https://aclanthology.org/D18-1119 (visited on 11/08/2023).

References vi

Mickus, Timothee, Timothée Bernard, and Denis Paperno (Dec. 2020). "What Meaning-Form Correlation Has to Compose With: A Study of MFC on Artificial and Natural Language". In: Proceedings of the 28th International Conference on Computational Linguistics.
Barcelona, Spain (Online): International Committee on Computational Linguistics, pp. 3737–3749. URL:

https://www.aclweb.org/anthology/2020.coling-main.333.
Bernard, Timothée and Timothee Mickus (July 2023). "So many design choices: Improving and interpreting neural agent communication in signaling games". In: Findings of the Association for Computational Linguistics: ACL 2023. Toronto, Canada: Association for Computational Linguistics, pp. 8399–8413. URL:

https://aclanthology.org/2023.findings-acl.531.