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Prologue



Personal anecdote

• Agents in a 2D world, behaviour encoded by an neural network
(the “DNA”), variation during reproduction→ optimisation via
natural selection/evolution

• Can language emerge?
• First experiment around language (a signalling game).
• But no interesting language, because of trivial winning
strategies.

• ACL in Firenze, Timothee Mickus informs me that there is a field
around such questions; we decide to collaborate.
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Language emergence



Game theoretical experiments about the evolution of language

• Goal: understanding of how agents can develop a language.
• Into consideration: collaboration, competition, noise, cost,
benefit, evolving environment, evolving population of agents,
etc.

• Language games: experimental setups designed to test
hypotheses about language emergence with human or artificial
agents (Kirby 2002; Kirby, Cornish, and Smith 2008).
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Signalling games are cooperative language games

• Signalling game (Lewis 1969):
• two agents: a sender and a receiver,
• a mapping from world state to correct action,
• at each round:

1. a world state is selected, only the sender knows which,
2. the sender produces a signal, sent to the receiver,
3. the receiver selects an action,
4. both are informed of whether it is the correct action→ common goal

• Neural implementations are possible (e.g. Lazaridou, Peysakhovich,
and Baroni 2017).
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Making signalling game work



Structured images with clear non-trivial semantics

• Artificial dataset of images (Bernard and Mickus 2023):
• object on a grey background (with varying shade),
• variation: shape (cube or sphere), size (large or small), colour
(red or blue), and vertical (top or bottom) and horizontal
position (left or right).

• → 32 categories (background is irrelevant)

• Examples:

∈ c1 ∈ c2 ∈ c3 ∈ c3
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A round of the game

Sender Receiver

original

“0a9f4f”

distractor

target
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Architecture

• Sender:
• CNN enc.: img 7→ vec
• LSTM dec.: vec 7→ msg

• |msg| ≤ 10, |alphabet| = 16
• Receiver:

• CNN enc.: img 7→ vec
• LSTM enc.: msg 7→ vec
• dot product: (img vec,msg vec) 7→ compatibility score
• softmax: compatibility scores 7→ probability distribution
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Training

• Sender:

• standard supervised training
• REINFORCE (Williams 1992):

• one action per symbol generated, (at)1≤t≤|msg|
• same reward r for all actions: r = 1 if success, r = −1 otherwise.
• loss:

L = −r
∑

1≤t≤|msg|
log p(at)

• Receiver:
• (standard supervised training)
• REINFORCE; one action (pointing), same r.
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A bit of work is required for reliable training

• category(original) = category(target) 6= category(distractor)

• small grid-search for the learning rate
• 10 runs × (100 000 batches × 128 instances) → 3 runs fail
• Super effective: + baseline term in the loss,

L = −(r− b)
∑

1≤t≤|msg|

log p(at)

b = average of r over the last 1000 batches
• 10 runs→ 0 run fails
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Main evaluation metric

• Categorical communication efficiency:

c.c.e. = E
categories c ̸=c′
Io,It∈c, Id∈c′

[p(It | It, Id,msgIo)]

• Dataset:
• for each category: training and evaluation images
• partition: base (train.+eval.) and generalisation (eval. only)
categories

• Twist: 2 base cat. differ by at least two features (same for gen.).
→ one feature can be ignored
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Agents learn (very) well, depending onmany aspects of the game

• With baseline term:
• c.c.e.: 0.963;
• base c.c.e.: 0.982; gen. c.c.e.: 0.980; mixed c.c.e.: 0.950.

(max. c.c.e., median over all runs)

• Better perf. when training with hard distractors:
• c.c.e.: 0.981;
• base c.c.e.: 0.999; gen. c.c.e.: 0.997; mixed c.c.e.: 0.967.

• With pretraining, regularisation, etc.; higher perf. is possible
(Bernard and Mickus 2023).
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Agents are lazy when they can

• mixed c.c.e.: 0.967→ compatible with one feature (e.g. size)
being systematically ignored

• Is it the case? Not exactly, but almost.
• Agents tend to focus significantly less on shape (cube|sphere).
• How do we know?
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Grammar in emergent languages



We’d like to understand how compositionality emerges

• Long-term goal: human language-like features in emergent
languages.

• Compositional language (Carnap 1947; Montague 1974):
• syntax,
• semantics,
• principle of compositionality: the meaning of a compound
structure is a function only of the meaning of its (direct)
components and of the syntactic rule that binds them.
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Compositionality is what makes a language productive

• Some consequences:
• replacing a component with a paraphrase (irrespectively of their
structure) has no impact on the meaning of the whole,

• semantics = one semantic combination rule per syntactic rule +
lexical semantics,

• once one knows the meaning of a lexical item, they can use it in
any structure/context.

• ⇒ productivity of natural language, which “can (in Humboldt’s
words) ‘make infinite use of finite means’” (Chomsky 1965).

• Interpreted formal languages are usually compositional (e.g.
simply-typed λ-calculus, first-order logic, positional numeral systems, the
language of arithmetic expressions).
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Compositionality conflicts with contextuality and holism

• Stronger or less depending on the kind of composition rules and
semantic entries that one is ready to accept.

• Can be seen as a methodological principle. E.g.,
• to draw the line between semantics and pragmatics;
• to define multiword expressions (to kick the bucket, ivory tower).

• Not compositional: any algorithm of the form

msg 7→


case string1 ⇒ meaning1
case string2 ⇒ meaning2
· · ·

14



• Our goal:
1. observe a compositional language;

2. know when we do.
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Grammar in emergent languages

Toward measuring compositionality



There is no easy-to-use formula to quantify compositionality

• Meaning-form correlation (or “topographic similarity”; Brighton and
Kirby 2006) is interesting but not perfect (Mickus, Bernard, and
Paperno 2020).

• Bernard and Mickus (2023):
• c.c.e. and variants,
• abstractness,
• scrambling resistance,
• semantic probes.

16



There is no easy-to-use formula to quantify compositionality

• Meaning-form correlation (or “topographic similarity”; Brighton and
Kirby 2006) is interesting but not perfect (Mickus, Bernard, and
Paperno 2020).

• Bernard and Mickus (2023):
• c.c.e. and variants,

• abstractness,
• scrambling resistance,
• semantic probes.

16



There is no easy-to-use formula to quantify compositionality

• Meaning-form correlation (or “topographic similarity”; Brighton and
Kirby 2006) is interesting but not perfect (Mickus, Bernard, and
Paperno 2020).

• Bernard and Mickus (2023):
• c.c.e. and variants,
• abstractness,
• scrambling resistance,
• semantic probes.

16



Abstractness: images-specific information

abs. = 2 E
category c
Io,It∈c

[p(It | Io, It,msgIo)]

• Quantifies sensitivity to intra-category differences.

• Natural language?
• Hard to say (categories for sentences?).
• But think about how the same caption may suit two different
pictures.
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Scrambling resistance: bag-of-words semantics

s.r. = E
categories c̸=c′
Io,It∈c, Id∈c′
permutation σ

[
p(It | It, Id, σ(msgIo))
p(It | It, Id,msgIo)

]

• Quantifies sensitivity to symbol order.

• Natural language?
• Below 1 in general (Achilles beat the turtle vs the turtle beat
Achilles, fake Malaysian ivory vs Malaysian fake ivory).

• But high in our case (cube on blue the left corner big a image top
of).
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Semantic probes: high-level concept

• Messages are converted into bag-of-symbols vectors (∈ N16).
• For each of the five features, we train a decision tree to predict
the corresponding value.
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These metrics tell us a coherent story

• Baseline term, hard distractors, no pretraining (median values):

abs. s.r. semantic probes
shape size colour h. pos. v. pos.

0.997 0.903 0.531 0.992 0.999 0.999 0.999

• Shape:
• either encoded in an exotic way
• or ignored. → coherent with the c.c.e. values

• With (auto-encoder) pretraining of the vision CNN: up to 0.651
for shape (and higher c.c.e.).
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Grammar in emergent languages

Toward producing compositionality



Concepts emerge because they are needed

• Complex languages are made necessary by complex
environments.
→ need for structured images as stimuli

• Maybe not enough…
• Hypothesis: Without pressure towards high-level semantics,
agents in a signalling game communicate about low-level,
unstructured features of their stimuli.
→ in our case, e.g. background colour

• Something of the sort has been observed by Bouchacourt and
Baroni (2018).
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Overview of the experiments

• Three setups around this hypothesis:

1. topline models: category(original) = category(target)
(as before)

2. baseline models: original = target
→ we don’t expect high-level semantics to emerge

3. adversarial models: original = target, + a third agent is introduced
in order to foster the emergence of high-level semantics

• (Categories are partitioned differently so as to ensure that some pairs
of base categories differ by only one feature.)
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Adversary models
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Adversary
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Architecture of the adversary

• Adversary:
• LSTM enc.: msg 7→ vec
• CNN dec.: vec 7→ img

25



Training with the adversary

• Sender: REINFORCE, r = 1 if the receiver retrieves the original
against the distractor.

• Receiver: standard supervised learning, original against
distractor and adversary.

• Adversary: adversarial training (Goodfellow et al. 2014), uses the
receiver’s loss to maximise the probability of the adversary
image against the original.

Intuition
sender communicates a low-level feature→ adversary easily learns
to replicate it→ receiver tries to rely on other features→ sender
tries to communicate about other features
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What the metrics tell us about the messages’ content

• Low abstractness × low c.c.e.: only image-level information that
does not generalise to other images of the same category.

• Low abstractness × high c.c.e.: at least image-specific
information (might be enough to achieve high c.c.e.).

• High abstractness × low c.c.e.: no image-specific nor
category-level information. → failed run

• High abstractness × high c.c.e.: no image-specific information
but then category-level information.

• + semantic probes to complete the picture (if high s.r.)
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Results

• 40 runs of each models; trained on 1 000 000 batches.
• Metrics obtained at max c.c.e., median over the 40 runs.
• REINFORCE with baseline term; auto-encoder pretraining of the
vision CNNs.

Model c.c.e. abs. s.r. semantic probes
shape size colour h. pos. v. pos.

Topline 0.986 0.992 0.822 0.642 0.996 0.998 0.999 0.999
Baseline 0.992 0.853 0.949 0.818 0.993 0.993 0.999 0.999
Adversarial 0.991 0.876 0.937 0.806 0.995 0.992 0.999 0.999

• Topline models:
• High abs. × high c.c.e.: category-level information only.
• (still low shape? low s.r.?)
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Results

• 40 runs of each models; trained on 1 000 000 batches.
• Metrics obtained at max c.c.e., median over the 40 runs.
• REINFORCE with baseline term; auto-encoder pretraining of the
vision CNNs.
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• (still low shape? low s.r.?)
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Baseline models work better that expected

Model c.c.e. abs. s.r. semantic probes
shape size colour h. pos. v. pos.

Topline 0.986 0.992 0.822 0.642 0.996 0.998 0.999 0.999
Baseline 0.992 0.853 0.949 0.818 0.993 0.993 0.999 0.999
Adversarial 0.991 0.876 0.937 0.806 0.995 0.992 0.999 0.999

• Baseline models:
• Abs., c.c.e. and probe accuracy all higher than expected:
category-level information and not too much image-specific
information. → against our hypothesis

• Caused by the pretraining? (we can show that pretraining helps)
but is not necessary
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The adversary does not seem to make a big difference

Model c.c.e. abs. s.r. semantic probes
shape size colour h. pos. v. pos.

Topline 0.986 0.992 0.822 0.642 0.996 0.998 0.999 0.999
Baseline 0.992 0.853 0.949 0.818 0.993 0.993 0.999 0.999
Adversarial 0.991 0.876 0.937 0.806 0.995 0.992 0.999 0.999

• Adversarial models:
• similar to baseline models
• not working? or baseline models are already too good?
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Adversary images are revealing

• Each image in an even column is an adversary image
corresponding to the original image immediately on its left:

• The adversary replicates the background colour. →
Communicating this information is a strategy developed by
sender-receiver systems.
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The adversary impacts the dynamics of learning
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• Dynamics (solid green and orange lines): the adversary boosts
abstractness early in the game.
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Conclusion



We’ve been surprised to see category-level information emerge

• Evidence of baseline models developing high-level semantic
concepts, even though this is not required.

• More training⇒ less sensitivity to intra-category differences.
• The agents learn the concept of background colour→ easy
strategy; so why?

• Maybe category(original) 6= category(distractor) is enough for
the agents to induce the categories.
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Future work

• More effective training of the adversary⇒ stronger impact on
the emergent language?

• Reconstruction of the emergent grammar (grammatical inference,
machine translation, etc.).

• Emergence of numerical systems?
• Emergence of pragmatics?
• Use of more structured input (multiple objects, subsequent frames,
natural images, etc.).
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