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What is a distributional semantics model?

How it started:

▶ “You shall know a word by the company it
keeps” (Firth, 1957)

▶ Something that models

Pr(word | context)

▶ Matches a wide array of actual training
objectives for static and contextualized
embeddings (CBOW, MLM, ...)

▶ Matches theoretical expectations
(Sahlgren, 2008)

How it’s going:

▶ BayesOpt for HPO, looking for wordvec
hyperparameters that increase the mass
on attested words in Pr(word | context)
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A thought experiment
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A thought experiment

 Do you really need semantics to model
Pr(word | context)?

For today
▶ high-level talk
▶ linguistic focus
▶ borrowing results from recent research
▶ focusing on models that are easy to interpret
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Outline

1. Segonne and Mickus (2023)

2. Mickus and Copot (In prep.)

3. Mickus and Bernard (2023)
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Definition Modeling

▶ Noraset et al. (2017): Well-trained distributional representations should capture enough
semantics to derive definitions

⃗mammoth

Definition Modeling

Any of a genus (Mammuthus)
of extinct Pleistocene mam-
mals of the elephant family
distinguished from recent ele-
phants by highly ridged mo-
lars, usually large size, very
long tusks that curve upward,
andwell-developed body hair.

▶ Do related factors like polysemy and frequency impact the ability to generate definitions?
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Setup

▶ Setup borrowed from Bevilacqua, Maru, and Navigli (2020)
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▶ Training models with or
without explicit polysemy
(train set ablation)

▶ Training models on
frequent words, testing on
rare words
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Results

Polysemy Val. Test Splits
iid. rare 0-freq

with 9.07 9.13 11.15 10.85
without 8.49 8.53 11.06 10.87

Average BLEU performances on held-out sets. Averaged on 5 runs; std.
dev. <±0.001 always.

▶ Performances are comparable across all setups
▶ Polysemy and frequency do not appear to play amajor role
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What? Why?

▶ Manual annotation of a subset of 800 productions in four traits:
▶ Fluency (FL): if the output is free of grammar or commonsense mistakes

3“(architecture) A belfry”
7“(intransitive) To go too far; to go too far.”

▶ Factuality (FA): if the output contains only & all facts relevant to the target sense
3“flaglet: A small flag.”
7“unsatined: Not stained.”

▶ Pos-appropriateness (PA): if the generated gloss matches the headword’s POS
3“unsubstantiate: (intransitive) To make unsubstantiated claims.”
7“fried: (transitive) To cook (something) in a frying pan.”

▶ Pattern-based (PB): if the generated gloss relies on morphological relatedness
3“clacky: Resembling or characteristic of clacking.”
7“fare: (intransitive) To do well or poorly.”

▶ 36.5% of productions are PBs; 10% involve a straight copy of the headword
▶ Non-PB outputs have lower FL (𝑝 < 3 ⋅ 10−6, 𝑓 = 42.3%)
▶ Non-PB outputs have lower FA (𝑝 < 2 ⋅ 10−9, 𝑓 = 37.7%)
▶ PB and non-PB outputs have similar BLEU scores (𝑝 = 0.262)

▶ Valid generated definitions often entail relying onmorphological relatedness
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In short

▶ Some semantic tasks can be (partially) solved
without semantics
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1. Segonne and Mickus (2023)

2. Mickus and Copot (In prep.)

3. Mickus and Bernard (2023)



So, is it morphology then?

▶ Going back to our definition:

Pr(word | context)

distributional models are models of the lexicon

▶ To what extent do they model morphological
relations?
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CBOW & Negative sampling crash course

▶ CBOW: predict a word given its context

▶ context is modelled as a bag of words
▶ inefficient to train due to the softmax over

the vocabulary

▶ Negative sampling: replace softmax by
binary classification task (attested or not)

▶ negative examples are constructed by
randomly picking words for the same
context

▶ probability of sampling as negative:

𝑞(𝑊)∝𝑝(𝑤)𝛼

with 𝛼 = 0.75
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It’s grid search time

Tasks:

▶ Simlex-999 (Barzegar et al., 2018)
▶ FEEL (Abdaoui et al., 2017)
▶ GATS (Grave et al., 2018)
▶ POS tagging using OMW (Bond and Paik,

2012)

▶ One-cell and two-cell clustering scores for
inflection (SCC, PCC)

▶ One-cell and two-cell prediction scores for
inflection (SCP, PCP)

▶ Two-cell clustering scores for derivation,
based on process semantics or form
(DerCS, DerCF)

▶ Two-cell prediction scores for derivation,
based on process semantics or form
(DerPS, DerPF)

Grid search over CBOW hyper-parameters:
1. window size

𝑤∈ {5,10,15,20,25}

2. number of negative examples per positive
example

#𝑁 ∈ {5,10,15,20,25}

3. number of epochs

𝑒 ∈ {1,3,5}

4. negative sampling distribution exponent

𝛼 ∈ {0.2,0.6,1.0,1.4}

5. dynamic uniform sampling of window size

𝑠 ∈ {⊤,⊥}

15
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Why so different?

▶ The distribution is determined by the negative sampling hyperparameter:

Contexts constrain words in (at least) two different manners

1. through lexical semantic requirements, e.g.,
You know, this is the way we eat in .

▶ Words that are frequent occur in many contexts
▶ They are not useful for capturing the specific semantics of a given context

2. through morphosyntactic dependencies, e.g.,
I think this game is really .

▶ Frequency and morphological regularity are inversely correlated (Wu, Cotterell, and O’Donnell,
2019)

▶ To model morphology, one should focus on frequent (= irregular) words
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In short

▶ Not every distributional constraint is
semantics
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What about syntax?

▶ Simple tagging experiment using decision
trees, comparing POS tags and supersense
tags

▶ Syntax generally yields classifier trees
that aremore accurate

▶ Syntax generally yields classifier trees
that are structurally simpler
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What about sentence-level syntax?

Should we factor sentence-level structure?

▶ Given a directed labeled graph 𝐺 with edges ⟨𝑛in,𝑛out,ℓ⟩ and a length 𝑘, get the multiset of
(possibly indirect) dependencies of length 𝑘:

v𝑘(𝐺) =  ⒧ℓ1, …, ℓ𝑘⒭ | ∃𝑛1, …, 𝑛𝑘+1, ⟨𝑛1,𝑛2,ℓ1⟩, …, ⟨𝑛𝑘,𝑛𝑘+1,ℓ𝑘⟩ ∈ 𝐺 

▶ Combine all such dependencies up to some maximum length 𝑘̂ as

v≤𝑘̂(𝐺) =
𝑘̂

𝑘=1

v𝑘(𝐺)

▶ Compare two graphs through the combined dependencies multisets:

similarity(𝐺𝑎,𝐺𝑏) =
|v≤𝑘̂(𝐺𝑎)∩v≤𝑘̂(𝐺𝑏)|
|v≤𝑘̂(𝐺𝑎)∪v≤𝑘̂(𝐺𝑏)|

▶ equally applicable to syntactic trees and semantic DAGs

▶ can be compared to distribution-based similarity, e.g., BertScore or WMD, using RSA

▶ using the data from SemEval 2015 shared-task 18 (Oepen et al., 2015)
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Results
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▶ In both cases, best results are achieved with syntax
▶ Results deteriorate when factoring inmore indirect dependencies
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In short

▶ Off-the-shelf embeddings alignmore with
(shallow) syntax than with semantics
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To recap

 Do you really need semantics to model
Pr(word | context)?

We saw:

▶ Some contextual constraints are not
semantic

▶ Some non-semantic constraints are useful
to tackle semantic tasks

▶ Off-the-shelf embeddings align more with
non-semantic information

what next?

▶ What about contextual embeddings? Are
they any better?

▶ What about other aspects of semantics,
e.g., grounding and interaction?

▶ What’s the evidence for distributional
semantics?

Thanks! any questions?
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