Distributional, yes—but semantics?

Timothee Mickus

November 2nd, 2023 Language Technology Research Group Research seminar

How it started:

You shall know a word by the company it keeps" (Firth, 1957)

How it started:

- You shall know a word by the company it keeps" (Firth, 1957)
- Something that models

Pr(word | context)

How it started:

- ➤ "You shall know a word by the company it keeps" (Firth, 1957)
- Something that models

Pr(word | context)

 Matches a wide array of actual training objectives for static and contextualized embeddings (CBOW, MLM, ...)

How it started:

- "You shall know a word by the company it keeps" (Firth, 1957)
- Something that models

Pr(word | context)

- Matches a wide array of actual training objectives for static and contextualized embeddings (CBOW, MLM, ...)
- ► Matches theoretical expectations (Sahlgren, 2008)

How it started:

- You shall know a word by the company it keeps" (Firth, 1957)
- Something that models

Pr(word | context)

- Matches a wide array of actual training objectives for static and contextualized embeddings (CBOW, MLM, ...)
- Matches theoretical expectations (Sahlgren, 2008)

How it's going:

BayesOpt for HPO, looking for wordvec hyperparameters that increase the mass on attested words in Pr(word | context)

How it started:

- "You shall know a word by the company it keeps" (Firth, 1957)
- Something that models

Pr(word | context)

- Matches a wide array of actual training objectives for static and contextualized embeddings (CBOW, MLM, ...)
- ► Matches theoretical expectations (Sahlgren, 2008)

How it's going:

BayesOpt for HPO, looking for wordvec hyperparameters that increase the mass on attested words in Pr(word | context)

Do you really need semantics to model Pr(word | context)?

Do you really need semantics to model

Pr(word | context)?

For today

- high-level talk
- linguistic focus
- borrowing results from recent research
- focusing on models that are easy to interpret

Outline

1. Segonne and Mickus (2023)

2. Mickus and Copot (In prep.)

3. Mickus and Bernard (2023)

Outline

1. Segonne and Mickus (2023)

2. Mickus and Copot (In prep.)

3. Mickus and Bernard (2023)

"Definition Modeling: To model definitions."
Generating Definitions With Little to No Semantics

Vincent Segonne*
Université Grenoble Alpes
vincent.segonne
@univ-grenoble-alpes.fr

Timothee Mickus* Helsinki University timothee.mickus @helsinki.fi

Definition Modeling

 Noraset et al. (2017): Well-trained distributional representations should capture enough semantics to derive definitions

Definition Modeling

 Noraset et al. (2017): Well-trained distributional representations should capture enough semantics to derive definitions

Any of a genus (Mammuthus) of extinct Pleistocene mammals of the elephant family distinguished from recent elephants by highly ridged molars, usually large size, very long tusks that curve upward, and well-developed body hair.

Definition Modeling

 Noraset et al. (2017): Well-trained distributional representations should capture enough semantics to derive definitions

Any of a genus (Mammuthus) of extinct Pleistocene mammals of the elephant family distinguished from recent elephants by highly ridged molars, usually large size, very long tusks that curve upward, and well-developed body hair.

Do related factors like polysemy and frequency impact the ability to generate definitions?

Setup

▶ Setup borrowed from Bevilacqua, Maru, and Navigli (2020)

Setup

Setup borrowed from Bevilacqua, Maru, and Navigli (2020)

Training models with or without explicit polysemy (train set ablation)

Setup

Setup borrowed from Bevilacqua, Maru, and Navigli (2020)

- Training models with or without explicit polysemy (train set ablation)
- Training models on frequent words, testing on rare words

Results

Polysemy	Val.	Test Splits		
		iid.	rare	0-freq
with	9.07	9.13	11.15	10.85
without	8.49	8.53	11.06	10.87

Average BLEU performances on held-out sets. Averaged on 5 runs; std. dev. $<\pm 0.001$ always.

Results

Polysemy	Val.	Test Splits		
		iid.	rare	0-freq
with	9.07	9.13	11.15	10.85
without	8.49	8.53	11.06	10.87

Average BLEU performances on held-out sets. Averaged on 5 runs; std. dev. $<\pm0.001$ always.

▶ Performances are comparable across all setups

Results

Polysemy	Val.	Test Splits		
		iid.	rare	0-freq
with	9.07	9.13	11.15	10.85
without	8.49	8.53	11.06	10.87

Average BLEU performances on held-out sets. Averaged on 5 runs; std. dev. $<\pm0.001$ always.

- ▶ Performances are comparable across all setups
- ▶ Polysemy and frequency do not appear to play a major role

- Manual annotation of a subset of 800 productions in four traits:
 - Fluency (FL): if the output is free of grammar or commonsense mistakes √"(architecture) A belfry" X"(intransitive) To go too far; to go too far."

 - Pos-appropriateness (PA): if the generated gloss matches the headword's POS

 "unsubstantiate: (intransitive) To make unsubstantiated claims."

 "fried: (transitive) To cook (something) in a frying pan."
 - Pattern-based (PB): if the generated gloss relies on morphological relatedness "clacky: Resembling or characteristic of clacking." "fare: (intransitive) To do well or poorly."

- Manual annotation of a subset of 800 productions in four traits:
 - Fluency (FL): if the output is free of grammar or commonsense mistakes √"(architecture) A belfry" X"(intransitive) To go too far; to go too far."
 - ► Factuality (FA): if the output contains only & all facts relevant to the target sense

 √"flaglet: A small flag."

 X"unsatined: Not stained."
 - ▶ Pos-appropriateness (PA): if the generated gloss matches the headword's POS
 √"unsubstantiate: (intransitive) To make unsubstantiated claims."

 X"fried: (transitive) To cook (something) in a frying pan."
 - Pattern-based (PB): if the generated gloss relies on morphological relatedness "clacky: Resembling or characteristic of clacking." "fare: (intransitive) To do well or poorly."
- ▶ 36.5% of productions are PBs; 10% involve a straight copy of the headword

- Manual annotation of a subset of 800 productions in four traits:
 - Fluency (FL): if the output is free of grammar or commonsense mistakes "(architecture) A belfry" "(intransitive) To go too far; to go too far."
 - ► Factuality (FA): if the output contains only & all facts relevant to the target sense

 √"flaglet: A small flag."

 X"unsatined: Not stained."
 - ▶ Pos-appropriateness (PA): if the generated gloss matches the headword's POS
 √"unsubstantiate: (intransitive) To make unsubstantiated claims."

 X"fried: (transitive) To cook (something) in a frying pan."
 - Pattern-based (PB): if the generated gloss relies on morphological relatedness /"clacky: Resembling or characteristic of clacking." /"fare: (intransitive) To do well or poorly."
- ▶ 36.5% of productions are PBs; 10% involve a straight copy of the headword
- Non-PB outputs have lower FL ($p < 3 \cdot 10^{-6}$, f = 42.3%)

- Manual annotation of a subset of 800 productions in four traits:
 - ► Fluency (FL): if the output is free of grammar or commonsense mistakes √"(architecture) A belfry" ¼"(intransitive) To go too far; to go too far."
 - ► Factuality (FA): if the output contains only & all facts relevant to the target sense

 √"flaglet: A small flag."

 X"unsatined: Not stained."
 - ▶ Pos-appropriateness (PA): if the generated gloss matches the headword's POS
 √"unsubstantiate: (intransitive) To make unsubstantiated claims."

 X"fried: (transitive) To cook (something) in a frying pan."
 - Pattern-based (PB): if the generated gloss relies on morphological relatedness /"clacky: Resembling or characteristic of clacking." /"fare: (intransitive) To do well or poorly."
- ▶ 36.5% of productions are PBs; 10% involve a straight copy of the headword
- Non-PB outputs have lower FL ($p < 3 \cdot 10^{-6}$, f = 42.3%)
- Non-PB outputs have lower FA ($p < 2 \cdot 10^{-9}$, f = 37.7%)

- Manual annotation of a subset of 800 productions in four traits:
 - Fluency (FL): if the output is free of grammar or commonsense mistakes √"(architecture) A belfry" X"(intransitive) To go too far; to go too far."
 - ► Factuality (FA): if the output contains only & all facts relevant to the target sense

 √"flaglet: A small flag."

 X"unsatined: Not stained."
 - ▶ Pos-appropriateness (PA): if the generated gloss matches the headword's POS
 √"unsubstantiate: (intransitive) To make unsubstantiated claims."

 X"fried: (transitive) To cook (something) in a frying pan."
 - Pattern-based (PB): if the generated gloss relies on morphological relatedness /"clacky: Resembling or characteristic of clacking." /"fare: (intransitive) To do well or poorly."
- ▶ 36.5% of productions are PBs; 10% involve a straight copy of the headword
- Non-PB outputs have lower FL ($p < 3 \cdot 10^{-6}$, f = 42.3%)
- Non-PB outputs have lower FA ($p < 2 \cdot 10^{-9}$, f = 37.7%)
- ▶ PB and non-PB outputs have similar BLEU scores (p = 0.262)

- Manual annotation of a subset of 800 productions in four traits:
 - Fluency (FL): if the output is free of grammar or commonsense mistakes "(architecture) A belfry" "(intransitive) To go too far; to go too far."
 - ► Factuality (FA): if the output contains only & all facts relevant to the target sense

 √"flaglet: A small flag."

 X"unsatined: Not stained."
 - ▶ Pos-appropriateness (PA): if the generated gloss matches the headword's POS
 √"unsubstantiate: (intransitive) To make unsubstantiated claims."

 X"fried: (transitive) To cook (something) in a frying pan."
 - Pattern-based (PB): if the generated gloss relies on morphological relatedness /"clacky: Resembling or characteristic of clacking." /"fare: (intransitive) To do well or poorly."
- ▶ 36.5% of productions are PBs; 10% involve a straight copy of the headword
- Non-PB outputs have lower FL ($p < 3 \cdot 10^{-6}$, f = 42.3%)
- Non-PB outputs have lower FA ($p < 2 \cdot 10^{-9}$, f = 37.7%)
- ▶ PB and non-PB outputs have similar BLEU scores (p = 0.262)
- ▶ Valid generated definitions often entail relying on morphological relatedness

In short

► Some semantic tasks can be (partially) solved without semantics

Outline

1. Segonne and Mickus (2023)

2. Mickus and Copot (In prep.)

3. Mickus and Bernard (2023)

Stranger than Paradigms Word Embedding Benchmarks Don't Align With Morphology

Timothee Mickus¹ and Maria Copot²

¹ University of Helsinki

² LLF

So, is it morphology then?

▶ Going back to our definition:

Pr(word | context)

distributional models are models of the lexicon

So, is it morphology then?

Going back to our definition:

Pr(word | context)

distributional models are models of the lexicon

To what extent do they model morphological relations?

CBOW & Negative sampling crash course

▶ **CBOW**: predict a word given its context

- ▶ **CBOW**: predict a word given its context
- context is modelled as a bag of words

- ▶ **CBOW**: predict a word given its context
- context is modelled as a bag of words
- ▶ inefficient to train due to the softmax over the vocabulary

► Negative sampling: replace softmax by binary classification task (attested or not)

- ► CBOW: predict a word given its context
- context is modelled as a bag of words
- inefficient to train due to the softmax over the vocabulary

- ▶ CBOW: predict a word given its context
- context is modelled as a bag of words
- inefficient to train due to the softmax over the vocabulary

- ▶ **Negative sampling**: replace softmax by binary classification task (attested or not)
- negative examples are constructed by randomly picking words for the same context

- CBOW: predict a word given its context
- context is modelled as a bag of words
- inefficient to train due to the softmax over the vocabulary

- ▶ **Negative sampling**: replace softmax by binary classification task (attested or not)
- negative examples are constructed by randomly picking words for the same context
- probability of sampling as negative:

$$q(W) \propto p(w)^{\alpha}$$

with $\alpha = 0.75$

- ► Simlex-999 (Barzegar et al., 2018)
- FEEL (Abdaoui et al., 2017)
- ► GATS (Grave et al., 2018)
- ▶ POS tagging using OMW (Bond and Paik, 2012)

- ► Simlex-999 (Barzegar et al., 2018)
- FEEL (Abdaoui et al., 2017)
- ► GATS (Grave et al., 2018)
- POS tagging using OMW (Bond and Paik, 2012)
- One-cell and two-cell clustering scores for inflection (SCC, PCC)
- One-cell and two-cell prediction scores for inflection (SCP, PCP)
- Two-cell clustering scores for derivation, based on process semantics or form (DerCS, DerCF)
- Two-cell prediction scores for derivation, based on process semantics or form (DerPS, DerPF)

Grid search over CBOW hyper-parameters:

- ► Simlex-999 (Barzegar et al., 2018)
- FEEL (Abdaoui et al., 2017)
- ► GATS (Grave et al., 2018)
- ► POS tagging using OMW (Bond and Paik, 2012)
- One-cell and two-cell clustering scores for inflection (SCC, PCC)
- One-cell and two-cell prediction scores for inflection (SCP, PCP)
- Two-cell clustering scores for derivation, based on process semantics or form (DerCS, DerCF)
- Two-cell prediction scores for derivation, based on process semantics or form (DerPS, DerPF)

Tasks:

- ► Simlex-999 (Barzegar et al., 2018)
- FEEL (Abdaoui et al., 2017)
- ► GATS (Grave et al., 2018)
- ► POS tagging using OMW (Bond and Paik, 2012)
- One-cell and two-cell clustering scores for inflection (SCC, PCC)
- One-cell and two-cell prediction scores for inflection (SCP, PCP)
- Two-cell clustering scores for derivation, based on process semantics or form (DerCS, DerCF)
- Two-cell prediction scores for derivation, based on process semantics or form (DerPS, DerPF)

Grid search over CBOW hyper-parameters:

1. window size

 $w \in \{5, 10, 15, 20, 25\}$

Tasks:

- ► Simlex-999 (Barzegar et al., 2018)
- FEEL (Abdaoui et al., 2017)
- ► GATS (Grave et al., 2018)
- ► POS tagging using OMW (Bond and Paik, 2012)
- One-cell and two-cell clustering scores for inflection (SCC, PCC)
- One-cell and two-cell prediction scores for inflection (SCP, PCP)
- Two-cell clustering scores for derivation, based on process semantics or form (DerCS, DerCF)
- Two-cell prediction scores for derivation, based on process semantics or form (DerPS, DerPF)

Grid search over CBOW hyper-parameters:

1. window size

$$w \in \{5, 10, 15, 20, 25\}$$

2. number of negative examples per positive example

$$\#N \in \{5,10,15,20,25\}$$

Tasks:

- ► Simlex-999 (Barzegar et al., 2018)
- FEEL (Abdaoui et al., 2017)
- ► GATS (Grave et al., 2018)
- ▶ POS tagging using OMW (Bond and Paik, 2012)
- One-cell and two-cell clustering scores for inflection (SCC, PCC)
- One-cell and two-cell prediction scores for inflection (SCP, PCP)
- Two-cell clustering scores for derivation, based on process semantics or form (DerCS, DerCF)
- Two-cell prediction scores for derivation, based on process semantics or form (DerPS, DerPF)

Grid search over CBOW hyper-parameters:

1. window size

$$w \in \{5, 10, 15, 20, 25\}$$

2. number of negative examples per positive example

$$\#N \in \{5, 10, 15, 20, 25\}$$

3. number of epochs

$$e\in\{1,3,5\}$$

Tasks:

- ► Simlex-999 (Barzegar et al., 2018)
- FEEL (Abdaoui et al., 2017)
- ► GATS (Grave et al., 2018)
- ▶ POS tagging using OMW (Bond and Paik, 2012)
- One-cell and two-cell clustering scores for inflection (SCC, PCC)
- One-cell and two-cell prediction scores for inflection (SCP, PCP)
- Two-cell clustering scores for derivation, based on process semantics or form (DerCS, DerCF)
- Two-cell prediction scores for derivation, based on process semantics or form (DerPS, DerPF)

Grid search over CBOW hyper-parameters:

1. window size

$$w \in \{5, 10, 15, 20, 25\}$$

2. number of negative examples per positive example

$$\#N \in \{5, 10, 15, 20, 25\}$$

3. number of epochs

$$e \in \{1,3,5\}$$

4. negative sampling distribution exponent

$$\alpha \in \{0.2, 0.6, 1.0, 1.4\}$$

Tasks:

- ► Simlex-999 (Barzegar et al., 2018)
- FEEL (Abdaoui et al., 2017)
- ► GATS (Grave et al., 2018)
- ► POS tagging using OMW (Bond and Paik, 2012)
- One-cell and two-cell clustering scores for inflection (SCC, PCC)
- One-cell and two-cell prediction scores for inflection (SCP, PCP)
- Two-cell clustering scores for derivation, based on process semantics or form (DerCS, DerCF)
- Two-cell prediction scores for derivation, based on process semantics or form (DerPS, DerPF)

Grid search over CBOW hyper-parameters:

1. window size

$$w \in \{5, 10, 15, 20, 25\}$$

2. number of negative examples per positive example

$$\#N \in \{5, 10, 15, 20, 25\}$$

3. number of epochs

$$e\in\{1,3,5\}$$

4. negative sampling distribution exponent

$$\alpha \in \{0.2, 0.6, 1.0, 1.4\}$$

5. dynamic uniform sampling of window size

$$s \in \{\top, \bot\}$$

Results

▶ The distribution is determined by the negative sampling hyperparameter:

▶ The distribution is determined by the negative sampling hyperparameter:

▶ The distribution is determined by the negative sampling hyperparameter:

- 1. through lexical semantic requirements, e.g.,

 You know, this is the way we eat in ______
- 2. through morphosyntactic dependencies, e.g.,

 I think this game is really ______.

▶ The distribution is determined by the negative sampling hyperparameter:

- 1. through lexical semantic requirements, e.g.,

 You know, this is the way we eat in ...
 - ► Words that are frequent occur in many contexts
- 2. through morphosyntactic dependencies, e.g.,

 I think this game is really ______.

▶ The distribution is determined by the negative sampling hyperparameter:

- 1. through lexical semantic requirements, e.g.,

 You know, this is the way we eat in
 - ▶ Words that are frequent occur in many contexts
 - ▶ They are not useful for capturing the specific semantics of a given context
- 2. through morphosyntactic dependencies, e.g.,

 I think this game is really ______.

▶ The distribution is determined by the negative sampling hyperparameter:

Contexts constrain words in (at least) two different manners

- 1. through lexical semantic requirements, e.g.,

 You know, this is the way we eat in ...
 - ▶ Words that are frequent occur in many contexts
 - ▶ They are not useful for capturing the specific semantics of a given context
- 2. through morphosyntactic dependencies, e.g.,

I think this game is really _____.

 Frequency and morphological regularity are inversely correlated (Wu, Cotterell, and O'Donnell, 2019)

▶ The distribution is determined by the negative sampling hyperparameter:

Contexts constrain words in (at least) two different manners

- 1. through lexical semantic requirements, e.g.,

 You know, this is the way we eat in
 - Words that are frequent occur in many contexts
 - ▶ They are not useful for capturing the specific semantics of a given context
- 2. through morphosyntactic dependencies, e.g.,

I think this game is really _____.

- Frequency and morphological regularity are inversely correlated (Wu, Cotterell, and O'Donnell, 2019)
- To model morphology, one should focus on frequent (= irregular) words

In short

► Not every distributional constraint is semantics

Outline

1. Segonne and Mickus (2023)

2. Mickus and Copot (In prep.)

3. Mickus and Bernard (2023)

Distributional, yes—but semantics? Comparing distributional representations, semantics and syntax

Timothee Mickus
University of Helsinki, Finland

Timothée Bernard LLF, Université Paris Cité, France

timothee.lastname@{helsinki.fi,u-paris.fr}

 Simple tagging experiment using decision trees, comparing POS tags and supersense tags

 Simple tagging experiment using decision trees, comparing POS tags and supersense tags

- Simple tagging experiment using decision trees, comparing POS tags and supersense tags
- Syntax generally yields classifier trees that are more accurate

- Simple tagging experiment using decision trees, comparing POS tags and supersense tags
- Syntax generally yields classifier trees that are more accurate

- Simple tagging experiment using decision trees, comparing POS tags and supersense tags
- Syntax generally yields classifier trees that are more accurate
- Syntax generally yields classifier trees that are structurally simpler

Should we factor sentence-level structure?

Should we factor sentence-level structure?

▶ Given a directed labeled graph G with edges $\langle n_{\rm in}, n_{\rm out}, \ell \rangle$ and a length k, get the multiset of (possibly indirect) dependencies of length k:

$$\mathbf{v}_k(G) \,=\, \left\{\, \left(\,\boldsymbol{\ell}_{\,1},\, \ldots,\, \boldsymbol{\ell}_{\,k}\,\right) \,\mid\, \exists\, n_1,\, \ldots,\, n_{k+1},\, \langle\, n_1,n_2,\boldsymbol{\ell}_{\,1}\,\rangle,\, \ldots,\, \langle\, n_k,n_{k+1},\boldsymbol{\ell}_{\,k}\,\rangle \in G\,\right\}$$

Should we factor sentence-level structure?

▶ Given a directed labeled graph G with edges $\langle n_{\rm in}, n_{\rm out}, \ell \rangle$ and a length k, get the multiset of (possibly indirect) dependencies of length k:

$$\mathbf{v}_k(G) \,=\, \left\{\, \left(\ell_1,\, \ldots,\, \ell_k\right) \mid \exists n_1,\, \ldots,\, n_{k+1},\, \langle n_1,n_2,\ell_1\rangle,\, \ldots,\, \langle n_k,n_{k+1},\ell_k\rangle \in G\,\right\}$$

 $lackbox{lack}$ Combine all such dependencies up to some maximum length \hat{k} as

$$\mathbf{v}_{\leq \hat{k}}(G) = \bigcup_{k=1}^{\hat{k}} \mathbf{v}_k(G)$$

Should we factor sentence-level structure?

▶ Given a directed labeled graph G with edges $\langle n_{\rm in}, n_{\rm out}, \ell \rangle$ and a length k, get the multiset of (possibly indirect) dependencies of length k:

$$\mathbf{v}_k(G) \,=\, \left\{\, \left(\ell_1,\, \ldots,\, \ell_k\right) \mid \exists n_1,\, \ldots,\, n_{k+1},\, \langle n_1,n_2,\ell_1\rangle,\, \ldots,\, \langle n_k,n_{k+1},\ell_k\rangle \in G\,\right\}$$

ightharpoonup Combine all such dependencies up to some maximum length \hat{k} as

$$\mathbf{v}_{\leq \hat{k}}(G) = \bigcup_{k=1}^{\hat{k}} \mathbf{v}_k(G)$$

Compare two graphs through the combined dependencies multisets:

$$\text{similarity}(G_a,G_b) \ = \ \frac{\left| \mathbf{v}_{\leq \hat{k}}(G_a) \cap \mathbf{v}_{\leq \hat{k}}(G_b) \right|}{\left| \mathbf{v}_{\leq \hat{k}}(G_a) \cup \mathbf{v}_{\leq \hat{k}}(G_b) \right|}$$

Should we factor sentence-level structure?

▶ Given a directed labeled graph G with edges $\langle n_{\rm in}, n_{\rm out}, \ell \rangle$ and a length k, get the multiset of (possibly indirect) dependencies of length k:

$$\mathbf{v}_k(G) \,=\, \left\{\, \left(\ell_1,\, \ldots,\, \ell_k\right) \mid \exists n_1,\, \ldots,\, n_{k+1},\, \langle n_1,n_2,\ell_1\rangle,\, \ldots,\, \langle n_k,n_{k+1},\ell_k\rangle \in G\,\right\}$$

lackbox Combine all such dependencies up to some maximum length \hat{k} as

$$\mathbf{v}_{\leq \hat{k}}(G) = \bigcup_{k=1}^{\hat{k}} \mathbf{v}_k(G)$$

Compare two graphs through the combined dependencies multisets:

$$\text{similarity}(G_a,G_b) \ = \ \frac{\left| \mathbf{v}_{\leq \hat{k}}(G_a) \cap \mathbf{v}_{\leq \hat{k}}(G_b) \right|}{\left| \mathbf{v}_{\leq \hat{k}}(G_a) \cup \mathbf{v}_{\leq \hat{k}}(G_b) \right|}$$

equally applicable to syntactic trees and semantic DAGs

Should we factor sentence-level structure?

▶ Given a directed labeled graph G with edges $\langle n_{\rm in}, n_{\rm out}, \ell \rangle$ and a length k, get the multiset of (possibly indirect) dependencies of length k:

$$\mathbf{v}_k(G) \,=\, \left\{\, \left(\ell_1,\, \ldots,\, \ell_k\right) \mid \exists n_1,\, \ldots,\, n_{k+1},\, \langle n_1,n_2,\ell_1\rangle,\, \ldots,\, \langle n_k,n_{k+1},\ell_k\rangle \in G\, \right\}$$

lackbox Combine all such dependencies up to some maximum length \hat{k} as

$$\mathbf{v}_{\leq \hat{k}}(G) = \bigcup_{k=1}^{\hat{k}} \mathbf{v}_k(G)$$

Compare two graphs through the combined dependencies multisets:

$$\text{similarity}(G_a,G_b) \ = \ \frac{\left| \mathbf{v}_{\leq \hat{k}}(G_a) \cap \mathbf{v}_{\leq \hat{k}}(G_b) \right|}{\left| \mathbf{v}_{\leq \hat{k}}(G_a) \cup \mathbf{v}_{\leq \hat{k}}(G_b) \right|}$$

- equally applicable to syntactic trees and semantic DAGs
- can be compared to distribution-based similarity, e.g., BertScore or WMD, using RSA

Should we factor sentence-level structure?

▶ Given a directed labeled graph G with edges $\langle n_{\rm in}, n_{\rm out}, \ell \rangle$ and a length k, get the multiset of (possibly indirect) dependencies of length k:

$$\mathbf{v}_k(G) \,=\, \left\{\, \left(\ell_1,\, \ldots,\, \ell_k\right) \mid \exists n_1,\, \ldots,\, n_{k+1},\, \langle n_1,n_2,\ell_1\rangle,\, \ldots,\, \langle n_k,n_{k+1},\ell_k\rangle \in G\, \right\}$$

lacksquare Combine all such dependencies up to some maximum length \hat{k} as

$$\mathbf{v}_{\leq \hat{k}}(G) = \bigcup_{k=1}^{\hat{k}} \mathbf{v}_k(G)$$

Compare two graphs through the combined dependencies multisets:

$$\text{similarity}(G_a,G_b) \ = \ \frac{\left| \mathbf{v}_{\leq \hat{k}}(G_a) \cap \mathbf{v}_{\leq \hat{k}}(G_b) \right|}{\left| \mathbf{v}_{\leq \hat{k}}(G_a) \cup \mathbf{v}_{\leq \hat{k}}(G_b) \right|}$$

- equally applicable to syntactic trees and semantic DAGs
- can be compared to distribution-based similarity, e.g., BertScore or WMD, using RSA
- using the data from SemEval 2015 shared-task 18 (Oepen et al., 2015)

Results

Using BertScore as distributional similarity

Using negative WMD between word2vec vectors as distributional similarity

Results

Using BertScore as distributional similarity

Using negative WMD between word2vec vectors as distributional similarity

▶ In both cases, best results are achieved with syntax

Results

Using BertScore as distributional similarity

Using negative WMD between word2vec vectors as distributional similarity

- ▶ In both cases, best results are achieved with syntax
- ▶ Results deteriorate when factoring in more indirect dependencies

In short

► Off-the-shelf embeddings align more with (shallow) syntax than with semantics

Do you really need semantics to model Pr(word | context)?

We saw:

- Some contextual constraints are not semantic
- Some non-semantic constraints are useful to tackle semantic tasks
- Off-the-shelf embeddings align more with non-semantic information

Do you really need semantics to modelPr(word | context)?

- We saw:
- Some contextual constraints are not semantic
- Some non-semantic constraints are useful to tackle semantic tasks
- Off-the-shelf embeddings align more with non-semantic information

- what next?
- What about contextual embeddings? Are they any better?

Do you really need semantics to modelPr(word | context)?

We saw:

- Some contextual constraints are not semantic
- Some non-semantic constraints are useful to tackle semantic tasks
- Off-the-shelf embeddings align more with non-semantic information

what next?

- What about contextual embeddings? Are they any better?
- What about other aspects of semantics, e.g., grounding and interaction?

Do you really need semantics to model Pr(word | context)?

We saw:

what next?

- Some contextual constraints are not semantic
- Some non-semantic constraints are useful to tackle semantic tasks
- Off-the-shelf embeddings align more with non-semantic information

- What about contextual embeddings? Are they any better?
- ► What about other aspects of semantics, e.g., grounding and interaction?
- What's the evidence for distributional *semantics*?

Do you really need semantics to model Pr(word | context)?

We saw:

what next?

- Some contextual constraints are not semantic
- Some non-semantic constraints are useful to tackle semantic tasks
- Off-the-shelf embeddings align more with non-semantic information

- What about contextual embeddings? Are they any better?
- What about other aspects of semantics, e.g., grounding and interaction?
- What's the evidence for distributional semantics?

Thanks! any questions?

References

- Abdaoui, Amine et al. (2017). "FEEL: a French Expanded Emotion Lexicon". In: Language Resources and Evaluation 51.3.
- Barzegar, Siamak et al. (2018). "SemR-11: A Multi-Lingual Gold-Standard for Semantic Similarity and Relatedness for Eleven Languages". In:

 Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018).
- Bevilacqua, Michele, Marco Maru, and Roberto Navigli (2020). "Generationary or "How We Went beyond Word Sense Inventories and Learned to Gloss". In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP).
- Bond, Francis and Kyonghee Paik (2012). "A Survey of WordNets and their Licenses". In:
- Firth, John Rupert (1957). "A synopsis of linguistic theory 1930-55.". In: Studies in Linguistic Analysis (special volume of the Philological Society) 1952-59.
- Grave, Edouard et al. (2018). "Learning Word Vectors for 157 Languages". In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018).
- Mickus, Timothee and Timothée Bernard (2023). Distributional, yes—but semantics? Comparing distributional representations, semantics and syntax.
- Mickus, Timothee and Maria Copot (In prep.). Stranger than Paradigm: word embedding benchmarks don't align with morphology.
- Noraset, Thanapon et al. (2017). "Definition Modeling: Learning to define word embeddings in natural language". In: AAAI.
- Oepen, Stephan et al. (2015). "SemEval 2015 Task 18: Broad-Coverage Semantic Dependency Parsing". In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015).
- Sahlgren, Magnus (2008). "The Distributional Hypothesis". In: The Italian Journal of Linguistics 20.
- Segonne, Vincent and Timothee Mickus (2023). "Definition Modeling: To model definitions Generating Definitions With Little to No Semantics." In: Proceedings of the 15th International Conference on Computational Semantics (IWCS).
- Wu, Shijie, Ryan Cotterell, and Timothy J. O'Donnell (2019). "Morphological Irregularity Correlates with Frequency". In: CoRR abs/1906.11483.