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● Evaluations of robustness strive to evaluate a real-world applicability of our 
models with usually unconstrained domain of valid inputs

● Even when developing a system for a specific domain (e.g. a MT system 
for a law domain), we still want systems that can not be broken by minor 
adversaries

● Generalization is especially crucial in low-resource scenarios where we 
can not obtain a representative training sample for our end application
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3. Debiasing methods
4. Multitask learning
5. Modularization
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1. Sharpness-aware Minimisation (SAM) [1]
○ "[SAM] seek out parameter values whose entire neighborhoods have 

uniformly low training loss value."

[1] Foret, Kleiner, Mobahi, Neyshabur: Sharpness-aware Minimization for Efficiently Improving Generalization. In ICLR 2021 

https://openreview.net/forum?id=6Tm1mposlrM
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1. Sharpness-aware Minimisation (SAM) [1]
○ "[SAM] seek out parameter values whose entire neighborhoods have 

uniformly low training loss value."

[1] Foret, Kleiner, Mobahi, Neyshabur: Sharpness-aware Minimization for Efficiently Improving Generalization. In ICLR 2021 

Fig 1: Left: A sharp minimum to which a ResNet trained 
with SGD converged. Right: A wide minimum to which 
the same ResNet trained with SAM converged. From [1].

https://openreview.net/forum?id=6Tm1mposlrM
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2. Unsupervised Data Augmentation [1]
○ UDA minimizes a divergence metric between output distribution 

of (1) the original (  ), and (2) augmented samples (  )

[1] Xie, Dai, Hovy, Luong, Le: Unsupervised Data Augmentation for Consistency Training. In NeurIPS 2020 12/134

https://papers.neurips.cc/paper/2020/file/44feb0096faa8326192570788b38c1d1-Paper.pdf
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3. Soft Alignment Objectives [1]

● In LowRes adaptation, the training 
quickly overfits the target distribution

[1] Štefánik, Kadlčík, Sojka: Soft Alignment Objectives for Robust Adaptation of Language Generation. In ACL 2023: Main track 

https://aclanthology.org/2023.acl-long.492/
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3. Soft Alignment Objectives [1]

● In LowRes adaptation, the training 
quickly overfits the target distribution

● We "relax" the training objective from     
the common single-truth target 
to a distribution which respects mutual 
similarities of tokens provided by a static 
language model (XLM-R)

● Can be seen as a knowledge distillation 
of task-agnostic Teacher language model

[1] Štefánik, Kadlčík, Sojka: Soft Alignment Objectives for Robust Adaptation of Language Generation. In ACL 2023: Main track 

https://aclanthology.org/2023.acl-long.492/
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3. Soft Alignment Objectives [1]

Two main implementations:

1. TokenAlign: Minimal adjustment of classic MLE training, just replaces 
the targets with the distribution

[1] Štefánik, Kadlčík, Sojka: Soft Alignment Objectives for Robust Adaptation of Language Generation. In ACL 2023: Main track 
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3. Soft Alignment Objectives [1]

Two main implementations:

1. TokenAlign: Minimal adjustment of classic MLE training, just replaces 
the targets with the distribution

2. SeqAlign: +Lets the model to generate "anything" and we train on that 

● Thanks to the embedding-based Alignment, we can evaluate 
predictions and update the model without keeping the predictions 
aligned with the reference

[1] Štefánik, Kadlčík, Sojka: Soft Alignment Objectives for Robust Adaptation of Language Generation. In ACL 2023: Main track 

https://aclanthology.org/2023.acl-long.492/
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3. Soft Alignment Objectives [1]

Evaluation
● Low- to medium-resource domain adaptation in machine translation
● Focus on domain-robustness

○ We train on one domain (ID), and evaluate on all the others (OOD)
○ We report both 

(1) adaptation improvement (ID) 
(2) change of performance on other domains (OOD)

● Training until ID eval BLEU converges

[1] Štefánik, Kadlčík, Sojka: Soft Alignment Objectives for Robust Adaptation of Language Generation. In ACL 2023: Main track 

https://aclanthology.org/2023.acl-long.492/
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What is Teacher Forcing?

● In traditional training of generative LMs, we train the model to predict a 
single next token of the reference given previous reference tokens

● In practice, the model generates previous tokens on its own

● Does the discrepancy between the training and inference prefixes 
increase on inputs from other domains?
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Sequential objectives
● Optimise model w.r.t. the own output of the model

[1] Samy Bengio, Vinyals, Jaitly, Shazeer: Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. ArXiv 2015
[2] Ranzato, Chopra, Auli, Zaremba: Sequence Level Training with Recurrent Neural Networks. ICLR 2016

https://arxiv.org/pdf/1506.03099.pdf
https://arxiv.org/abs/1511.06732
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Sequential objectives
● Optimise model w.r.t. the own output of the model
● Scheduled sampling [1] gradually transitions from the teacher-forcing 

to using (one) model's own-predicted token in training

● Minimum Risk Training [2] optimises model's w.r.t. a sentence-level 
metric (BLEU) using Reinforcement learning

● Much of the follow-up work optimise against MT metrics 
(BLEU, ChrF, BERTScore, …)

[1] Samy Bengio, Vinyals, Jaitly, Shazeer: Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. ArXiv 2015
[2] Ranzato, Chopra, Auli, Zaremba: Sequence Level Training with Recurrent Neural Networks. ICLR 2016

https://arxiv.org/pdf/1506.03099.pdf
https://arxiv.org/abs/1511.06732
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[1] Innaune, Parell, Picardi: BERTTune: Fine-Tuning Neural Machine Translation with BERTScore. In ACL 2021.

https://aclanthology.org/2021.acl-short.115
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Why did sentence-level objectives not become a standard?

[1] Ranzato, Chopra, Auli, Zaremba: Sequence Level Training with Recurrent Neural Networks. ArXiv 2016

https://arxiv.org/abs/1511.06732
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Why did sentence-level objectives not become a standard?

● Overall, mediocre improvements on test sets

[1] Ranzato, Chopra, Auli, Zaremba: Sequence Level Training with Recurrent Neural Networks. ArXiv 2016
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Why did sentence-level objectives not become a standard?

● Overall, mediocre improvements on test sets
● Computational overhead and stability

[1] Ranzato, Chopra, Auli, Zaremba: Sequence Level Training with Recurrent Neural Networks. ArXiv 2016

https://arxiv.org/abs/1511.06732
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Why did sentence-level objectives not become a standard?

● Overall, mediocre improvements on test sets
● Computational overhead and stability

● No evaluations of robustness (?)

[1] Ranzato, Chopra, Auli, Zaremba: Sequence Level Training with Recurrent Neural Networks. ArXiv 2016

https://arxiv.org/abs/1511.06732


2/5: Avoiding Teacher Forcing

35/13
4

● In [1], Leshem Choshen et al. show that similar gains as with BLEU 
optimization can be achieved by optimising against a constant evaluation

[1] Choshen, Fox, Aizenbud, Abend: On the Weaknesses of Reinforcement Learning for Neural Machine Translation. ICLR 2021

https://openreview.net/forum?id=H1eCw3EKvH
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● In [1], Leshem Choshen et al. show that similar gains as with BLEU 
optimization can be achieved by optimising against a constant evaluation

○ BLEU training signal: 30.31 → 30.73
○ Constant training signal: 30.31 → 30.72

● They show that both approaches mainly sharpen the 
prediction probability towards the most-likely token

[1] Choshen, Fox, Aizenbud, Abend: On the Weaknesses of Reinforcement Learning for Neural Machine Translation. ICLR 2021

https://openreview.net/forum?id=H1eCw3EKvH
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● This suggests that the ID improvements are not due to a better training 
signal

[1] Choshen, Fox, Aizenbud, Abend: On the Weaknesses of Reinforcement Learning for Neural Machine Translation. ICLR 2021

https://openreview.net/forum?id=H1eCw3EKvH
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● This suggests that the ID improvements are not due to a better training 
signal

● Could the mere exposition of the model to its own outputs have positive 
effect?

[1] Choshen, Fox, Aizenbud, Abend: On the Weaknesses of Reinforcement Learning for Neural Machine Translation. ICLR 2021

https://openreview.net/forum?id=H1eCw3EKvH
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● In [1], we additionally did the ablation of the effect of avoiding Teacher 
Forcing on the robustness in domain adaptation
○ In our SeqAlign objective, we replaced the 

Token Alignment signal with a random one
(SRand)

[1] Štefánik, Kadlčík, Sojka: Soft Alignment Objectives for Robust Adaptation of Language Generation. In ACL 2023: Main track 

https://aclanthology.org/2023.acl-long.492/
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● In [1], we additionally did the ablation of the effect of avoiding Teacher 
Forcing on the robustness in domain adaptation
○ In our SeqAlign objective, we replaced the 

Token Alignment signal with a random one
(SRand)

○ We reproduced that such training still brings 
some ID improvements

[1] Štefánik, Kadlčík, Sojka: Soft Alignment Objectives for Robust Adaptation of Language Generation. In ACL 2023: Main track 
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● In [1], we additionally did the ablation of the effect of avoiding Teacher 
Forcing on the robustness in domain adaptation
○ In our SeqAlign objective, we replaced the 

Token Alignment signal with a random one
(SRand)

○ We reproduced that such training still brings 
some ID improvements

○ But it pertains most of OOD performance
lost in a traditional adaptation (MLE)

[1] Štefánik, Kadlčík, Sojka: Soft Alignment Objectives for Robust Adaptation of Language Generation. In ACL 2023: Main track 

https://aclanthology.org/2023.acl-long.492/
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Common observations
● All previous work on sequential objectives (incl. ours) use the new objective

as a weighted addition to the classical teacher-forced next token prediction

● We note that recent Preference optimization methods (DPO, KTO, IPO) 
can run separately, but also use regularization using the original model 
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● How much of the success of Preference optimisation can be attributed to    
(i) the new objectives formulation and (ii) to the removal of Teacher forcing? 
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(i) the new objectives formulation and (ii) to the removal of Teacher forcing? 

● In [1], we created datasets and models for arithmetic reasoning

[1] Kadlčík*, Štefánik*, Sotolář, Martinek: Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought (...). In EMNLP 2023: Main track 
[2] Kadlčík*, Štefánik*, Sotolář, Martinek: Self-Training Language Models in Arithmetic Reasoning. Under review. 2024.
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● How much of the success of Preference optimisation can be attributed to    
(i) the new objectives formulation and (ii) to the removal of Teacher forcing? 

● In [1], we created datasets and models for arithmetic reasoning

● Arithmetic reasoning provides a great environment for PO with self-training, 
where the model improves based on its own outputs
○ Reaching/not reaching a correct result is a non-ambiguous, 

automatically-verifiable reward!

[1] Kadlčík*, Štefánik*, Sotolář, Martinek: Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought (...). In EMNLP 2023: Main track 
[2] Kadlčík*, Štefánik*, Sotolář, Martinek: Self-Training Language Models in Arithmetic Reasoning. Under review. 2024.

https://aclanthology.org/2023.emnlp-main.742/
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Self-training dataset

[1] Kadlčík*, Štefánik*, Sotolář, Martinek: Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought (...). In EMNLP 2023: Main track 
[2] Kadlčík*, Štefánik*, Sotolář, Martinek: Self-Training Language Models in Arithmetic Reasoning. Under review. 2024.

"Xiaohong typed 110 characters 
per minute. She started typing at 
10:00 and ended at 10:25. How 
many words did she type in total?"

The time from 10:00 to 10:25 is 25 minutes * 
110= <calc>25*110</calc> 
<output>2750</output> 2750 characters. 
<result>2750</result>

The total time that Xiohong typed is 10+25 
=<calc>10+25</calc> <output>35</output> 
35 minutes. The total number of words she 
typed is 110*35 =<calc>110*35<calc> 
<output>3850</output> 3850 words. 
<result>3850</result>

X

"2750"

Original dataset

https://aclanthology.org/2023.emnlp-main.742/
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● In [2], we applied recent Preference optimisation (PO) techniques 
to see if the model can autonomously improve in self-training

● We compare the results to conventional supervised training (SFT) 
on its own correct outputs (also training on the model's own outputs)

[1] Kadlčík*, Štefánik*, Sotolář, Martinek: Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought (...). In EMNLP 2023: Main track 
[2] Kadlčík*, Štefánik*, Sotolář, Martinek: Self-Training Language Models in Arithmetic Reasoning. Under review. 2024.

https://aclanthology.org/2023.emnlp-main.742/
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[1] Kadlčík*, Štefánik*, Sotolář, Martinek: Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought (...). In EMNLP 2023: Main track 
[2] Kadlčík*, Štefánik*, Sotolář, Martinek: Self-Training Language Models in Arithmetic Reasoning. Under review. 2024.

ID

https://aclanthology.org/2023.emnlp-main.742/
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[1] Kadlčík*, Štefánik*, Sotolář, Martinek: Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought (...). In EMNLP 2023: Main track 
[2] Kadlčík*, Štefánik*, Sotolář, Martinek: Self-Training Language Models in Arithmetic Reasoning. Under review. 2024.

https://aclanthology.org/2023.emnlp-main.742/
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does not necessarily hold for any example of a given task in test data
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Prediction Shortcut (i.e. Bias): A pattern that is common in training data, but 
does not necessarily hold for any example of a given task in test data

Question: When was Eisenhower's 
resignation of Columbia turned down?
Context: (...) The trustees of Columbia 
University refused to accept Eisenhower's 
resignation in December 1950, (...)
Answer: December 1950

Question: Who created ACE?
Context: (...) requiring special script-shaping 
technologies such as ACE (Arabic Calligraphic 
Engine by DecoType in the 1980s (...)
Answer: DecoType
…

Question: Why was the Rhine 
measurement incorrect?
Context: (...) Until 1932 the generally 
accepted length of the Rhine was 
1,230 kilometres (764 miles). In 1932 
the German encyclopedia Knaurs 
Lexikon stated the length as 1,320 
kilometres (820 miles), presumably a 
typographical error, but in fact due to a 
deliberate misinterpretation (...)
Answer:

Training Inference
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Prediction Shortcut (i.e. Bias): A pattern that is common in training data, but 
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deliberate misinterpretation (...)
Answer:

Training Inference

"Answer is 
always close to 
question-words!"
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Prediction Shortcut (i.e. Bias): A pattern that is common in training data, but 
does not necessarily hold for any example of a given task in test data

Question: When was Eisenhower's 
resignation of Columbia turned down?
Context: (...) The trustees of Columbia 
University refused to accept Eisenhower's 
resignation in December 1950, (...)
Answer: December 1950

Question: Who created ACE?
Context: (...) requiring special script-shaping 
technologies such as ACE (Arabic Calligraphic 
Engine by DecoType in the 1980s (...)
Answer: DecoType
…

Question: Why was the Rhine 
measurement incorrect?
Context: (...) Until 1932 the generally 
accepted length of the Rhine was 
1,230 kilometres (764 miles). In 1932 
the German encyclopedia Knaurs 
Lexikon stated the length as 1,320 
kilometres (820 miles), presumably a 
typographical error, but in fact due to 
a deliberate misinterpretation (...)
Answer: typographical error

"Answer is 
always close to 
question-words!"

Training Inference
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● General recipe of Debiasing methods:

[1] Utama, Moosavi, Gurevych: Towards Debiasing NLU Models from Unknown Biases. In EMNLP 2020: Main track 
[2] Clark, Yatskar, Zettlemoyer: Don’t Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. In EMNLP 2019

https://aclanthology.org/2020.emnlp-main.613
https://aclanthology.org/D19-1418/
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● General recipe of Debiasing methods:

1. Create a Biased model 

[1] Utama, Moosavi, Gurevych: Towards Debiasing NLU Models from Unknown Biases. In EMNLP 2020: Main track 
[2] Clark, Yatskar, Zettlemoyer: Don’t Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. In EMNLP 2019
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● General recipe of Debiasing methods:

1. Create a Biased model 
2. Regularize training to downweight samples [1] 

or predictions [2] with a high confidence of the Biased model

[1] Utama, Moosavi, Gurevych: Towards Debiasing NLU Models from Unknown Biases. In EMNLP 2020: Main track 
[2] Clark, Yatskar, Zettlemoyer: Don’t Take the Easy Way Out: Ensemble Based Methods for Avoiding Known Dataset Biases. In EMNLP 2019

https://aclanthology.org/2020.emnlp-main.613
https://aclanthology.org/D19-1418/
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[1] Utama, Moosavi, Gurevych: Towards Debiasing NLU Models from Unknown Biases. In EMNLP 2020: Main track 

https://aclanthology.org/2020.emnlp-main.613
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[1] Utama, Moosavi, Gurevych: Towards Debiasing NLU Models from Unknown Biases. In EMNLP 2020: Main track 

ID ID IDOOD OOD OOD

https://aclanthology.org/2020.emnlp-main.613
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● Debiasing methods are shown to improve OOD performance, especially on 
adversarial samples!

Downsides
● Require bias model, i.e. knowledge of bias data
● Task-dependent hyperparameter tuning, mainly the weight of bias model
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How much do Debiasing methods actually mitigate reliance on bias features?

→ In [1], we evaluate how much the "debiased" models actually rely 
on selected biased features

[1] Mikula, Štefánik, Petrovič, Sojka: Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of QA Models. In EACL 2024: Main track

https://arxiv.org/abs/2305.06841


3/5: Debiasing Methods

67/13
4

How much do Debiasing methods actually mitigate reliance on bias features?

Methodology:
1. Split the data to two groups: (i) the ones solvable, and (ii) the ones not solvable 

by a bias feature
2. Evaluate model on each group
3. Take a look at the gap

[1] Mikula, Štefánik, Petrovič, Sojka: Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of QA Models. In EACL 2024: Main track

https://arxiv.org/abs/2305.06841
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Methodology:
1. Split the data to two groups: (i) the ones solvable, and (ii) the ones not solvable 

by a bias feature
2. Evaluate model on each group
3. Take a look at the gap

[1] Mikula, Štefánik, Petrovič, Sojka: Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of QA Models. In EACL 2024: Main track

https://arxiv.org/abs/2305.06841
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How much do Debiasing methods actually mitigate reliance on bias features?

[1] Mikula, Štefánik, Petrovič, Sojka: Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of QA Models. In EACL 2024: Main track

https://arxiv.org/abs/2305.06841
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How representative are OOD evaluations in evaluating reliance on bias 
features?

"Answer is always 
close to 
question-words!"
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4[1] Mikula, Štefánik, Petrovič, Sojka: Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of QA Models. In EACL 2024: Main track

Table: Change in OOD performance when addressing 
selected bias features with three different Debiasing methods

https://arxiv.org/abs/2305.06841
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Are OOD evaluations representative for evaluation reliance on bias features?

[1] Mikula, Štefánik, Petrovič, Sojka: Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of QA Models. In EACL 2024: Main track

Increased reliance on a biased feature (+1.1) AND
Improvement of OOD (+7.5 on NQ, +2.8 in average)

https://arxiv.org/abs/2305.06841
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Are OOD evaluations representative for evaluation reliance on bias features?

[1] Mikula, Štefánik, Petrovič, Sojka: Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of QA Models. In EACL 2024: Main track

Increased reliance on a biased feature (+0.9) AND
Improvement of OOD (+3.9 on NQ, +1.5 in average)

https://arxiv.org/abs/2305.06841


3/5: Can OOD evaluations uncover reliance on bias?
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4[1] Mikula, Štefánik, Petrovič, Sojka: Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of QA Models. In EACL 2024: Main track

● We fine-tune BERT-Base models separately on three other (OOD) QA 
datasets, and evaluate their reliance on biases of SQuAD

https://arxiv.org/abs/2305.06841
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4[1] Mikula, Štefánik, Petrovič, Sojka: Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of QA Models. In EACL 2024: Main track

https://arxiv.org/abs/2305.06841
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4[1] Mikula, Štefánik, Petrovič, Sojka: Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of QA Models. In EACL 2024: Main track

TriviaQA model relies on SQuAD 
biases more than SQuAD models!

https://arxiv.org/abs/2305.06841
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4[1] Mikula, Štefánik, Petrovič, Sojka: Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of QA Models. In EACL 2024: Main track

NaturalQuestions (NQ) model also relies on 
some biases comparably to SQuAD model

https://arxiv.org/abs/2305.06841


3/5: Are the bias features applicable in OOD datasets? 
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4[1] Mikula, Štefánik, Petrovič, Sojka: Think Twice: Measuring the Efficiency of Eliminating Prediction Shortcuts of QA Models. In EACL 2024: Main track

Adversarial data is efficient in mitigating 
bias learned from the original dataset

https://arxiv.org/abs/2305.06841
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Idea:  Feed the model with many different tasks, and let it inherently learn
   which features generalize over tasks

  Ultimate solution to generalization?
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[1] Sanh et al: Multitask Prompted Training Enables Zero-Shot Task Generalization. In ICLR 2022: Spotlight

https://openreview.net/pdf?id=9Vrb9D0WI4
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[1] Wang et al: Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks. In EMNLP 2022: Main track

https://arxiv.org/abs/2204.07705


4/5: Multitask learning

[1] Chung et al: Scaling Instruction-Finetuned Language Models. In ArXiv 2023 85/134

https://arxiv.org/abs/2210.11416v4


4/5: Multitask learning: What Features do we learn?

[1] Wei et al: Larger language models do in-context learning differently. In ArXiv 2023

● [1] show that in-context learners largely learn to rely on the meaning of the 
labels, such as their sentiment

86/134

https://arxiv.org/pdf/2303.03846.pdf
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● In [1], we evaluated in-context learners with demonstrations showing how to 
use a specific reasoning concept, such as "double negation", "quantifiers", 
or some common-sense properties (e.g. "stove generates heat")

[1] Štefánik, Kadlčík: Can In-context Learners Learn a Reasoning Concept from Demonstrations? Best paper in ACL NLRSE 2023 87/134

https://arxiv.org/pdf/2212.01692.pdf


4/5: Multitask learning: What Can we Learn In-context?

● In [1], we evaluated in-context learners with demonstrations showing how to 
use a specific reasoning concept, such as "double negation", "quantifiers", 
or some common-sense properties (e.g. "stove generates heat")

● If the models can in-context learn the concept, they will improve on 
examples where this concept is applicable

[1] Štefánik, Kadlčík: Can In-context Learners Learn a Reasoning Concept from Demonstrations? Best paper in ACL NLRSE 2023 88/134

https://arxiv.org/pdf/2212.01692.pdf


4/5: Multitask learning: What Can we Learn In-context?

● We found that in-context learners' ability to 
learn a new concept does not depend on 
their size or training strategy

[1] Štefánik, Kadlčík: Can In-context Learners Learn a Reasoning Concept from Demonstrations? Best paper in ACL NLRSE 2023 89/134

https://arxiv.org/pdf/2212.01692.pdf


4/5: Multitask learning: What Can we Learn In-context?
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● We found that in-context learners' ability to 
learn a new concept does not depend on 
their size or training strategy

● For some multitask learners (Tk-Instruct), 
this ability even degrades with the growing 
size

[1] Štefánik, Kadlčík: Can In-context Learners Learn a Reasoning Concept from Demonstrations? Best paper in ACL NLRSE 2023

https://arxiv.org/pdf/2212.01692.pdf
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Motivation
● Fine-tuning pre-trained models on downstream tasks harms models' 

pre-trained generalization ability

● This shows e.g. in their reliance on data-specific prediction shortcuts
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Modularization and Generalization
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How can Modularization help?
● Regularization via reduction of model's capacity
● Persistence of the original, task-agnostic representations



Modularization: Adapters

97/13
4[1] Houlsby et al: Parameter-Efficient Transfer Learning for NLP. In PMLR 2019.

Fig: Architecture of the adapter module and its 
integration with the Transformer. From [1].

https://arxiv.org/pdf/1902.00751.pdf


Modularization: Low-Rank Adaptation (LoRA)

98/13
4[1] Hu et al: LoRA: Low-Rank Adaptation of Large Language Models. In ICLR 2022.

Fig: Parametrization of linear layers with LoRA 
where the orange parameters are newly 
introduced and trained. Image from [1].

https://openreview.net/pdf?id=nZeVKeeFYf9


Modularization for LowRes MT Adaptation

99/13
4[1] Štefánik, Kadlčík, Sojka: Soft Alignment Objectives for Robust Adaptation of Language Generation. In ACL 2023: Main track 

https://aclanthology.org/2023.acl-long.492/
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34

● Previous work introduced modules as new parameters in Transformer  
that alter outputs of linear layers
○ Motivated by that linear layers contain up to 35% of Transformer 

parameter capacity
How can we modularize and persist the task adaptation quality?

One way: mimic the adaptation of traditional fine-tuning
  Is that modularizable?
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Task arithmetics paper [1] shows that

[1] Ilharco, Ribero, Wortsman, Schmidt, Hajishirzi, Farhadi: Editing models with task arithmetic. In ICLR 2023.

https://openreview.net/forum?id=6t0Kwf8-jrj
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Task arithmetics paper [1] shows that
1. Fine-tuning significantly alters only a small number of parameters

[1] Ilharco, Ribero, Wortsman, Schmidt, Hajishirzi, Farhadi: Editing models with task arithmetic. In ICLR 2023.

https://openreview.net/forum?id=6t0Kwf8-jrj
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Task arithmetics paper [1] shows that
1. Fine-tuning significantly alters only a small number of parameters
2. Task-specific updates (differences in weights obtained in fine-tuning) can be 

added or subtracted, showing that Task updates are mutually orthogonal

[1] Ilharco, Ribero, Wortsman, Schmidt, Hajishirzi, Farhadi: Editing models with task arithmetic. In ICLR 2023.

https://openreview.net/forum?id=6t0Kwf8-jrj
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https://openreview.net/forum?id=6t0Kwf8-jrj
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Can Task arithmetics paper [1] shows that
1. Fine-tuning significantly alters only a small number of parameters
2. Task-specific updates (differences in weights obtained in fine-tuning) can be 

added or subtracted, showing that task updates are mutually orthogonal

Can we use this knowledge in more efficient modularization?

[1] Ilharco, Ribero, Wortsman, Schmidt, Hajishirzi, Farhadi: Editing models with task arithmetic. In ICLR 2023.

https://openreview.net/forum?id=6t0Kwf8-jrj
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111/134[1] Nikdan, Tabesh, Crncević, Alistash: RoSA: Accurate Parameter-Efficient Fine-Tuning via Robust Adaptation. ArXiv 2024.

● Sparse Adaptation paper [1] 
complements LoRA 
approach with a map of 
sparse task-specific updates 

● They pick the "kept" weights 
as the ones with largest 
gradients in the adaptation

https://arxiv.org/pdf/2401.04679.pdf


Modularization: RoSA

[1] Nikdan, Tabesh, Crncević, Alistash: RoSA: Accurate Parameter-Efficient Fine-Tuning via Robust Adaptation. ArXiv 2024.

Table: Comparison with LoRA and pure Sparse modularization (SpA) with comparable 
parameter budget.

112/134

https://arxiv.org/pdf/2401.04679.pdf


Modularization: RoSA

● If Task Arithmetics work, why does the sole Sparse modularization (SpA) 
works so much worse?

113/134



Modularization: RoSA

● If Task Arithmetics work, why does the sole Sparse modularization (SpA) 
works so much worse?

Flawful choice of features?

114/134



Modularization: RoSA

● If Task Arithmetics work, why does the sole Sparse modularization (SpA) 
works so much worse?

Flawful choice of features?

● How far can we get with the inverse approach:
1. First, fine-tune
2. Then modularize without compromising quality

115/134



Modularization & Model Merging

Model Merging: research direction studying methods for efficiently merging 
specialized models

116/134



Modularization & Model Merging

TIES Merging paper [1] shows that addressing interference when combining 
updates for different tasks still brings improvements

[1] Yadav, Than, Choshen, Raffel, Bansal: TIES-Merging: Resolving Interference When Merging Models. NeurIPS 2023. 117/134

https://openreview.net/forum?id=xtaX3WyCj1
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[1] Yadav, Than, Choshen, Raffel, Bansal: TIES-Merging: Resolving Interference When Merging Models. NeurIPS 2023. 118/134

https://openreview.net/forum?id=xtaX3WyCj1


Modularization & Model Merging

[1] Yadav, Than, Choshen, Raffel, Bansal: TIES-Merging: Resolving Interference When Merging Models. NeurIPS 2023. 119/134

https://openreview.net/forum?id=xtaX3WyCj1
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Modularization: Open questions

1. How to modularize without compromising the task quality?

● Sparsity seem in a full fine-tuning makes the compromises in adaptation 
quality seem unnecessary, at least for some tasks

● There might be better ways for post-hoc modularization of task vectors
● First papers on sparse fine-tuning already emerge [1], but the qualitative 

gains so far do not exceed post-hoc methods (Model Merging)

[1] Ansell, Vulić, Sterz, Korhonen, Ponti: Scaling Sparse Fine-Tuning to Large Language Models. ArXiv 2024. 123/134

https://arxiv.org/pdf/2401.16405.pdf
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Modularization: Open questions

2. How to modularize with transferability between models?

● None of the existing techniques can create modules that are transferable 
between different base models

● This hinders applications of modularity e.g. for efficient cross-lingual task 
transfer, needed for low-res languages without a myriad of task-specific 
datasets

● Modularization-aware pre-training might pivot this!

127/134



Modularization with transferability
1. Pre-training: Synchronous

He was on  _____ He was on  _____

Il était à Malte. Er war auf Malta.

Sync points

Sync points

128/134

~



Modularization with transferability
(+) Pre-training: Asynchronous (classic CLM)

 ici

peu importe ce qu'il y a ____ Jeder andere ____

 text

129/134X X X



Modularization with transferability
2. Fine-tuning for a task (QA)

Friedrich Karl

Who was the first Finnish king?
Context: (...) 130/134



Modularization with transferability
3. Inference with cross-lingual transfer

18. Juli 64 n. Chr

Wann wurde Rom niedergebrannt?
Context: (...) 131/134
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Modularization with transferability
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This will not work if
● Modules still learn task- or data-specific features
● Sync points induce large performance gap in the base LMs
● ???
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