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Starting point

* Large language models (LLMs) are “black boxes”; how do they process language?

Model interpretation
(“BERTology”)

- => - => -




Starting point

* Common interpretation: LLMs have internal linguistic representations

“Our goal is to design a simple method for testing whether a neural network embeds each
sentence’s dependency parse tree in its contextual word representations — a structural
hypothesis.” (Hewitt & Manning, 2019, 4129-4130)

“Investigating how BERT represents syntax, we describe evidence that attention matrices
contain grammatical representations.” (Coenen et al., 2019, 8592)

“In this work, we investigate the linguistic structure implicitly learned by BERT’s
representations.” (Jawahar et al., 2019, 3652)

“Another theme that emerges in several studies is the hierarchical nature of the learned
representations.” (Belinkov & Glass, 2019, 52)

“We propose a methodology and offer the first detailed analysis of BERT’s capacity to cap-
ture different kinds of linguistic information by encoding it in its self-attention

weights.” (Kovaleva et al., 2019, 4365)

“We find that the model represents the steps of the traditional NLP pipeline in an
interpretable and localizable way, and that the regions responsible for each step appear
in the expected sequence: POS tagging, parsing, NER, semantic roles, then coreference.”
(Tenney, Das, & Pavlick, 2019, 4593)




Starting point

* Common interpretation: LLMs have internal linguistic representations
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Abstract

Pre-trained text encoders have rapidly ad-
vanced the state of the art on many NLP
tasks. We focus on one such model, BERT,
and aim to quantify where linguistic informa-
tion is captured within the network. We find
that the model represents the steps of the tra-
ditional NLP pipeline in an interpretable and
localizable way, and that the regions respon-
sible for each step appear in the expected se-
quence: POS tagging, parsing, NER, semantic
roles, then coreference. Qualitative analysis
reveals that the model can and often does ad-
just this pipeline dynamically, revising lower-
level decisions on the basis of disambiguating
information from higher-level representations.

of the network directly, to assess whether there
exist localizable regions associated with distinct
types of linguistic decisions. Such work has pro-
duced evidence that deep language models can en-
code a range of syntactic and semantic informa-
tion (e.g. Shi et al., 2016; Belinkov, 2018; Ten-
ney et al., 2019), and that more complex structures
are represented hierarchically in the higher layers
of the model (Peters et al., 2018b; Blevins et al.,
2018).

We build on this latter line of work, focusing
on the BERT model (Devlin et al., 2019), and use
a suite of probing tasks (Tenney et al., 2019) de-
rived from the traditional NLP pipeline to quantify
where specific types of linguistic information are
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This paper explores the knowledge of linguistic structure learned
by large artificial neural networks, trained via self-supervision,
whereby the model simply tries to predict a masked word in a
given context. Human language communication is via sequences
of words, but language understanding requires constructing rich
hierarchical structures that are never observed explicitly. The
mechanisms for this have been a prime mystery of human
language acquisition, while engineering work has mainly pro-
ceeded by supervised learning on treebanks of sentences hand
labeled for this latent structure. However, we demonstrate that
modern deep contextual language models learn major aspects
of this structure, without any explicit supervision. We develop
methods for identifying linguistic hierarchical structure emer-
gent in artificial neural networks and demonstrate that com-
ponents in these models focus on syntactic grammatical rela-
tionships and anaphoric coreference. Indeed, we show that a
linear transformation of learned embeddings in these models
captures parse tree distances to a surprising degree, allowing
approximate reconstruction of the sentence tree structures nor-
mally assumed by linguists. These results help explain why these
models have brought such large improvements across many
language-understanding tasks.

own supervised learning problems by choosing to interpret some
of the data as a “label” to be predicted.! The canonical case
for human language is the language-modeling task of trying
to predict the next word in an utterance based on the tempo-
rally preceding words (Fig. 2). Variant tasks include the masked
language-modeling task of predicting a masked word in a text
[a.k.a. the cloze task (11)] and predicting the words likely to
occur around a given word (12, 13). Autoencoders (14) can
also be thought of as self-supervised learning systems. Since no
explicit labeling of the data is required, self-supervised learning
is a type of unsupervised learning, but the approach of self-
generating supervised learning objectives differentiates it from
other unsupervised learning techniques such as clustering.

One might expect that a machine-learning model trained to
predict the next word in a text will just be a giant associa-
tional learning machine, with lots of statistics on how often the
word restaurant is followed by kitchen and perhaps some basic
abstracted sequence knowledge such as knowing that adjectives
are commonly followed by nouns in English. It is not at all clear
that such a system can develop interesting knowledge of the lin-
guistic structure of whatever human language the system is trained
on. Indeed, this has been the dominant perspective in linguis-



Challenge

* Common interpretation: LLMs have internal linguistic representations

* Problems:
1. What does this really mean?
2. How to determine what kinds of representations (if any) LLMs have?



Challenge

* Common interpretation: LLMs have internal linguistic representations

* Problems:
1. What does this really mean?
2. How to determine what kinds of representations (if any) LLMs have?

* Historically, this is not how connectionist language models have usually been interpreted.



Eliminative vs. implementational connectionism

* Eliminative connectionism:

“(...) a reasonable account of the acquisition of past tense can be provided without
recourse (...) to the notion of a ‘rule’ as anything more than a description of the language.
(...) The child need not figure out what the rules are, nor even that there are rules.”



Eliminative vs. implementational connectionism

* Eliminative connectionism:

“(...) a reasonable account of the acquisition of past tense can be provided without
recourse (...) to the notion of a ‘rule’ as anything more than a description of the language.
(...) The child need not figure out what the rules are, nor even that there are rules.”

* Implementational connectionism:

“(...) the way the overall output of one network feeds into the input of another would be
isomorphic to the structure of the symbol manipulations captured in the statements of rules.”



Eliminative vs. implementational connectionism

* Eliminative connectionism:

Input Output

* Implementational connectionism:

Qutput




Eliminative vs. implementational connectionism

“Whenever | fire a linguist our system performance improves” (attributed to Jelinek 1988)

Language Resources and Evaluation (2005) 39: 25-34 © Springer 2005
DOI 10.1007/510579-005-26934
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1. Introduction

This article concerns the relationship between linguistics and the work carried
out during 19721993 at IBM Research in automatic speech recognition (ASR)
and natural language processing (NLP). Many statements I will make will be
incomplete: I am not that conversant with the literature. I apologize to those
whom [ may offend. Conceivably it would have been much better to leave things
alone, stay silent. Hopefuily this journal will be willing to devote some of its

10



Eliminative vs. implementational connectionism

“Whenever | fire a linguist our system performance improves”

“Due to the otherwise opaque, black-box nature of [LLMs], researchers have employed

aspects of linguistic theory in order to characterize their behavior. Questions central to syntax
— the study of the hierarchical structure of language — have factored heavily into such work.”
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In the last half-decade, the field of natural language processing (NLP) has
undergone two major transitions: the switch to neural networks as the primary
modeling paradigm and the homogenization of the training regime (pre-
train, then fine-tune). Amidst this process, language models have emerged
as NLP's workhorse, displaying increasingly fluent generation capabilities and
proving to be an indispensable means of knowledge transfer downstream.
Due to the otherwise opaque, black-box nature of such models, researchers
have employed aspects of linguistic theory in order to characterize their
behavior. Questions central to syntax—the study of the hierarchical structure
of language—have factored heavily into such work, shedding invaluable
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Eliminative vs. implementational connectionism

* Ambiguity in interpreting claims concerning linguistic competence of LLMs:
1. LLMs have linguistic competence without internal linguistic representations
2. LLMs develop linguistic representations without innate linguistic competence

Large Language Models Demonstrate the Potential of
Statistical Learning in Language

Modern language models refute e | .
ablo Contreras Kallens, Ross Deans Kristensen-McLachlan, Morten H. Christiansen 3
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The rise and success of large language models undermines virtually every strong Abstract
claim for the innateness of language that has been proposed by generative linguis-
tics. Modern machine learning has subverted and bypassed the entire theoretical To what degree can language be acquired from linguistic input alone? This question has
framework of Chomsky’s approach, including its core claims to particular insights, vexed scholars for millennia and is still a major focus of debate in the cognitive science of
principles, structures, and processes. I describe the sense in which modern lan- language. The complexity of human language has hampered progress because studies of
guage models implement genuine theories of language, including representations language-especially those involving computational modeling-have only been able to deal
of syntactic and semantic structure. I highlight the relationship between contem- with small fragments of our linguistic skills. We suggest that the most recent generation
porary models and prior approaches in linguistics, namely those based on gradient of Large Language Models (LLMs) might finally provide the computational tools to
computations and memorized constructions. I also respond to several critiques of determine empirically how much of the human language ability can be acquired from
large language models, including claims that they can’t answer “why” questions, linguistic experience. LLMs are sophisticated deep learning architectures trained on vast
and skepticism that they are informative about real life acquisition. Most notably, amounts of natural language data, enabling them to perform an impressive range of
large language models have attained remarkable success at discovering grammar linguistic tasks. We argue that, despite their clear semantic and pragmatic limitations,
without using any of the methods that some in linguistics insisted were necessary LLMs have already demonstrated that human-like grammatical language can be acquired

without the need for a built-in grammar. Thus, while there is still much to learn about
how humans acquire and use language, LLMs provide full-fledged computational models
for cognitive scientists to empirically evaluate just how far statistical learning might take
us in explaining the full complexity of human language.

for a science of language to progress.



Probing

* Mapping embeddings of pre-trained LLMs to linguistic labels
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Probing

* Mapping embeddings of pre-trained LLMs to linguistic labels
* Typically supervised: labels obtained from human-made (or rule-based) annotations

dp(hi, h;) = (B(h; — h;))" (B(h; — hy))

ds: parse tree distance between tokens
hi: encoding of j:th token

h;: encoding of j:th token

B = probe parameter matrix

14



Probing

* Mapping embeddings of pre-trained LLMs to linguistic labels
* Typically supervised: labels obtained from human-made (or rule-based) annotations
* Parameter-free probing: unsupervised “bottom-up” alternative

f@i, x5) = d(Ho(x\{i} )i, Ho(x\{%i, 75} )i)

f. impact between two tokens — syntactic relation (dependency/phrase)
d = Euclidean distance

Ho(Xx)i: encoding of i:th token of input x (model parameters 0)

x\{xi}: input x with i:th token masked

x\{x;, xj}: input x with 7:th token masked

15



Probing

* Mapping embeddings of pre-trained LLMs to linguistic labels
* Typically supervised: labels obtained from human-made (or rule-based) annotations

* Parameter-free probing: unsupervised “bottom-up” alternative

Supervised: Parameter-free:
- I |
Ilnput |:> Output Ilnput |:> Output
. S
PN
NP/\VP NP VP
PN
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Papers

Buder-Grondahl (2023): “The ambiguity of BERTology: What do large language models represent?”
(published in Synthese)

Buder-Grondahl (in submission): “What does parameter-free probing really uncover?”
(submitted to ACL 2024)
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Ambiguity of BERTology

* Vehicle = concrete unit operated on in a computational system
* Content = interpretation of a vehicle

“dog”

18



Ambiguity of BERTology

* Vehicle = concrete unit operated on in a computational system

* Content = interpretation of a vehicle

vehicle-
properties

—>

”

“dog

starting with “d”
ending with “g”
having 3 letters

(...)

being an animal
having a tail
having 4 legs
(...)

<« content-
properties

19



Ambiguity of BERTology

* Vehicle = concrete unit operated on in a computational system
* Content = interpretation of a vehicle

* Individuation of vehicles
1. by vehicle-properties: word that begins with “d”, ends with “g”, (...)
2. by content-properties: word that means a certain animal that has a tail, 4 legs (...)

20



Ambiguity of BERTology

Vehicle = concrete unit operated on in a computational system
Content = interpretation of a vehicle

Individuation of vehicles
1. by vehicle-properties: word that begins with “d”, ends with “g”, (...)
2. by content-properties: word that means a certain animal that has a tail, 4 legs (...)

Linguistic representation = vehicle individuated by some linguistic property
* BERTology: vehicles are LLM-states

* Linguistic properties: categories (e.g. part-of-speech), relations (e.g. dependency),
structures (e.g. phrases)
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Ambiguity of BERTology

Vehicle = concrete unit operated on in a computational system
Content = interpretation of a vehicle

Individuation of vehicles
1. by vehicle-properties: word that begins with “d”, ends with “g”, (...)
2. by content-properties: word that means a certain animal that has a tail, 4 legs (...)

Linguistic representation = vehicle individuated by some linguistic property
* BERTology: vehicles are LLM-states

* Linguistic properties: categories (e.g. part-of-speech), relations (e.g. dependency),
structures (e.g. phrases)

Are linguistic representations individuated by vehicle-properties or content-properties?

22



Ambiguity of BERTology

* Vehicle reading: linguistic representations are individuated by their linguistic vehicle-properties
* Content reading: linguistic representations are individuated by linguistic contents

23



Ambiguity of BERTology

* Vehicle reading: linguistic representations are individuated by their linguistic vehicle-properties
* Content reading: linguistic representations are individuated by linguistic contents

* Content reading is intuitive, but contrasts ubiquitous assumptions of formal linguistic theory
* Typical idea: representational content is based on information picked up from the data
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Ambiguity of BERTology

* Vehicle reading: linguistic representations are individuated by their linguistic vehicle-properties
* Content reading: linguistic representations are individuated by linguistic contents

* Content reading is intuitive, but contrasts ubiquitous assumptions of formal linguistic theory

* Typical idea: representational content is based on information picked up from the data
* Such information must be in the data to begin with

* But abstract syntax does not reduce to properties of linear strings

25



Ambiguity of BERTology

* Vehicle reading: linguistic representations are individuated by their linguistic vehicle-properties
* Content reading: linguistic representations are individuated by linguistic contents

* Content reading is intuitive, but contrasts ubiquitous assumptions of formal linguistic theory

* Typical idea: representational content is based on information picked up from the data
* Such information must be in the data to begin with

* But abstract syntax does not reduce to properties of linear strings

“syntax determines units of combined lexical items that are not identifiable or individuated in
terms of linear order or any other perceptible property associated with morphophonemic form.”

“the perspective in [Chomsky (1975)] is top-down rather than bottom up. (...) the ‘representations’
are not derived from the utterance.”

26



Ambiguity of BERTology

* Vehicle reading: linguistic representations are individuated by their linguistic vehicle-properties
* Content reading: linguistic representations are individuated by linguistic contents

* Content reading is intuitive, but contrasts ubiquitous assumptions of formal linguistic theory

* Typical idea: representational content is based on information picked up from the data
* Such information must be in the data to begin with

* But abstract syntax does not reduce to properties of linear strings
* Accepting abstract syntax makes claims of its representation by LLMs trivially false
* ...But rejecting abstract syntax also makes such claims trivially false (eliminativism)
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Ambiguity of BERTology

* Vehicle reading: linguistic representations are individuated by their linguistic vehicle-properties

* Content reading is intuitive, but contrasts ubiquitous assumptions of formal linguistic theory

* Typical idea: representational content is based on information picked up from the data
* Such information must be in the data to begin with

* But abstract syntax does not reduce to properties of linear strings
* Accepting abstract syntax makes claims of its representation by LLMs trivially false
* ...But rejecting abstract syntax also makes such claims trivially false (eliminativism)
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Ambiguity of BERTology

* Vehicle reading: linguistic representations are individuated by their linguistic vehicle-properties

* Vehicle-reading succumbs to a different triviality problem
* Basic idea: LLM-state somehow realizes abstract linguistic structure

“John saw Mary” trlgﬂers

Y

Representation
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Ambiguity of BERTology

* Vehicle reading: linguistic representations are individuated by their linguistic vehicle-properties

* Vehicle-reading succumbs to a different triviality problem
* Basic idea: LLM-state somehow realizes abstract linguistic structure

(13 ”

* But abstract structures are not literally “in” concrete systems — more indirect relation needed

“We don’t have sets in our heads. So you have to know that when we develop a theory about
our thinking, about our computation, internal processing and so on in terms of sets, that it's
going have to be translated into some terms that are neurologically realizable.”
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Ambiguity of BERTology

* Vehicle reading: linguistic representations are individuated by their linguistic vehicle-properties

* Vehicle-reading succumbs to a different triviality problem
* Basic idea: LLM-state somehow realizes abstract linguistic structure

* But abstract structures are not literally “in” concrete systems — more indirect relation needed
* Mapping concrete vehicles to abstract structures
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John saw Mary 99 » Representation
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Ambiguity of BERTology

* Vehicle reading: linguistic representations are individuated by their linguistic vehicle-properties

* Vehicle-reading succumbs to a different triviality problem
* Basic idea: LLM-state somehow realizes abstract linguistic structure
* But abstract structures are not literally “in” concrete systems — more indirect relation needed
* Mapping concrete vehicles to abstract structures
* But mapping theories of computational implementation have well-known triviality problems
* Any sufficiently complex system can be mapped to abstract structures

* Anything can be mapped to finite-storage computation

32



Ambiguity of BERTology

* The mapping account could be salvaged by considering explanatory virtues of different mappings
* Abstract formalisms are used for surrogative reasoning about concrete systems

Example — An Adder
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Ambiguity of BERTology

The mapping account could be salvaged by considering explanatory virtues of different mappings
Abstract formalisms are used for surrogative reasoning about concrete systems

Some formalisms yield better surrogative reasoning than others

BERTology: find formalism that yields best surrogative reasoning about LLMs

Example — An Adder

34



Ambiguity of BERTology

* Supervised probing is insufficient for this:
* What are the LLM-internal states that best predict formalism F?

Output

NP Vp
Probe
> PN
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Ambiguity of BERTology

* Supervised probing is insufficient for this:
* What are the LLM-internal states that best predict formalism F?
VS.
What is the formalism F* that best predicts the LLM-internal pipeline?

I Input l:'|>

Output

NP Vp
Probe
> PN
\) NP




Parameter-free probing

* More “bottom-up” than supervised probing: has potential to mitigate some of the issues
* What kind of a grammatical representation is generated from the LLM?

Output




Parameter-free probing

* More “bottom-up” than supervised probing: has potential to mitigate some of the issues
* What kind of a grammatical representation is generated from the LLM?

* Replicated perturbed masking results , compared BERT-derived parses to
Universal Dependencies (UD) in the English Parallel Universal Dependencies (PUD) treebank
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Parameter-free probing

* More “bottom-up” than supervised probing: has potential to mitigate some of the issues
* What kind of a grammatical representation is generated from the LLM?

* Replicated perturbed masking results , compared BERT-derived parses to
Universal Dependencies (UD) in the English Parallel Universal Dependencies (PUD) treebank

“In fact, there is actually no guarantee that our probe will find a strong correlation with
human-designed syntax, since we do not introduce the human-designed syntax as
supervision. What we found is the ‘natural’ syntax inherent in BERT, which is acquired
from self-supervised learning on plain text.”

39



Parameter-free probing

UD: [

then

BERT:

,' advmod }
—e—— @—l

the commercial ends

then

/ —

the commercial ends
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Parameter-free probing

UD: ladvmod

then the commercial ends

BERT:

[ —

then the commercial ends

Dep(x): deprel assigned to x by UD
Headyp(x): head assigned to by UD
Headpgrr(x): head assigned to by BERT
Hy(xz) = Dep(Headyp(x))

Hp(x) = Dep(Headpgrr(x))

41



Parameter-free probing

UD: ', advmod}
then commercial ends

BERT:

[ —

then commercial ends

Dep(x): deprel assigned to x by UD
Headyp(x): head assigned to by UD
Headpgrr(x): head assigned to by BERT

Hy(xz) = Dep(Headyp(x))
Hp(x) = Dep(Headpgrr(x))

Dep(the) = det,
Hyj(the) = nsubj,
Hp(the) = root

42



Parameter-free probing

* Analyzed all dependent-head shifts between UD and BERT, focusing on:
* verbal argument structure

* noun phrase structure
* adjective/adverb modifiers
* prepositional phrases
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Parameter-free probing

* Analyzed all dependent-head shifts between UD and BERT, focusing on:
* verbal argument structure

* noun phrase structure
* adjective/adverb modifiers
* prepositional phrases

* General results
* Shift ratio: 58%

* 80% of Dep-types had a shift rate over 50%
* Most common Hs: root (35% of all shifts)

44



Parameter-free probing

* BERT systematically over-assigned the root verb as a head
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Parameter-free probing

* BERT systematically over-assigned the root verb as a head
* of embedded clause arguments

that ’S not what we

need
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Parameter-free probing

* BERT systematically over-assigned the root verb as a head
* of embedded clause arguments
* of determiners

there was a time

47



Parameter-free probing

* BERT systematically over-assigned the root verb as a head
* of embedded clause arguments
* of determiners
 of adjective/adverb modifiers

this will put new limits

on (...)
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Parameter-free probing

* BERT systematically over-assigned the root verb as a head
* of embedded clause arguments
* of determiners
 of adjective/adverb modifiers

* This behavior is:
* non-recursive: no proper embedding
* linguistically incoherent in any prominent theoretical framework

49



Summary

* BERTology has committed to representational realism (implementational connectionism)
* This is ambiguous between vehicle- and content-readings of “linguistic representation”
* Content-reading makes representation-claims of abstract syntax trivially false
* Vehicle-reading succumbs to the triviality-problem in mapping accounts of implementation

* Vehicle-reading could be salvaged: which formalism has optimal theoretical virtues for LLMs?

* Supervised probing is too weak to establish this: linguistic analysis is presupposed
* Parameter-free probing is more “bottom-up”, but yields linguistically incoherent results
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Summary

* BERTology has committed to representational realism (implementational connectionism)
* This is ambiguous between vehicle- and content-readings of “linguistic representation”
* Content-reading makes representation-claims of abstract syntax trivially false
* Vehicle-reading succumbs to the triviality-problem in mapping accounts of implementation

* Vehicle-reading could be salvaged: which formalism has optimal theoretical virtues for LLMs?
* Supervised probing is too weak to establish this: linguistic analysis is presupposed
* Parameter-free probing is more “bottom-up”, but yields linguistically incoherent results

Is human grammar an appropriate analogy for LLMs after all?

51
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Extra slides: result tables

Dep Hy Ratio Count i

root 024 198 Dep Hy  Ratio Count

acl:relcl  0.81 140 Om 0.52 261

subi ccomp  0.92 101 obj _ 0.67 253
) advel 079 80 nsubj  0.54 208
conj | 0.83 68 det nmo.d 0.49 191

parataxis  0.64 46 conj 0.57 44

root 0.29 38 nsubj:pass  0.54 43

nsubj:pass aclrelcl  0.94 32 nmod:poss  0.64 23
advcl 0.91 21 appos 0.68 21

advcl 0.66 86 obj 0.70 56

xcomp  0.75 82 amodposs  M0d 072 5

aclirelcl  0.78 58 ' obl 0.58 54

obj conj 0.66 58 nsubj 0.70 53
acl 0.73 52 —— obl 0.69 55

root  0.15 47 HIO nmod  0.71 25

ccomp 0.73 29

Table 2: Determiners, possessors, and numerals.
Table 1: Verbal argument structure: subjects and objects.
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Dep Hy Ratio Count
obj 0.62 151
obl 0.52 151
nmod 0.53 132
amod nsubj 0.53 118 Dep HU Ratio Count
conj 0.63 56
nsubj:pass  0.52 29 obl 0.72 877
compound  0.57 21 case nmod 0.73 783
root 0.18 57 nmod:poss .83 85
conj 0.62 53
advcl 0:72 51 root 0.47 283
aclirezcl 8- Zg ;lg acl:relcl 0.97 117
amo .
advmed advmod 0.71 32 advcl 0.95 92
nummod  0.75 27 acl 0.93 388
ccomp 0.68 27 obl COIlj 0.91 90
obl 0.72 21
xcomp 0.72 21 xcomp 0.95 89
obl 0.88 243 ccomp 0.96 50
obj 0.89 202

nsubj 0.87 163 parataXiS 096 25

nmod 0.84 127
conj 0.88 59 Table 4: Prepositional phrases.
nsubj:pass  0.83 34
appos 0.85 23
root 0.38 20

nmod

Table 3: Adjectival, adverbial, and nominal modifiers. 55



Extra slides: result tables

Dep Ratio Count
case 0.7251 1799
punct 0.5135 1252
det 0.5433 1105
nmod 0.8500 912
obl 0.7082 869
amod 0.5402 719
nsubj 0.4683 650
compound 0.6675 538
conj 0.8176 511
mark 0.7964 442
obj 0.5011 438
cc 0.7615 431
advmod 0.5035 426
nmod:poss  0.6703 244
advcl 0.7158 209
aux 0.4474 183
aclirelcl 0.8483 179
xcomp 0.5815 157
nummod 0.6071 153
nsubj:pass 0.5720 135
acl 0.6895 131
appos 0.8310 118
flat 0.4978 114
cop 0.3270 103
ccomp 0.7259 98
aux:pass 0.2915 79
parataxis 0.5979 58
fixed 0.5243 54
root 0.0363 36
compound:prt  0.4714 33
nmod:tmod  0.6667 26
csubj 0.5926 16
expl 0.2459 15
oblinpmod  0.7000 14
obl:tmod 0.6111 11
nmod:npmod  0.5263 10
det:predet 0.8889 8
cc:preconj 0.5455 6
csubj:pass 1.0000 3
dislocated 1.0000 2
reparandum  1.0000 1
discourse 1.0000 1
iobj 0.1000 1

Table 6: All dependency-head shifts ordered by Dep
(“Ratio”: ratio of shifts from all tokens with the Dep).

Hy Ratio Count
obl 0.6802 2048
root 0.2664 1694
nmod 0.6788 1655
conj 0.7654 1292
obj 0.7283 946
nsubj 0.6651 872

advel 0.7791 663
aclrelel 0.8109 579
xcomp 0.8168 495
ccomp 0.8327 458
acl 0.7762 281
appos 0.7301 238
parataxis 0.7409 223
nsubj:pass  0.6494 176
amod 0.7368 140
nmod:poss  0.7707 121
compound  0.6289 100
advmod 0.7810 82

csubyj 0.7703 57
nummod 0.8036 45
flat 0.8276 24

cc 0.8750 14

oblmpmod  0.6667 14
obl:tmod 0.5833 14
csubj:pass  (0.8667 13

mark 0.6000 9
nmod:tmod  0.2857 8
case 0.1591 7
dislocated 1.0000 G
nmod:npmod  0.8571 6
iobj 0.8333 5

dep 1.0000 2

det 0.6667 2

1

ccipreconj 1.0000

Table 7: All dependency-head shifts ordered by Hys

(“Ratio™: ratio of shifts from all tokens with the Hy).

Hp Ratio Count
root 0.4763 4244
case 0.9684 1135
amod 0.9386 764
compound 0.9107 602
nsubj 0.5525 542
obl 0.3431 503
nmod 0.3771 474
det 0.9978 453
punct 1.0000 404
obj 0.5306 399
advmod 0.9425 377
cc 0.9936 310
conj 0.4107 276
mark 0.9636 159
nummod 0.9341 156
advcl 0.4519 155
cop 1.0000 122

nsubj:pass 0.5622 122
nmod:poss  0.7707 121

aux 1.0000 119
xcomp 0.5174 119
acl 0.5622 104
flat 0.9533 102

aux:pass 1.0000 92
acl:relcl 0.3571 75
parataxis 0.4621 67
ccomp 0.3907 59
appos 0.3931 57
fixed 1.0000 55
compound:prt  1.0000 33
nmod:tmod  0.5455 24
expl 1.0000 14
obl:npmod  0.6316 12
det:predet 1.0000
nmod:npmod  0.9000
csubj 0.3462
ceipreconj 1.0000
obl:tmod 0.2308
reparandum  0.6667
dislocated 1.0000
discourse 1.0000
vocative 1.0000
csubj:pass 0.3333

H R PPN WR O oo

Table 8: All dependency-head shifts ordered by Hp
(“Ratio™: ratio of shifts from all tokens with the Hg).
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Dep-Hy-Hpg shift (count)

case-obl-root (521)
det-obj-root (141)
punct-root-obl (117)
det-nmod-case (100)
mark-xcomp-root (87)
nmod-obj-root (83)
case-nmod-nmod (73)
amod-obj-root (64)
case-nmod:poss-root (56)
case-obl-acl (52)
punct-root-punct (45)
compound-obl-root (44)
obl-acl-root (43)
obl-conj-root (41)
punct-root-nmod (38)
obl-root-compound (38)
nummod-obl-root (36)
obj-xcomp-root (35)
case-obl-advcl (33)
nmod-obj-case (32)
nmod-nmod-case (31)
punct-appos-root (30)
case-nmod-det (29)
cc-conj-obl (27)
det-nmod-root (26)
det-nmod-compound (25)
nsubj-conj-root (25)
obl-root-nmod (24)
nmod:poss-nmod-case (23)
det-obj-amod (22)
cc-conj-nmod (22)
nmod-nsubj-case (21)
obj-acl:relcl-root (21)
case-obl-xcomp (20)
compound-nmod-case (20)

case-nmod-root (231)
det-nsubj-root (134)
nmod-obl-root (107)
case-nmod-obj (99)

nmod-nsubj-root (85)

punct-root-nsubj (79)

det-obl-amod (66)
det-obl-root (62)
nmod-nmod-root (54)
nsubj-acl:relcl-root (52)
compound-nsubj-root (45)
compound-nmod-root (43)
obl-acl:relcl-root (43)
amod-obj-det (40)

amod-nmod-root (38)

nsubj-advcl-root (37)
punct-root-parataxis (35)
punct-conj-conj (35)
case-obl-conj (33)
det-nmod-amod (31)
nsubj-root-compound (31)

case-obl-acl:relcl (30)
det-nsubj-amod (28)

punct-conj-nmod (26)

det-obj-advcl (26)
nmod-conj-root (25)
obj-acl-root (25)
conj-nsubj-root (24)
nmod:poss-nsubj-root (23)
obl-acl:relcl-case (22)
advmod-advcl-root (22)
obl-root-nummod (21)
acl-obj-root (21)

nmod-obl-amod (20)
obl-ccomp-root (20)

cc-conj-root (191)
case-nmod-obl (122)
det-obl-case (101)
obl-root-case (97)
mark-advcl-root (84)
case-nmod-nsubj (79)
nsubj-ccomp-root (66)
amod-obl-root (61)
punct-root-advmod (53)
amod-nsubj-root (49)
mark-ccomp-root (44)
obl-xcomp-root (43)
punct-conj-cc (41)
obl-root-amod (40)
obl-advcl-root (38)
obj-advcl-root (36)
nsubj-root-amod (35)
nmod-obl-case (34)
punct-conj-root (32)
amod-nmod-case (31)
nmod:poss-obl-case (31)
conj-nmod-root (30)
nmod-obj-amod (28)
case-nmod-conj (26)

nmod-obl-compound (26)

compound-obj-root (25)
det-nsubj:pass-root (24)
amod-obl-det (23)
punct-conj-obl (22)
nsubj-root-case (22)
conj-nmod-cc (22)
flat-nsubj-root (21)
punct-root-det (20)
compound-obl-det (20)

Table 9: Dep—H;—H p shifts and their counts (minimum count: 20).
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