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}}[ my infancy, the first objects I can remember as
standing out by themselves from a confusion of
things, are my mother and Peggotty. What else do I
remember? Let me@ P e /‘/\l{/\l{ryl —
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new to me, but quite familiar, in its earliest remem- |
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ing about, in a menacing and ferocious manner.
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Janicke et al. (2015). On Close and Distant Reading in Digital Humanities: A Survey and Future Challenges.
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Uncovering Probabilistic Implications in Typological Knowledge Bases

Johannes Bjerva® Yova Kementchedjhieva® Ryan Cotterell’® Isabelle Augenstein®
°Department of Computer Science, University of Copenhagen
"Department of Computer Science, Johns Hopkins University
iDepartment of Computer Science and Technology, University of Cambridge
bjerva, yova, augenstein@di.ku.dk, rdc42@cam.ac.uk

Abstract

The study of linguistic typology is rooted in
the implications we find between linguistic
features, such as the fact that languages with
object-verb word ordering tend to have post-
positions. Uncovering such implications typi-
cally amounts to time-consuming manual pro-
cessing by trained and experienced linguists,
which potentially leaves key linguistic univer-
sals unexplored. In this paper, we present a

Figure 1: Visualisation of a section of our induced
graphical model. Observing the features in the left-
most nodes (SV, OV, and Noun-Adjective), can we cor-

A Probabilistic Generative Model of Linguistic Typology

Johannes Bjerva® Yova Kementchedjhieva® Ryan Cotterell”f Isabelle Augenstein®
°Department of Computer Science, University of Copenhagen
"Department of Computer Science, Johns Hopkins University
iDepartment of Computer Science and Technology, University of Cambridge
bjerva,yova,augenstein@di.ku.dk, rdcd42@cam.ac.uk

Abstract

In the principles-and-parameters framework,
the structural features of languages depend
on parameters that may be toggled on or off,
with a single parameter often dictating the
status of multiple features. The implied co-
variance between features inspires our prob-
abilisation of this line of linguistic inquiry—
we develop a generative model of language

ositions Word order Affixation
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What is linguistic typology?

“the classification of the world’s languages according to similarities
and differences in their linguistic structures and genetic
relationships.”

“Language typology, therefore, is essentially comparative and
crosslinguistic.”

Kashyap, A. K. (2019). Language typology. The Cambridge handbook of systemic functional linguistics, 767-792.



‘Universals’

« “Some universals of grammar with particular reference to
the order of meaningful elements” (1963)

« 45 linguistic universals

« Universal 3: “Languages with dominant VSO order are
always prepositional.”

Joseph Greenberg

Greenberg, J. H. (1963). Some universals of grammar with particular reference to the order of meaningful elements. Universals of language, 2, 73-113.



Language sampling

“a general theory of grammar must provide a framework
for all languages and not just for, say, Dutch or English.
These are just two manifestations of possible languages,
and there is no reason to assume a priori that by studying
one or two languages we can account for linguistic
phenomena in every other language as well.”

Rijkhoff, J., Bakker, D., Hengeveld, K., & Kahrel, P. (1993). A method of language sampling. Studies in Language. 17(1), 169-203.



Language sampling

Three types of sampling methods (Rijkhoff & Bakker, 1998):

 Random sampling

Rijkhoff, J., & Bakker, D. (1998). Language sampling. Linguistic Typology, 2(3), 263-314.
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« Languages should be as independent as possible
« Sample from different families, locations, efc.
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Language sampling

Three types of sampling methods (Rijkhoff & Bakker, 1998):

 Random sampling

* Probability sampling
« Languages should be as independent as possible
« Sample from different families, locations, efc.

« Variety sampling
» The sample should include the rarest cases
« Exceptional properties should be captured, rule out counterexamples

Rijkhoff, J., & Bakker, D. (1998). Language sampling. Linguistic Typology, 2(3), 263-314.



Typological Databases

A grammar of
Kalamang

Eline Visser

A gra
LET mlnggar of

Eline Vigge,

A gra
Ka/am'g%af of A grammar of

Kalamang

Eline Vigge,

Eline Visser

________________________________________________________________________________________________________________________________________________________________________________________________________
Visser, E. (2022). A grammar of Kalamang. Language Science Press.
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Typological Databases

«

Matthew S. Dryer. 2013. Order of Object and Verb. In: Dryer, Matthew S. & Haspelmath, Martin (eds.) WALS Online (v2020.3) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7385533



Typological Databases

grambank Home Features Languages and dialects People

Welcome to Grambank

Grambank was constructed in an international collaboration between the Max Planck institutes in Leipzig and Nijmegen, the e
Australian National University, the University of Auckland, Harvard University, Yale University, the University of Turku, Kiel Q\Q P
University, Uppsala University, SOAS, the Endangered Languages Documentation Programme, and over a hundred scholars Q b g
from around the world. Grambank is designed to be used to investigate the global distribution of features, language universals, f} {
functional dependencies, language prehistory and interactions between language, cognition, culture and environment. The \" /
Grambank database currently covers 2,467 language varieties, capturing a wide range of grammatical phenomena in 195 @
features, from word order to verbal tense, nominal plurals, and many other well-studied comparative linguistic variables. =
Grambank's coverage spans 215 different language families and 101 isolates from all inhabited continents. The aim is for T -
Grambank to ultimately cover all languages for which a grammar or sketch grammar exists. Grambank is part of Glottobank, a "; %". f;
research consortium that involves work on complementary databases of lexical data, paradigms, numerals and sound patterns in o, =
the world's languages. Grambank can be used in concert with other databases, such as those in Glottobank and D-PLACE, to /,1* \
deepen our understanding of our history and communicative capabilities. ‘ N
2 : . \\l
How to cite Grambank
—_— _— . '
Please see instructions here: https://github.com/grambank/grambank/wiki/Citing-grambank )/ u e q \
Data availability e
Statistics
The current release version of the Grambank data can be downloaded from https://doi.org/10.5281/zenodo.7740139
Grambank is a part of the Cross-Linguistic Linked Data-project (CLLD). As such, there will continuously be new versions Languages ol
released. As with all CLLD-databases, it is important that you note down what version you have used in any analysis of the Features 195
Cotaser Datapoints 441,663 (362,025 excl. "not known")

Funding

Grambank is a publication of the Department of Linguistic and Cultural Evolution at the Max Planck Institute for Evolutionary
Anthropology, Leipzig. Additional funding was provided by the Max Planck Institute for Psycholinguistics in Nijmegen and a
Royal Society of New Zealand Marsden grant (UOA1308) to Quentin Atkinson and Russell Gray, and an Australian Research
Council Centre of Excellence Grant (CE140100041) for the ARC Centre of Excellence for the Dynamics of Language. The data
L furniched hv tha Hiintar-Gatharar | anniiane Natahace was aiinnnrtad hv Natinnal Seience Fniindatinn arant HSN-NAN2114 |

Skirgard, Hedvig et al. (2023). Grambank v1.0 (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7740140
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Features
Showing 1 to 100 of 195 entries «— Previous | 1 2  Next— n
2 Languages and
Id Feature Patron dialects Details
Search Search Search
GB020 Are there definite or specific articles? Jay Latarche 2198 ERVANTR
and Jeremy
Collins
GB021 Do indefinite nominals commonly have indefinite articles? Jay Latarche 2221 Values and
and Jeremy
Collins
GB022 Are there prenominal articles? Jay Latarche G \ajues and
and Jeremy
Collins
GB023 Are there postnominal articles? Jay Latarche 2205 VAN
and Jeremy
Collins
GB024 What is the order of numeral and noun in the NP? Hannah J. 2199 ERVARTP |
GB025 What is the order of adnominal demonstrative and noun? Jay Latarche 2259 VAN |
and Jeremy
Collins
GB026 Can adnominal property words occur discontinuously? Hannah J. 1771 Values and
GB027 Are nominal conjunction and comitative expressed by different elements? Hedvig Skirgard 1778 | VA ]

Skirgard, Hedvig et al. (2023). Grambank v1.0 (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7740140



Feature coverage

Typological Databases

Grambank

500
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S S
N N

?000

Languages

Skirgard, Hedvig et al. (2023). Grambank v1.0 (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7740140



Typological Databases

Grambank _____________[WALS

Comparable number of features and languages

More datapoints (higher coverage Fewer datapoints (lower coverage
per lang/feat) per lang/feat)

Mostly coded in binary values (“what Mostly coded in multi-value values
is possible?”) (“what is dominant?”)

“Care was taken to avoid strict
logical dependencies between
features”

Grammar Phonology, lexicon, sign languages,
‘other’, ...

Actively maintained No longer maintained




Typological Databases

“The scale, completeness, reliability, format, and
documentation of Grambank make it a useful resource for
linguistically-informed models, cross-lingual NLP, and
research targeting less-resourced languages.”

——
Grambank’s Typological Advances Support Computational Research on Diverse Languages (Haynie et al., SIGTYP 2023)
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Figure 1: Learning representations from mul-

tilingual neural MT for typology classification.
(Model MTBOTH)

“This work presents a more holistic analysis of
whether we can discover what neural networks
learn about the linguistic concepts of an entire
language by aggregating their representations over
a large number of the sentences in the language."

Learning Language Representations for Typology Prediction (Malaviya et al., EMNLP 2017)
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Syntax Phonology Inventory
-Aux +Aux | -Aux +Aux | -Aux +Aux

NONE 69.91 83.07 | 77.92 86.59 | 85.17 90.68
LMVEcC | 71.32 82.94 | 80.80 86.74 | 87.51 89.94
MTVEC | 7490 83.31 | 82.41 87.64 | 89.62 90.94
MTCELL | 7591 85.14 | 84.33 88.80 | 90.01 90.85
MTBoTH | 77.11 86.33 | 85.77 89.04 | 90.06 91.03

Table 1:  Accuracy of syntactic, phonological,
and inventory features using LM language vec-
tors (LMVEC), MT language vectors (MTVEC),
MT encoder cell averages (MTCELL) or both
MT feature vectors (MTBOTH). Aux indicates
auxiliary information of geodesic/genetic nearest
neighbors; “NONE -Aux” is the majority class
chance rate, while “NONE +Aux” 1s a 3-NN clas-
sification.

Learning Language Representations for Typology Prediction (Malaviya et al., EMNLP 2017)
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Table 1:  Accuracy of syntactic, phonological,

and inventory features using LM language vec-
tors (LMVEC), MT language vectors (MTVEC),
MT encoder cell averages (MTCELL) or both
MT feature vectors (MTBOTH).
auxiliary information of geodesic/genetic nearest
neighbors; “NONE -Aux” is the majority class
chance rate, while “NONE +Aux” 1s a 3-NN clas-

sification.
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Learning Language Representations for Typology Prediction (Malaviya et al., EMNLP 2017)
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Ostling & Kurfali (2023): Linguistically Sound Cross-validation

* Do not train and then test on languages from the same family, macroarea and consider long-distance
contact

« Minimize the impact of lexical similarity through family-wise Monte Carlo sampling
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Ostling, R., & Kurfali, M. (2023). Language embeddings sometimes contain typological generalizations. Computational Linguistics, 49(4), 1003-1051
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Probing classifiers:

Internal . pe External
. — Classifier  —— .
Representations Properties

Hewitt & Liang (2019): Designing and Interpreting Probes with Control Tasks
» Do the representations encode linguistic structure or does probe just learn the linguistic task?

« Control tasks
« “Agood probe should be selective, achieving high linguistic task accuracy and low control task

accuracy.”

Designing and Interpreting Probes with Control Tasks (Hewitt & Liang, EMNLP-IJCNLP 2019)
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Typologically fair multilingual evaluation

A Call for Consistency in Reporting Typological Diversity

Wessel Poelman®  Esther Ploeger'® Miryam de Lhoneux®  Johannes Bjerva®
‘Depanmenl of Computer Science, KU Leuven, Belgium
®Department of Computer Science, Aalborg University, Denmark
{wessel.poelman,miryam.delhoneux}@kuleuven.be {espl, jbjerva)@cs.aau.dk

1 Introduction

In order to draw generalizable conclusions about
the performance of multilingual models across lan-
guages, it is important to evaluate on a set of lan-
guages that captures linguistic diversity. Linguistic
typology is increasingly used to justify language

lection, inspired by | pling in linguis-
tics (c.g., Rijkhoff and Bakker, 1998). In other
words, more and more papers suggest generaliz-
ability by evaluating on “typologically diverse lan-
guages' (see Figure 1). However, justifications for
“typological diversity’ exhibit great variation, as

m ||||
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‘
o n I III

&I

Yewr of putiisation
Figure I: Number of papers in the ACL Anthology
claiming a ‘typol Ily diverse’ set of L over

A

there seems to be no set defini Y
or link to li ic typol In this
work, we provide a systematic insight into how pre-
vious work in the ACL Anthology uses the term
‘typological diversity'. Our two main findings are:

1. What 1s meant by typologically diverse lan-
guage sclection is not consistent.

2. The actual typological diversity of the lan-
guage scts in these papers varies greatly.

We argue that, when making claims about ‘ty-
pological diversity’, an operationalization of this
should be included. A systematic approach that
quantifies this claim, also with respect to the num-
ber of languages used, would be cven better.

2 Systematic Annotation of Claims

We systematically investigate which papers make
claims regarding typological diversity, and which
languages they actually use. First, we retrieve’
all papers in the ACL Anthology that contain the
following scarch string in either the title or abstract:

* Equal contribution.

'Using the acl-anthology-py package:
https://github. con/mbol Imann/acl -anthology-py.
Papers retrieved on December 11, 2023

the years.

typological .+ 7diverse|
typological .+7diversity|
diverse.+?typological

Examples of this are not only typelogically di-
verse, but also typologically maximally diverse lan-
guage and rypologically and genetically diverse
languages. In total, this retrieves 140 papers, with
the carliest being published in 2002, and the most
recent being published in 2023. It contains papers
from conferences (c.g., *ACL, EMNLP), journals
(e.g.. TACL, CL) and workshops (e.g.. SIGTYP,
SIGMORPHON).

We manually annotate whether these papers con-
tain a claim regarding the typological di of
their | An ple of such a
claim 1s: “we evaluate on a set of ten typologically
diverse languages™ (Pimentel et al., 2020). A paper
does not make a claim if it describes related work
that claims to use ‘a diverse typological test set’,
for instance. Our annotation is done separately by
two annotators (the first two authors). We calculate
inter-annotator agreement and retrieve a Cohen's x
of 0.64 (‘substantial agreement’). After resolving
the disagreements, we are left with 103 papers that

What is ‘Typological Diversity’ in NLP?

Esther Ploeger’'® Wessel Poelman™®  Miryam de Lhoneux®  Johannes Bjerva®
'Depanmenl of Computer Science, Aalborg University, Denmark
*Department of Computer Science, KU Leuven, Belgium
{espl, jbjerva}@cs.aau.dk {wessel.poelman,miryam.delhoneux}@kuleuven.be

Abstract

The NLP research community has devoted
increased attention to languages beyond En-
glish, resulting in considerable improvements
for multilingual NLP. However, these improve-
ments only apply to a small handful of the
world's languages. Aiming to extend this, an
increasing number of papers aspires to enhance

lizable multilingual ¢ across
languages. To this end, linguistic typology is
commonly used to motivate language selection,
on the basis that a broad typological sample
ought to imply generalization across a broad
range of languages. These selections are of-
ten described as being ‘typologically diverse’.
In this work, we systematically investigate
NLP research that includes claims regarding
‘typological diversity’. We find that there are
no set definitions or criteria for such claims. We
introduce metrics to approximate the diversity
of language selection along several axes and
find that the results vary considerably across
papers.  Furthermore, we show that skewed
language selection can lead to overestimated

ltilineual perfi We d that
future work includes an operationalization of
! I diversity’, ically justifying

yp
the diversity of language samples.
© github. com/WPoelman/typ-div

1 Introduction

Most rescarch in the field of natural language pro-
cessing (NLP) is conducted on the English lan-
guage (Ruder et al., 2022). Competitive monolin-
gual language modelling beyond English remains

hallenging, as current state-of-the-art methods rely
on the availability of large amounts of data, which
are not available for most other languages (Joshi
et al.,, 2020). This data sparsity can be d

Figure 1: Number of papers with ‘typological diversity”
claims published by year.

Despite the potential of multilingual language mod-
clling, thodol are pri devel-
oped for English. There clearly is no guarantee that
an approach that works for one language will work
equally well for others (Gerz et al., 2018). For in-
stance, logically complex 1 can be
over-segmented by current widely-used tokeniza-
tion methods (Rust et al., 2021). Evaluation on a
broad range of languages is important for drawing
more generalizable conclusions about the perfor-
mance of multilingual language technology. For
instance, including only morphologically simple
languages such as English can give an unrealistic
image of the effectiveness of a tokenization method,
simply because hol lly simple .
are generally casier to tokenize compared to com-
plex ones. Current work increasingly evaluates
models on multiple languages, but because of prac-
tical and data constraints, it is not realistic to test a
model on the thousands of languages in the world.
In order to still ensure a degree of generalizabil-
ity, pi work gnizes the imp of
diverse | Ponti et al. (2020) sug-

by leveraging cross-lingual transfer through the
training of a | model on multil | data.

gest that merely evaluating on a small set of similar

* Equal contribution.

1 is an method for estimating
a multilingual model’s performance, since such

A Principled Framework for Evaluating on
Typologically Diverse Languages
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Beyond individual languages, multilingual NLP research increasingly aims to develop models
that perform well across languages. However, evaluating these systems on all the world’s
languages is practically infeasible. To attain generalizability, representative language sampling
is essential. Previous work argues that generalizable multilingual evaluation sets should con-
tain languages with diverse typological properties. However, ‘typologically diverse’ language
samples have been found to vary considerably in this regard, and popular sampling methods
are flawed and inconsistent. We present a language sampling framework for selecting the most
typologically diverse languages given a sampling frame. Our approach accommodates multiple
sampling objectives from linguistic typology, and is evaluated with a range of metrics. We
find that our systematic sampling method consistently retrieves more typologically diverse
language selections than previous methods. Moreover, we provide additional evidence that this
affects generalizability in multilingual model evaluation, emphasizing the importance of diverse
language sampling.

1. Introduction

Multilingual natural language processing (NLP) has seen major improvements in the
last decade. Pre-trained language models such as multilingual BERT (Devlin et al. 2019),
XLM-R (Conneau et al. 2020) and mTS5 () facilitate cross-lingual transfer into languages
for which there are limited or no monolingual models available. This has made them
increasingly popular in few-shot or zero-shot scenarios. More recently, multilingual
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« Multilingual NLP increasingly aims at generalizability across languages

« Recent work implies generalizability by claiming to rely on linguistic typology

MASSIVE: A 1M-Example Multilingual Natural Language

Understanding Dataset with 51 Typologically-Diverse Languages TyD1 QA: A Benchmark for Information-Seeking Question Answering

in Typologically Diverse Languages

Jack FitzGerald* Christopher Hench Charith Peris
Scott Mackie . Eunsol Choi* Michael Collins* Dan Garrette*
Aaron Nash 1 i* Vitaly Nikolaev*” Jennimaria Palomaki**
Richa Singh Swe . . . . Google Research
TYDIP: A Dataset for Politeness Classification in R i qag@ google.con
Misha Britan w Nine Typologically Diverse Languages
Pr Ani .. . (Choi et al., 2018), and the Natural Questions
Abstract nirudh Srinivasan Eunsql Choi (NQ) (Kwiatkowski et al., 2019).
strac Depar tment .Of Computer SClenc.e nultilingual However, many people who might benefit from
We present the MASSIVE datasetd The University of Texas at Austin trustworthy QA systems do not speak English. The lan-
Multilingual Amazon Slu resource packag {anirudhs, eunsol}@utexas.edu —a question guages of the world exhibit an astonishing breadth
(SLURP) for Slot-filling, Intent classificatiol rpologically of linguistic phenomena used to express mean-
and Virtual assistant Evaluation. MASSIV] tion-answer ing; the World Atlas of Language Structures
contains 1M realistic, parallel, labeled virtug Abstract families. We follow the seminal work (Danescu- are diverse (Comrie and Gil, 2005; Dryer and Haspelmath,

aceictant utterances< snannine S1 lanocnaces | B, o AF AN AN ot AN 1 1 L., 10A
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« Multilingual NLP increasingly aims at generalizability across languages

« Recent work implies generalizability by claiming to rely on linguistic typology

“‘We evaluate on 12 typologically diverse languages.”

What does this mean?




Typologically fair multilingual evaluation

Data collection

1. Retrieve papers that contain typological diversity* in their title or abstract

2. Annotate whether the paper claims that a language set is typologically diverse. If so:
 Does it introduce a new dataset?
Which languages does it contain?

We retrieve 194 papers, of which 110 contain a claim of typological diversity.

Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is' Typological Diversity'in NLP?. arXiv preprint arXiv:2402.04222.
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A high-level overview
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Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is' Typological Diversity'in NLP?. arXiv preprint arXiv:2402.04222.
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Figure 4: Map of languages in all papers claiming ‘typological diversity’, where the hue corresponds number of
papers that uses a language. Coordinates are taken from WALS.

Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is' Typological Diversity'in NLP?. arXiv preprint arXiv:2402.04222.
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Justifications

No justification Genealogical groupings

(Some) typological features
as a proxy

Xu et al. (2022) aim
No information on the to cover “a

sampling criteria or
method

Jancso et al. (2020):
clustering with

typological databases

reasonable variety of
language families”

Often post-hoc

Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is' Typological Diversity'in NLP?. arXiv preprint arXiv:2402.04222.



Typologically fair multilingual evaluation

What about the actual ‘typological diversity’?

Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is' Typological Diversity'in NLP?. arXiv preprint arXiv:2402.04222.
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Approximations of typological diversity

| | |
0.0 0.1 0.2 03 04 05 06 07 08 09 10
Mean pairwise syntactic distance

| |
0.0 0.1 0.2 03 04 05 06 07 08 09 10
Grambank feature value inclusion

Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is' Typological Diversity'in NLP?. arXiv preprint arXiv:2402.04222.
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In the best* case
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Egyptian Arabic o
< French
Popt.i‘ Rl.lssian
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F.Ulan Mapudungun
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olloquia rta In. onfs1an English Hindi
San Miguel El Grande Mixtec Kal.aallisut .Georgian
Yagua ® ® Yaqui
Sanurr.lé B. Fi.nnish
asque ;o .
Burdicss Halh.Mongohan
Korean Turkish
° o
L]
Imbabura Highland Quichua

Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is' Typological Diversity'in NLP?. arXiv preprint arXiv:2402.04222.
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The more languages, the better?
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The more languages, the better?
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What does this mean for evaluation?

Strong Weak Equal Strong Weak Little
Subtask Model Overall By F A Pre Pre Pre & Suf Suf Suf Aff NA
MewslixX* XLM-R-L 4575 (11)  36.23 (11) 95527 -0 - (0) - (0) 47.86 (10) ~ 24.60(1) -(0) - (0)
ewsli- mBERT 3858 (11) 272911 | -1129 | -(0) -(0) -(0) 41.09 (10) 13.50 (1) - (0) -(0)
XLM-R 7924 (15)  76.54 (15) 270 | -0 7120 - () 80.06 (12) - (0) 78.35 (2) -(0)
XNLI* mBERT 66.51 (15)  60.17 (15) 635 | -(0) 4930() - (0) 68.60 (12) - (0) 62.60 (2) - (0)
mT5 84.85(15)  82.92(15) 1.92 | -0 80.60 () - (0) 85.57(12)  -(0) 82.60 (2) -(0)

Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is' Typological Diversity'in NLP?. arXiv preprint arXiv:2402.04222.
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When it comes to ‘typological diversity’ in NLP ...

« There are no set definitions or criteria
« There is no consistent link with linguistic typology
« According to our approximations, the actual typological diversity varies considerably

 This can affect downstream evaluation

Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is' Typological Diversity'in NLP?. arXiv preprint arXiv:2402.04222.
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Typologically fair multilingual evaluation

Ok... But how could we actually improve upon this?

“A Principled Framework for Evaluating on Typologically Diverse Languages”



Typologically fair multilingual evaluation

Task: Select a given number of languages from a sampling frame, such that we maximize
typological diversity

Bell, A. (1978). Language samples. Universals of human language, 1, 123-156.



Typologically fair multilingual evaluation

Task: Select a given number of languages from a sampling frame, such that we maximize
typological diversity

/ Sampling universe

I /
\ /

\ :
N \ Sampling frame // /
N S /
\\ \\~___—” 7

[ 9 -
~-——_——

Bell, A. (1978). Language samples. Universals of human language, 1, 123-156.
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Typologically fair multilingual evaluation

Linguistic typology (example):

» Goal: investigate relations between typological properties
 Resources: sample from diverse families and areas

« Sampling methods: random, variety or probability sampling

Multilingual NLP (example):

» Goal: see how well a language model performs on typologically diverse languages
 Resources: sample from diverse families and areas




Typologically fair multilingual evaluation

Linguistic typology (example):

» Goal: investigate relations between typological properties
 Resources: sample from diverse families and areas

« Sampling methods: random, variety or probability sampling

Multilingual NLP (example):

» Goal: see how well a language model performs on typologically diverse languages
 Resources: sample from diverse families and areas

Actually... there is no circularity if we do not investigate typological features directly!
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Sampling algorithm objectives

MaxSum MaxMin
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Sampling algorithm objectives

MaxSum MaxMin
Sample k languages from N, where we iteratively Sample k languages from N, where we iteratively
add the next point that yields the largest add the next point that yields the maximum

summed distance. minimum distance between any two points in k.
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Sampling algorithm objectives

MaxSum MaxMin
Sample k languages from N, where we iteratively Sample k languages from N, where we iteratively
add the next point that yields the largest add the next point that yields the maximum

summed distance. minimum distance between any two points in k.
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How do our typology-based sampling methods compare to genealogical baselines?
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How do our typology-based sampling methods compare to genealogical baselines?
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Linguistic Typology in NLP |

Using linguistic typology for the —— Evaluating — of multilingual language models

\Improving/

The Past, Present, and Future of Typological Databases in NLP (Baylor et al., Findings 2023)



Improving multilingual NLP with typology?

What are relevant improvements given the current state of multilingual NLP?



Improving multilingual NLP with typology?

What are relevant improvements given the current state of multilingual NLP?

 |Low-resource scenarios

» Efficiency



Improving multilingual NLP with typology?

Ustun et al. (2022): UDapter
@ URIEL @ URIEL
Language Language
Typology Typology
Database Database

[ Lang. Adapter J { Lang. Adapter J
*  mBERT s mBERT
{ Lang. Adapter } { Lang. Adapter }
UDapter UDapter

Italian Chinese Turkish Kazakh Belarussian Tamil

(a) Multilingual Fine-tuning on HR (b) Zero-shot Evaluation on LR

Ustiin, A., Bisazza, A., Bouma, G., & Noord, G. V. (2022). UDapter: Typology-based language adapters for multilingual dependency parsing and sequence labeling. Computational Linguistics, 48(3).



Improving multilingual NLP with typology?

Ustun et al. (2022): UDapter

90 -
80 - B ¢ Centroid | ) S

_ Typological The main limitation in our
70 B (ootures .
60 - approach remains the low
50 - representation quality for
20 - languages with zero or little
30 - data in the pre-trained
50 - encoder (multilingual pre-
lo- training).
0 | 1 1

high-resource low-resource (zero-shot)

Ustiin, A., Bisazza, A., Bouma, G., & Noord, G. V. (2022). UDapter: Typology-based language adapters for multilingual dependency parsing and sequence labeling. Computational Linguistics, 48(3).



Improving multilingual NLP with typology?

Blevins et al. (2024): X-ELM

[ J [ ; ] Seed Hierarchical
)L - M Multi-round Training

: T Step 1: Branch .
[ ) ][ - ] from a seed LM . X-ELM

|
I 1
. 1 |
( \ |
Automatic clustering v X-ELM -
) ] |

:> /7 N\
Step O: Data L . y = /' Branch A A
Allocation Data A =
Y — ' Merge
L, = =) . ﬂ Train ' :
Data \ /
- - = = - - ...........
. . branch from trained X-ELM to add new
Typology clustering Step 2: Train Step 3: Merge experts and specialize to new settings

Blevins, T., et al. (2024). Breaking the Curse of Multilinguality with Cross-lingual Expert Language Models. arXiv preprint arXiv:2401.10440.



Improving multilingual NLP with typology?

Blevins et al. (2024): X-ELM

13.6
13.4
1132
Q130
12.8
12.6

12.4

Avg.
m 13.6
13.4
& 13.2
o
A
I ) 1130
*
\C y 12.8
* 126
4 8 16
Num. Experts

EN
19.5

19.0
18.5
o
8 180

l 17.5

L 17.0
*
S 16.5

Num. Experts

SW
]
_=
*
- A
*
4 8 16
Num. Experts

Figure 4: Average and language-specific (EN and SW) perplexities across expert counts (k) when clustering with
TF-IDF;,,1 (square) and Linguistic Typology (triangle). The best k for each setting is marked with a star.

Blevins, T., et al. (2024). Breaking the Curse of Multilinguality with Cross-lingual Expert Language Models. arXiv preprint arXiv:2401.10440.



Improving multilingual NLP with typology?

My project here so far

Main RQ:

(How) can we leverage typological groupings in MNMT to
maximize transfer between related languages and minimize
negative inference (to improve performance)?

Subquestions:

1. Are typological groupings more useful than genealogical
groupings?

2. What s the effect of typologically-informed parameter
sharing on source language interference?
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group sharing

Image (a) from: Purason and Tattar (2022)



Current Issues and Solutions

(Adapted from EACL 2024 talk)




Current issues

In typological databases, language are described with concrete datapoints
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Matthew S. Dryer. 2013. Order of Subject and Verb. In: Dryer, Matthew S. & Haspelmath, Martin (eds.) WALS Online (v2020.3)
Matthew S. Dryer. 2013. Order of Object and Verb. In: Dryer, Matthew S. & Haspelmath, Martin (eds.) WALS Online (v2020.3)



Current issues

In typological databases, language are described with concrete datapoints

SV: “Multilingual NLP is challenging.”

VS: “Can we leverage this information for NLP?”



Current issues

In typological databases, language are described with concrete datapoints

“Word order variability should be
regarded as a basic assumption,
rather than as something exceptional.”

“Gradient approaches follow naturally
from the emergentist usage-based
view of languages ...”

DE GRUYTER MOUTON Linguistics 2023; 61(4): 825-883 a

Review

Natalia Levshina*, Savithry Namboodiripad*,

Marc Allassonniere-Tang, Mathew Kramer, Luigi Talamo,
Annemarie Verkerk, Sasha Wilmoth, Gabriela Garrido Rodriguez,
Timothy Michael Gupton, Evan Kidd, Zoey Liu, Chiara Naccarato,
Rachel Nordlinger, Anastasia Panova and Natalia Stoynova

Why we need a gradient approach to word
order

https://doi.org/10.1515/ling-2021-0098
Received May 13, 2021; accepted April 9, 2022; published online April 25, 2023

*Corresponding authors: Natalia Levshina, Max Planck Institute for Psycholinguistics, P.O. Box 310,
6500 AH Nijmegen, The Netherlands, E-mail: natalevs@gmail.com; and Savithry Namboodiripad,

Levshina, Natalia, et al. "Why we need a gradient approach to word order." Linguistics (2023).
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Does this matter for NLP?



Current issues

Does this matter for NLP?

« Language models are trained on text

- Ponti et al. (2019):

"this sort of gradient representation is also more compatible
with machine learning algorithms and particularly with deep
neural models that naturally operate with real-valued multi-
dimensional word embeddings and hidden states.”

Ponti, E. M. et al. (2019). Modeling language variation and universals: A survey on typological linguistics for natural language processing. Computational Linguistics, 45(3), 559-601.



A Solution?

Contributions:

« A method for retrieving gradient word order typology from UD treebanks
« A dataset with continuous word order values

* A new typological feature prediction task with baseline results

Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL.



A Solution?

Five word order features:

» Ordering of adjectives and their nouns
* Ordering of numerals and their nouns
» Ordering of subjects and verbs

» Ordering of objects and verbs

» Ordering of objects and subjects

Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL



A Solution?

for all d € UD Datasets do

na < O > na iS the NOU.Il—Adj count POS UD upos value UD deprels value
. 5 Noun NOUN —
an <— 0 > an 1s the Adj-Noun count Adjective | ADJ Amod
for all sentence s € d do Numeral | NUM nummod
. Subject — nsubj
na <— na-+ count Noun-Adj in s Object | — ob]
an < an-+ count Adj-Noun in s Verb VERB -
end f()l’ Table 4: Tags used to extract the necessary parts
na of speech from the Universal Dependencies treebank

na_proportion <
end for

(Nivre et al., 2020). Dashes indicate that that value did

na—+an .
not need to be specified.

132 UD treebanks, within which there are 91 unique languages

Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL



A Solution?

Density of Word Orderings by Feature
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Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL



A Solution?

nap B Austro-Asiatic
bej B Tai-Kadai

nc‘is M Dravidian
?1Ssg B Austronesian

fin B other

lit Altaic

urd B Korean
SI.V— Tupian

Kir

bul Japanese

fry Uralic

ces B Sino-Tibetan
jen B Basque

s B Mande

Valﬁ B Afro-Asiatic
gle Indo-European
kmr B Northwest Caucasian
abcb

20 40 60 80 100

Order of adjective and noun

Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL.



A Solution?

So far:

* Predict typological features based on for instance language embeddings

« Language-level probing of multilingual models

» Logistic regression (e.g. Malaviya et al., 2017; Ostling and Kurfali, 2023)

Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL



A Solution?

A new baseline:

* Probing with linear regression

« Language embeddings:
» Ostling and Tiedemann (2017)
« Malaviya et al. (2017)

« Compare with logistic regression by rounding the values in our dataset

Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL



A Solution?

Ostling Linear Regr. Ostling Logistic Regr. | Malaviya Linear Regr. Malaviya Logistic Regr.
Noun-adjective 0.146 0.261 0.141 0.378
Noun-numeral 0.140 0.132 0.129 0.399
Subject-verb 0.0781 0.306 0.101 0.156
Object-verb 0.169 0.237 0.0757 0.122
Object-subject 0.0127 — 0.0349 0.00940

Table 2: Mean squared error scores for linear regression and logistic regression models for each feature, using
language vectors from Ostling and Tiedemann (2017) and Malaviya et al. (2017). Better scores are closer to 0.

Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL



A Solution?

Limitations:

« Text-based typology is heavily influenced by the corpus
« Extension to more features is not trivial

« Extenion to more languages is not trivial

Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL



Alternative Solutions
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How well can a model “learn a language from a single human-readable book of grammar
explanations, rather than a large mined corpus of in-domain data?”
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Eline Visser

Tanzer, G., Suzgun, M., Visser, E., Jurafsky, D., & Melas-Kyriazi, L. (2023, October). A Benchmark for Learning to Translate a New Language from One Grammar Book. In The Twelfth ICLR.
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« Beyond machine translation
* More languages

Hire a Linguist!: Learning Endangered Languages
with In-Context Linguistic Descriptions

Kexun Zhang' Yee Man Choi'

Zhengiao Song! Taiqi He'

William Yang Wang? Lei Li'
!Carnegie Mellon University 2UC Santa Barbara
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Abstract

How can large language models (LLMs)
process and translate endangered languages?
Many languages lack a large corpus to train a
decent LLM; therefore existing LLMs rarely
perform well in unseen, endangered languages.
On the contrary, we observe that 2000 endan-
gered languages, though without a large corpus,
have a grammar book or a dictionary. We pro-
pose LINGOLLM, a training-free approach to
enable an LLM to process unseen languages
that hardly occur in its pre-training. Our key
insight is to demonstrate linguistic knowledge
of an unseen language in an LLM’s prompt,
including a dictionary, a grammar book, and
morphologically analyzed input text. We imple-
ment LINGOLLM on top of two models, GPT-4
and Mixtral, and evaluate their performance on
5 tasks across 8 endangered or low-resource
languages. Our results show that LINGOLLM
elevates translation capability from GPT-4’s 0
to 10.5 BLEU for 10 language directions. Our
findings demonstrate the tremendous value of

ol At .l . _CTTYNALLo .

leili@cs.cmu.edu

corpus 95% Sorpuis
s [ o i
Grammar 62% 38% No Gr.
Dictionary 75% 25%  No Dict.

Figure 1: Among the world’s ~7000 languages, 95%
don’t have enough data (>100K sentences) for training
LLMs (Bapna et al., 2022), while most have a grammar
book (60%) or dictionary (75%) (Nordhoff and Ham-
marstrom, 2011), including many endangered languages
(Moseley, 2010). Therefore, we utilize these linguistic
descriptions to bring LLMs to endangered languages.

on languages that may not occur in pre-training
(Robinson et al., 2023). We believe that speakers
of endangered languages deserve equitable access
to NLP technologies including LLMs. How can we
enable an LLM with language processing capabili-
ties on unseen and endangered languages?

XA awva smantizriatad s lhacer hassmnan liacnicta ana

Zhang, K., Choi, Y. M., Song, Z., He, T., Wang, W. Y., & Li, L. (2024). Hire a Linguist!: Learning Endangered Languages with In-Context Linguistic Descriptions. arXiv preprint arXiv:2402.1802¢
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Conclusions

Language sampling seems highly relevant in multilingual NLP

Typological features are potentially useful for interpreting, evaluating and improving
multilingual language models

There are many open questions for incorporating linguistic typology in NLP
« How can questions of language sampling in NLP best be addressed?
« Can we automatically infer corpus typology? Does this help NLP?
« Can we leverage linguistic grammars directly?
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