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Figure 2: Distant reading example shows the structure of and
the themes in Jack Kerouac’s “On the Road” (Figure repro-
duced with permission from Posavec [Pos07]).

• graphs to analyze genre change of historical novels,
• maps to illustrate geographical aspects of novels, and
• trees to classify different types of detective stories.

Although the proposed methods and the intention of dis-
tant reading are controversial in the humanities [GH11a,
Mar12, CRS⇤14], many works in the digital humanities
domain are based upon Moretti’s idea. Figure 2 shows
Posavec’s Literary Organism [Pos07] – a distant reading of
Jack Kerouac’s On the Road in the form of a tree. Although
being a non-interactive infographic, Posavec’s approach per-
fectly illustrates the idea behind Moretti’s distant reading, as
it turns away from the traditional close reading by provid-
ing an abstract view of a literary text. The shown branching
structure represents the ordered hierarchy of content objects
from chapters down to words, and themes are drawn with
different colors. In Section 4.2 we present a list of different
techniques of distant reading developed for a wide range of
research questions in the digital humanities.

2.3. Combining Close and Distant Reading

During our literature research (see Section 3), we discovered
a multitude of works involving close reading and interfaces,
which provide distant reading visualizations that allow to in-
teractively drill down to specific portions of the data. This
suggests that the direct access to the source texts is impor-
tant for humanities scholars when working with visualiza-
tions. For example, Bradley asks whether it is “possible to
develop a visualization technique that does not destroy the
original text in the process” [Bra12]. Similarly, Beals asks:
“In an age where distant reading is possible, is close read-
ing dead?” [Bea14] Coles et al. argue that distant reading
visualizations cannot replace close reading, but they can di-
rect the reader to sections that may deserve further investi-
gation [CL13].

When distant reading views are interactively used to
switch to close reading views, the Information Seek-
ing Mantra “Overview first, zoom and filter, details-on-
demand” [Shn96] is accomplished. It follows that an impor-
tant task for the development of visualizations is to provide
an overview of the data that highlights potentially interest-
ing patterns. A drill down on these patterns for further ex-
ploration is the bridge between distant and close reading.

3. Scope & Considered Research Papers

We used the publication year of Moretti’s book on distant
reading techniques “Graphs, Maps, Trees” [Mor05], 2005,
as a starting point to manually scan through all related jour-
nals and conference proceedings in order to generate a snap-
shot of existent research on distant and close reading. We
looked at visualization and digital humanities papers span-
ning a development period of ten years. In order to be con-
sidered for our state-of-the-art report, a paper needed to ful-
fill the following requirements:

• Textual data: The visualization is a solution for research
questions on an arbitrary text corpus, either a small text
unit such as a poem, a large text unit such as a book, or a
whole text collection. For example, we did not include a
timeline visualization of Picasso’s works [MFM08] as it
is based upon artworks.

• Cultural heritage: The underlying textual data has a his-
torical value. While not considering approaches dealing
with texts extracted from social media or wiki systems
(e.g., a social network visualization of philosophers pre-
sented in [AL09], which is based upon relationships mod-
eled in Wikipedia), we took visualizations for newspaper
collections into account. This decision includes some vi-
sualization papers without an obvious relation to the hu-
manities. But the proposed techniques are based upon or
tested with contemporary newspaper collections, which
are indeed part of the cultural heritage.

• No straightforward metadata visualization: We only
considered papers that provide a visualization that is
based upon the inherent textual content. We omitted meth-
ods that only use the texts’ associated metadata. An ex-
ample is given by two graphs displaying relationships be-
tween texts. Whereas the related network graph presented
in [Ede14] is determined by analyzing stylistic features
among the textual contents of novels, the unrelated graph
visualization in [Fin10] uses Amazon recommendations
to determine relationships between books.

• No basic charts: In the digital humanities, the word vi-
sualization is frequently used. Basic charts displaying
statistical information are also labeled as visualizations.
Based on the definition of information visualization given
by Card [CMS99], we only considered papers that pro-
vided computer-supported visual representations of ab-
stract data. In contrast to Card, we do not require inter-
active methods as humanities scholars often gain valu-
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(a) Traditional close reading. (b) Digital close reading with eMargin.

Figure 1: Examples of close reading of the second chapter of Charles Dickens’ David Copperfield (Figures reproduced with
permission from Kehoe et al. [KG13]).

• Which existing visualization approaches developed for
other research fields can be also used in the humanities
to support close and distant reading?

• What are future challenges for text visualization concern-
ing close and distant reading to further improve the sup-
port for humanities scholars?

2. A Definition of Close and Distant Reading

While the close reading of a text is a traditional method in
literary criticism that developed in the middle of the 20th
century [Haw00], distant reading is a rather novel idea that
was introduced by Franco Moretti at the beginning of the
21th century. In contrast to Moretti, Jockers uses the terms
micro- and macroanalysis instead of close and distant read-
ing [Joc13]. Inspired by micro- and macroeconomics, he fo-
cuses on quantitative literary text analysis using statistical
analysis methods. As the methods we analyzed are rather
related to visualization, we decided to use the traditional,
more common terms close and distant reading, but we also
considered related works using different terminologies. This
section introduces close and distant reading techniques and
draws a line from the digital humanities to information visu-
alization by combining both techniques.

2.1. Close Reading

Close reading is a fundamental method in literary criticism.
Nancy Boyles [Boy13] defines it as follows: “Essentially,
close reading means reading to uncover layers of meaning
that lead to deep comprehension.” In other words, close read-
ing is the thorough interpretation of a text passage by the
determination of central themes and the analysis of their
development. Moreover, close reading includes the analy-
sis of (1) individuals, events, and ideas, their development

and interaction, (2) used words and phrases, (3) text struc-
ture and style, and (4) argument patterns [Jas01]. The re-
sult of a traditional close reading approach is shown in Fig-
ure 1a. In this example, the scholar used various methods
to annotate various features of the source text, e.g., the us-
age of different colors (blue, red, green) and underlining
styles (straight or wavy lines, circles). Furthermore, numer-
ous thoughts are written next to the corresponding sentences.
Although most humanities scholars are trained in this tradi-
tional approach of close reading, today’s large availability
of digitized texts and of digital editions through web portals
like Google Books [Goo15] or Project Gutenberg [Pro15],
opens up new possibilities for close reading, and especially
for sustainable and collaborative annotation.

Figure 1b shows a straightforward approach of visualiz-
ing various scholars’ annotations of a digital edition [KG13]
within the web-based environment eMargin [eMa15]. There,
colors are used to highlight different text features, and a pop-
up window lists the comments of collaborating scholars. In
Section 4.1 we outline different approaches to support close
reading by visualizing supplementary human- or computer-
generated information.

2.2. Distant Reading

While close reading retains the ability to read the source text
without dissolving its structure, distant reading does the ex-
act opposite. It aims to generate an abstract view by shifting
from observing textual content to visualizing global features
of a single or of multiple text(s). Moretti [Mor13] describes
distant reading as “a little pact with the devil: we know how
to read texts, now let’s learn how not to read them.” In 2005,
he introduces his idea of distant reading [Mor05] with three
examples using:

c� The Eurographics Association 2015.



Distant view of languageClose view of language



Distant view of languageClose view of language



This talk

• Some background on linguistic typology

• Using typological information in NLP
• Interpreting 
• Evaluating
• Improving

• Current issues and future solutions

• Conclusions

} Multilingual LMs



• Indeed, using linguistics in NLP is nothing new…

Disclaimers



Disclaimers

• Indeed, using linguistics in NLP is nothing new…

• This talk will not be about computational typology



Disclaimers

Uncovering Probabilistic Implications in Typological Knowledge Bases

Johannes Bjerva@ Yova Kementchedjhieva@ Ryan CotterellP,H Isabelle Augenstein@

@Department of Computer Science, University of Copenhagen
PDepartment of Computer Science, Johns Hopkins University

HDepartment of Computer Science and Technology, University of Cambridge
bjerva,yova,augenstein@di.ku.dk, rdc42@cam.ac.uk

Abstract

The study of linguistic typology is rooted in
the implications we find between linguistic
features, such as the fact that languages with
object-verb word ordering tend to have post-
positions. Uncovering such implications typi-
cally amounts to time-consuming manual pro-
cessing by trained and experienced linguists,
which potentially leaves key linguistic univer-
sals unexplored. In this paper, we present a
computational model which successfully iden-
tifies known universals, including Greenberg
universals, but also uncovers new ones, wor-
thy of further linguistic investigation. Our ap-
proach outperforms baselines previously used
for this problem, as well as a strong baseline
from knowledge base population.

1 Introduction

Linguistic typology is concerned with mapping out
the relationships between languages with reference
to structural and functional properties (Croft, 2002).
A typologist may ask, for instance, how a language
encodes syntactic features and relationships. Does
it place its verbs before objects or after, and does it
have prepositions or postpositions? It is well estab-
lished that many features of languages are highly
correlated, sometimes to the extent that they imply
each other. Based on this observation, Greenberg
(1963) establishes the notion of implicational uni-
versals, i.e., cases where the presence of one feature
strictly implies the presence of another.

Universals are important to investigate as they of-
fer insight into the inner workings of language and
define the space of plausible languages. Universals
can aid cognitive scientists examining the underly-
ing processes of language, as there arguably is a
cognitive reason for why, e.g., languages with OV
ordering are postpositional (Greenberg, 1963). In
the context of natural language processing (NLP),
when creating synthetic data for multilingual NLP,

SV

OV
SVO

Noun-
Adjective

Figure 1: Visualisation of a section of our induced
graphical model. Observing the features in the left-
most nodes (SV, OV, and Noun-Adjective), can we cor-
rectly infer the value of the right-most node (SVO)?

one should consider universals to maintain the plau-
sibility of the data (Wang and Eisner, 2016). Com-
putational typology can furthermore be used to in-
duce language representations, useful in, e.g., lan-
guage modelling (Östling and Tiedemann, 2017)
and syntactic parsing (de Lhoneux et al., 2018).

In this paper, we argue that the deterministic
Greenbergian view of implications (Greenberg,
1963) is outdated. Instead, we suggest that a proba-
bilistic view of implications is more suitable, and
define the notion of a probabilistic typological im-
plication as a certain conditional probability dis-
tribution. We do this by first placing a joint distri-
bution over the vector of typological features, and
then marginalising out all features other than the
two under consideration. This computation is made
tractable by learning a tree-structured graphical
model (Figure 1) with the PC algorithm of Neapoli-
tan (2004) and then applying the belief propagation
(BP) algorithm (Pearl, 1982). We draw inspira-
tion from manual linguistic efforts to this problem
(Greenberg, 1963; Lehmann, 1978), as well as from
previous computational methods (Daumé III and
Campbell, 2007; Bjerva et al., 2019a). Addition-
ally, we provide a qualitative analysis of predicted
implications, as well as performing an empirical
evaluation on typological feature prediction, com-
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Abstract
In the principles-and-parameters framework,
the structural features of languages depend
on parameters that may be toggled on or off,
with a single parameter often dictating the
status of multiple features. The implied co-
variance between features inspires our prob-
abilisation of this line of linguistic inquiry—
we develop a generative model of language
based on exponential-family matrix factorisa-
tion. By modelling all languages and fea-
tures within the same architecture, we show
how structural similarities between languages
can be exploited to predict typological features
with near-perfect accuracy, outperforming sev-
eral baselines on the task of predicting held-
out features. Furthermore, we show that lan-
guage embeddings pre-trained on monolingual
text allow for generalisation to unobserved lan-
guages. This finding has clear practical and
also theoretical implications: the results con-
firm what linguists have hypothesised, i.e. that
there are significant correlations between typo-
logical features and languages.

1 Introduction

Linguistic typologists dissect and analyse lan-
guages in terms of their structural properties (Croft,
2002). For instance, consider the phonological
property of word-final obstruent decoding: Ger-
man devoices word-final obstruents (Zug is pro-
nounced /zuk/), whereas English does not (dog is
pronounced /d6g/). In the tradition of generative
linguistics, one line of typological analysis is the
principles-and-parameters framework (Chomsky,
1981), which posits the existence of a set of univer-
sal parameters, switches as it were, that languages
toggle. One arrives at a kind of factorial typol-
ogy, to borrow terminology from optimality theory
(Prince and Smolensky, 2008), through different
settings of the parameters. Within the principle-
and-parameters research program, then, the goal is

Figure 1: Correlations between selected typological
parameters. Feature values are classified according
to head-directionality (head-initial +, head-final -, no
dominant order o). For instance, ++ under Affixation
means strongly suffixing.

to identify the parameters that serve as axes, along
which languages may vary.

It is not enough, however, to simply write down
the set of parameters available to language. In-
deed, one of the most interesting facets of typol-
ogy is that different parameters are correlated. To
illustrate this point, we show a heatmap in Fig-
ure 1 that shows the correlation between the values
of selected parameters taken from a typological
knowledge base (KB). Notice how head-final word
order, for example, highly correlates with strong
suffixation. The primary contribution of this work
is a probabilisation of typology inspired by the
principles-and-parameters framework. We assume
a given set of typological parameters and develop a
generative model of a language’s parameters, cast-
ing the problem as a form of exponential-family ma-
trix factorisation. We observe a binary matrix that
encodes the settings of each parameter for each lan-
guage. For example, the Manchu head-final entry
of this matrix would be set to 1, because Manchu
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What is linguistic typology?

“the classification of the world’s languages according to similarities 
and differences in their linguistic structures and genetic 
relationships.”

“Language typology, therefore, is essentially comparative and 
crosslinguistic.”

Kashyap, A. K. (2019). Language typology. The Cambridge handbook of systemic functional linguistics, 767-792.



‘Universals’

Joseph Greenberg

• “Some universals of grammar with particular reference to 
the order of meaningful elements” (1963)

• 45 linguistic universals

• Universal 3: “Languages with dominant VSO order are 
always prepositional.”

Greenberg, J. H. (1963). Some universals of grammar with particular reference to the order of meaningful elements. Universals of language, 2, 73-113.



Language sampling

“a general theory of grammar must provide a framework 
for all languages and not just for, say, Dutch or English. 
These are just two manifestations of possible languages, 
and there is no reason to assume a priori that by studying 
one or two languages we can account for linguistic 
phenomena in every other language as well.”

Rijkhoff, J., Bakker, D., Hengeveld, K., & Kahrel, P. (1993). A method of language sampling. Studies in Language. 17(1), 169-203.



Language sampling

Three types of sampling methods (Rijkhoff & Bakker, 1998):

• Random sampling

Rijkhoff, J., & Bakker, D. (1998). Language sampling. Linguistic Typology, 2(3), 263-314.



Language sampling

Three types of sampling methods (Rijkhoff & Bakker, 1998):

• Random sampling

• Probability sampling
• Languages should be as independent as possible
• Sample from different families, locations, etc.

Rijkhoff, J., & Bakker, D. (1998). Language sampling. Linguistic Typology, 2(3), 263-314.



Language sampling

Three types of sampling methods (Rijkhoff & Bakker, 1998):

• Random sampling

• Probability sampling
• Languages should be as independent as possible
• Sample from different families, locations, etc.

• Variety sampling
• The sample should include the rarest cases
• Exceptional properties should be captured, rule out counterexamples

Rijkhoff, J., & Bakker, D. (1998). Language sampling. Linguistic Typology, 2(3), 263-314.



Typological Databases

Visser, E. (2022). A grammar of Kalamang. Language Science Press.



Typological Databases

Dryer, Matthew S. & Haspelmath, Martin (eds.) 2013. WALS Online (v2020.3)



Typological Databases

Matthew S. Dryer. 2013. Order of Object and Verb. In: Dryer, Matthew S. & Haspelmath, Martin (eds.) WALS Online (v2020.3) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7385533



Typological Databases

Skirgård, Hedvig et al. (2023). Grambank v1.0 (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7740140



Typological Databases
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Typological Databases

Skirgård, Hedvig et al. (2023). Grambank v1.0 (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7740140



Typological Databases

Grambank WALS
Comparable number of features and languages

More datapoints (higher coverage 
per lang/feat)

Fewer datapoints (lower coverage 
per lang/feat)

Mostly coded in binary values (“what 
is possible?”)

Mostly coded in multi-value values 
(“what is dominant?”)

“Care was taken to avoid strict 
logical dependencies between 
features”
Grammar Phonology, lexicon, sign languages, 

‘other’, …

Actively maintained No longer maintained



Typological Databases

“The scale, completeness, reliability, format, and 
documentation of Grambank make it a useful resource for 
linguistically-informed models, cross-lingual NLP, and 
research targeting less-resourced languages.”

Grambank’s Typological Advances Support Computational Research on Diverse Languages (Haynie et al., SIGTYP 2023)
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Linguistic Typology in NLP



Using linguistic typology for the 

Interpreting

Evaluating

Improving

of multilingual language models

The Past, Present, and Future of Typological Databases in NLP (Baylor et al., Findings 2023)

Linguistic Typology in NLP



Using linguistic typology for the 
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of multilingual language models

The Past, Present, and Future of Typological Databases in NLP (Baylor et al., Findings 2023)

Linguistic Typology in NLP



Model interpretability with typology

Belinkov, Y. (2022). Probing classifiers: Promises, shortcomings, and advances. Computational Linguistics, 48(1), 207-219.

Probing classifiers:

ClassifierInternal 
Representations

External 
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Model interpretability with typology

Belinkov, Y. (2022). Probing classifiers: Promises, shortcomings, and advances. Computational Linguistics, 48(1), 207-219.

Probing classifiers:

ClassifierInternal 
Representations

External 
Properties

Multilingual model; different 
representation per language



Model interpretability with typology

Belinkov, Y. (2022). Probing classifiers: Promises, shortcomings, and advances. Computational Linguistics, 48(1), 207-219.

Probing classifiers:

ClassifierInternal 
Representations

External 
Properties

Multilingual model; different 
representation per language



Model interpretability with typology

“This work presents a more holistic analysis of 
whether we can discover what neural networks 
learn about the linguistic concepts of an entire 
language by aggregating their representations over 
a large number of the sentences in the language."

Learning Language Representations for Typology Prediction (Malaviya et al., EMNLP 2017)

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2529–2535
Copenhagen, Denmark, September 7–11, 2017. c�2017 Association for Computational Linguistics

Learning Language Representations for Typology Prediction

Chaitanya Malaviya and Graham Neubig and Patrick Littell

Language Technologies Institute
Carnegie Mellon University

{cmalaviy,gneubig,pwl}@cs.cmu.edu

Abstract

One central mystery of neural NLP is what
neural models “know” about their subject
matter. When a neural machine transla-
tion system learns to translate from one
language to another, does it learn the syn-
tax or semantics of the languages? Can
this knowledge be extracted from the sys-
tem to fill holes in human scientific knowl-
edge? Existing typological databases con-
tain relatively full feature specifications
for only a few hundred languages. Ex-
ploiting the existence of parallel texts in
more than a thousand languages, we build
a massive many-to-one neural machine
translation (NMT) system from 1017 lan-
guages into English, and use this to pre-
dict information missing from typological
databases. Experiments show that the pro-
posed method is able to infer not only syn-
tactic, but also phonological and phonetic
inventory features, and improves over a
baseline that has access to information
about the languages’ geographic and phy-
logenetic neighbors.1

1 Introduction

Linguistic typology is the classification of human
languages according to syntactic, phonological,
and other classes of features, and the investiga-
tion of the relationships and correlations between
these classes/features. This study has been a sci-
entific pursuit in its own right since the 19th cen-
tury (Greenberg, 1963; Comrie, 1989; Nichols,
1992), but recently typology has borne practical
fruit within various subfields of NLP, particularly
on problems involving lower-resource languages.

1Code and learned vectors are available at http://
github.com/chaitanyamalaviya/lang-reps

Figure 1: Learning representations from mul-
tilingual neural MT for typology classification.
(Model MTBOTH)

Typological information from sources like the
World Atlas of Language Structures (WALS)
(Dryer and Haspelmath, 2013), has proven use-
ful in many NLP tasks (O’Horan et al., 2016),
such as multilingual dependency parsing (Ammar
et al., 2016), generative parsing in low-resource
settings (Naseem et al., 2012; Täckström et al.,
2013), phonological language modeling and loan-
word prediction (Tsvetkov et al., 2016), POS-
tagging (Zhang et al., 2012), and machine trans-
lation (Daiber et al., 2016).

However, the needs of NLP tasks differ in many
ways from the needs of scientific typology, and ty-
pological databases are often only sparsely pop-
ulated, by necessity or by design.2 In NLP, on
the other hand, what is important is having a rela-
tively full set of features for the particular group
of languages you are working on. This mis-
match of needs has motivated various proposals
to reconstruct missing entries, in WALS and other
databases, from known entries (Daumé III and
Campbell, 2007; Daumé III, 2009; Coke et al.,
2016; Littell et al., 2017).

In this study, we examine whether we can
2For example, each chapter of WALS aims to provide a

statistically balanced set of languages over language families
and geographical areas, and so many languages are left out in
order to maintain balance.
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Learning Language Representations for Typology Prediction (Malaviya et al., EMNLP 2017)

models (LMs) that utilize vector representations
of languages (Tsvetkov et al., 2016; Östling and
Tiedemann, 2017). Specifically, these models
train a recurrent neural network LM (RNNLM;
Mikolov et al. (2010)) using long short-term mem-
ory (LSTM; Hochreiter and Schmidhuber (1997))
with an additional vector representing the current
language as an input. The expectation is that
this vector will be able to capture the features of
the language and improve LM accuracy. Östling
and Tiedemann (2017) noted that, intriguingly, ag-
glomerative clustering of these language vectors
results in something that looks roughly like a phy-
logenetic tree, but stopped short of performing ty-
pological inference. We train this vector by ap-
pending a special token representing the source
language (e.g. “hfrai” for French) to the begin-
ning of the source sentence, as shown in Fig. 1,
then using the word representation learned for this
token as a representation of the language. We will
call this first set of feature vectors LMVEC, and
examine their utility for typology prediction.

NMT Language Vector In our second set of
feature vectors, MTVEC, we similarly use a lan-
guage embedding vector, but instead learn a multi-
lingual neural MT model trained to translate from
many languages to English, in a similar fashion to
Johnson et al. (2016); Ha et al. (2016). In contrast
to LMVEC, we hypothesize that the alignments to
an identical sentence in English, the model will
have a stronger signal allowing it to more accu-
rately learn vectors that reflect the syntactic, pho-
netic, or semantic consistencies of various lan-
guages. This has been demonstrated to some ex-
tent in previous work that has used specifically en-
gineered alignment-based models (Lewis and Xia,
2008; Östling, 2015; Coke et al., 2016), and we
examine whether these results apply to neural net-
work feature extractors and expand beyond word
order and syntax to other types of typology as
well.

NMT Encoder Mean Cell States Finally, we
propose a new vector representation of a language
(MTCELL) that has not been investigated in pre-
vious work: the average hidden cell state of the
encoder LSTM for all sentences in the language.
Inspired by previous work that has noted that the
hidden cells of LSTMs can automatically capture
salient and interpretable information such as syn-
tax (Karpathy et al., 2015; Shi et al., 2016) or

Syntax Phonology Inventory
-Aux +Aux -Aux +Aux -Aux +Aux

NONE 69.91 83.07 77.92 86.59 85.17 90.68
LMVEC 71.32 82.94 80.80 86.74 87.51 89.94
MTVEC 74.90 83.31 82.41 87.64 89.62 90.94
MTCELL 75.91 85.14 84.33 88.80 90.01 90.85
MTBOTH 77.11 86.33 85.77 89.04 90.06 91.03

Table 1: Accuracy of syntactic, phonological,
and inventory features using LM language vec-
tors (LMVEC), MT language vectors (MTVEC),
MT encoder cell averages (MTCELL) or both
MT feature vectors (MTBOTH). Aux indicates
auxiliary information of geodesic/genetic nearest
neighbors; “NONE -Aux” is the majority class
chance rate, while “NONE +Aux” is a 3-NN clas-
sification.

sentiment (Radford et al., 2017), we expect that
the cell states will represent features that may be
linked to the typology of the language. To cre-
ate vectors for each language using LSTM hidden
states, we obtain the mean of cell states (c in the
standard LSTM equations) for all time steps of all
sentences in each language.4

4 Experiments

4.1 Multilingual Data and Training Regimen

To train a multilingual neural machine translation
system, we used a corpus of Bible translations that
was obtained by scraping a massive online Bible
database at bible.com.5 This corpus contains
data for 1017 languages. After preprocessing the
corpus, we obtained a training set of 20.6 million
sentences over all languages.

The implementation of both the LM and NMT
models described in §3 was done in the DyNet
toolkit (Neubig et al., 2017). In order to ob-
tain a manageable shared vocabulary for all lan-
guages, we divided the data into subwords us-
ing joint byte-pair encoding of all languages (Sen-
nrich et al., 2016) with 32K merge operations. We

4We also tried using the mean of final hidden cell states
of the encoder LSTM, but the mean cell state over all words
in the sentence gave improved performance. Additionally,
we tried using the hidden states h, but we found that these
had significantly less information and lesser variance, due to
being modulated by the output gate at each time step.

5A possible concern is that Bible translations may use ar-
chaic language not representative of modern usage. How-
ever, an inspection of the data did not turn up such archaisms,
likely because the bulk of world Bible translation was done in
the late 19th and 20th centuries. In addition, languages that
do have antique Bibles are also those with many other Bible
translations, so the effect of the archaisms is likely limited.
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Syntax Phonology Inventory
-Aux +Aux -Aux +Aux -Aux +Aux
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(a) Order of object and verb, using gold standard labels for training.

(b) Order of object and verb, using projected labels for training.

Figure 1
Classification results for each set of language representations.

1028

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/49/4/1003/2269496/coli_a_00491.pdf by guest on 18 April 2024

Computational Linguistics Volume 49, Number 4

(a) Order of object and verb, using gold standard labels for training and naive
cross-validation.

(b) Order of adjective and noun, using gold standard labels for training and naive
cross-validation.

Figure 8
Classification results for each set of language representations, using naive cross-validation where
languages related to the evaluated language are not excluded from the training fold. The point of
this figure is to demonstrate how unsound evaluation methods give misleading results; see main
text for details.
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Probing classifiers:

ClassifierInternal 
Representations

External 
Properties

Hewitt & Liang (2019): Designing and Interpreting Probes with Control Tasks
• Do the representations encode linguistic structure or does probe just learn the linguistic task?
• Control tasks
• “A good probe should be selective, achieving high linguistic task accuracy and low control task 

accuracy.” 

Designing and Interpreting Probes with Control Tasks (Hewitt & Liang, EMNLP-IJCNLP 2019)
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of multilingual language models

The Past, Present, and Future of Typological Databases in NLP (Baylor et al., Findings 2023)

Linguistic Typology in NLP
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Beyond individual languages, multilingual NLP research increasingly aims to develop models
that perform well across languages. However, evaluating these systems on all the world’s
languages is practically infeasible. To attain generalizability, representative language sampling
is essential. Previous work argues that generalizable multilingual evaluation sets should con-
tain languages with diverse typological properties. However, ‘typologically diverse’ language
samples have been found to vary considerably in this regard, and popular sampling methods
are flawed and inconsistent. We present a language sampling framework for selecting the most
typologically diverse languages given a sampling frame. Our approach accommodates multiple
sampling objectives from linguistic typology, and is evaluated with a range of metrics. We
find that our systematic sampling method consistently retrieves more typologically diverse
language selections than previous methods. Moreover, we provide additional evidence that this
affects generalizability in multilingual model evaluation, emphasizing the importance of diverse
language sampling.

1. Introduction

Multilingual natural language processing (NLP) has seen major improvements in the
last decade. Pre-trained language models such as multilingual BERT (Devlin et al. 2019),
XLM-R (Conneau et al. 2020) and mT5 () facilitate cross-lingual transfer into languages
for which there are limited or no monolingual models available. This has made them
increasingly popular in few-shot or zero-shot scenarios. More recently, multilingual
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Abstract

We present the MASSIVE dataset—
Multilingual Amazon Slu resource package
(SLURP) for Slot-filling, Intent classification,
and Virtual assistant Evaluation. MASSIVE
contains 1M realistic, parallel, labeled virtual
assistant utterances spanning 51 languages, 18
domains, 60 intents, and 55 slots. MASSIVE
was created by tasking professional translators
to localize the English-only SLURP dataset
into 50 typologically diverse languages from
29 genera. We also present modeling results
on XLM-R and mT5, including exact match
accuracy, intent classification accuracy, and
slot-filling F1 score. We have released our
dataset, modeling code, and models publicly.

1 Introduction and Description

Natural Language Understanding (NLU) is a
machine’s ability to understand the meaning and
relevant entities from text. For instance, given the
utterance what is the temperature in

new york, an NLU model might classify the
intent as weather_query and fill the slots as
weather_descriptor: temperature

and place_name: new york. Our partic-
ular focus of NLU is one component of Spoken
Language Understanding (SLU), in which raw
audio is first converted to text before NLU is
performed (Young, 2002; Wang et al., 2005;
Tur and Mori, 2011). SLU is the foundation of
voice-based virtual assistants like Alexa, Siri,
and Google Assistant. Though virtual assistants
have advanced incredibly in the past decade, they
still only support a small fraction of the world’s
7,000+ languages (Simons, 2022). Challenges

*Corresponding author, jgmf@amazon.com. All au-
thors were associated with Amazon at the time of publication.

for multilingualism span the software stack and
a variety of operational considerations, but one
difficulty in creating massively multilingual NLU
models is the lack of labeled data for training and
evaluation, particularly data that is realistic for the
task and that is natural for each given language.
High naturalness typically requires human-based
vetting, which is often costly.

We present MASSIVE (Multilingual Amazon
SLU Resource Package (SLURP) for Slot fill-
ing, Intent classification, and Virtual assistant
Evaluation), a new 1M-example dataset composed
of realistic, human-created virtual assistant utter-
ance text spanning 51 languages, 60 intents, 55
slot types, and 18 domains. With the English seed
data included, there are 587k train utterances, 104k
dev utterances, 152k test utterances, and 153k ut-
terances currently held out for the MMNLU-22
competition, which will be released after the com-
petition. We have released our data, code, and
models 1.

MASSIVE was created by localizing the SLURP
NLU dataset (created only in English) in a parallel
manner. SLURP is described further in Section 2,
linguistic analyses of the dataset in Section 3, and
the localization process in Section 4.3. Results for
Massively Multilingual NLU (MMNLU) modeling,
in which a single model can perform NLU on any
of the incoming languages, are given in Section 5.

2 Related Work

Prior researchers have emphasized the need to ex-
plore the unique challenges of low-resource lan-
guages (Simpson et al., 2008; Strassel and Tracey,
2016; Cruz and Cheng, 2020; Lakew et al., 2020;
Marivate et al., 2020; Magueresse et al., 2020;
Goyal et al., 2021), while the growing number and

1https://github.com/alexa/massive
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Abstract

Confidently making progress on multilingual

modeling requires challenging, trustworthy

evaluations. We present TYDI QA—a question

answering dataset covering 11 typologically

diverse languages with 204K question-answer

pairs. The languages of TYDI QA are diverse

with regard to their typology—the set of

linguistic features each language expresses—-

such that we expect models performing well

on this set to generalize across a large num-

ber of the world’s languages. We present a

quantitative analysis of the data quality and

example-level qualitative linguistic analyses

of observed language phenomena that would

not be found in English-only corpora. To pro-

vide a realistic information-seeking task and

avoid priming effects, questions are written

by people who want to know the answer, but

don’t know the answer yet, and the data is

collected directly in each language without the

use of translation.

1 Introduction

When faced with a genuine information need,

everyday users now benefit from the help of

automatic question answering (QA) systems on

a daily basis with high-quality systems integrated

into search engines and digital assistants. Their

questions are information-seeking—they want to

know the answer, but don’t know the answer yet.

Recognizing the need to align research with the

impact it will have on real users, the community

has responded with datasets of information-

seeking questions such as WikiQA (Yang et al.,

2015), MS MARCO (Nguyen et al., 2016), QuAC

Pronounced tie dye Q. A.—like the colorful t-shirt.
␆Project design ␅Modeling ␄Linguistic analysis ␃Data quality.

(Choi et al., 2018), and the Natural Questions

(NQ) (Kwiatkowski et al., 2019).

However, many people who might benefit from

QA systems do not speak English. The lan-

guages of the world exhibit an astonishing breadth

of linguistic phenomena used to express mean-

ing; the World Atlas of Language Structures

(Comrie and Gil, 2005; Dryer and Haspelmath,

2013) categorizes over 2,600 languages1 by 192

typological features including phenomena such

as word order, reduplication, grammatical mean-

ings encoded in morphosyntax, case markings,

plurality systems, question marking, relativiza-

tion, and many more. If our goal is to build

models that can accurately represent all human

languages, we must evaluate these models on data

that exemplifies this variety.

In addition to these typological distinctions,

modeling challenges arise due to differences in the

availability of monolingual data, the availability

of (expensive) parallel translation data, how

standardized the writing system is variable spacing

conventions (e.g., Thai), and more. With these

needs in mind, we present the first public large-

scale multilingual corpus of information-seeking

question-answer pairs—using a simple-yet-novel

data collection procedure that is model-free and

translation-free. Our goals in doing so are:

1. to enable research progress toward building

high-quality question answering systems in

roughly the world’s top 100 languages;2 and

2. to encourage research on models that behave

well across the linguistic phenomena and data

scenarios of the world’s languages.

We describe the typological features of TYDI

QA’s languages and provide glossed examples

1Ethnologue catalogs over 7,000 living languages.
2Despite only containing 11 languages, TYDI QA covers

a large variety of linguistic phenomena and data scenarios.
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Abstract

We study politeness phenomena in nine typo-
logically diverse languages. Politeness is an
important facet of communication and is some-
times argued to be cultural-specific, yet exist-
ing computational linguistic study is limited to
English. We create TYDIP, a dataset contain-
ing three-way politeness annotations for 500
examples in each language, totaling 4.5K ex-
amples. We evaluate how well multilingual
models can identify politeness levels – they
show a fairly robust zero-shot transfer abil-
ity, yet fall short of estimated human accuracy
significantly. We further study mapping the
English politeness strategy lexicon into nine
languages via automatic translation and lexi-
con induction, analyzing whether each strat-
egy’s impact stays consistent across languages.
Lastly, we empirically study the complicated
relationship between formality and politeness
through transfer experiments. We hope our
dataset will support various research ques-
tions and applications, from evaluating multi-
lingual models to constructing polite multilin-
gual agents.1

1 Introduction

Whether politeness phenomena and strategies are
universal across languages or not have been contro-
versial among sociologists and linguists. While
Brown and Levinson (1978) claimed their uni-
versality, other followup work (Korac-Kakabadse
et al., 2001) claimed how communication patterns
can differ based on cultures and other social con-
structs such as gender (Mills, 2003) and domains.

To contribute to the linguistic study of cross-
cultural politeness, we collect politeness labels on
nine typologically and culturally diverse languages,
Hindi, Korean, Spanish, Tamil, French, Viet-
namese, Russian, Afrikaans, and Hungarian. This
language set covers five scripts and eight language

1The data and code is publicly available at https://
github.com/Genius1237/TyDiP.

families. We follow the seminal work (Danescu-
Niculescu-Mizil et al., 2013) closely, focusing on
politeness exhibited in requests as they involve the
speaker imposing on the listener, requiring them to
employ various politeness techniques. To capture
rich linguistic strategies that can be lost in transla-
tion (Lembersky et al., 2011), we collect sentences
written in each target language. To minimize the do-
main shift among languages, we collect examples
in each language from their respective Wikipedia
User talk pages, where editors make requests about
administrative and editorial decisions.

Crowdsourcing labels in low-resource languages
is challenging. Thus, we carefully design an an-
notation process that includes a translation task
to evaluate annotator’s language proficiency and a
model-in-the-loop qualification task which filters
workers whose labels diverges from highly confi-
dent predictions from multilingual models. After
this process, we observe high agreements among
the annotators in our dataset despite the subjectivity
of the task. Interestingly, the annotators agree with
each other more when assigning politeness score
on requests in their native languages compared to
assigning politeness score on requests in English,
which is their second language.

Equipped with our new multilingual politeness
dataset, we evaluate zero-shot transfer ability of ex-
isting multilingual models in predicting politeness
– subjective and pragmatic language interpretation
task. Pretrained language models (Conneau et al.,
2020) fine-tuned on annotated English politeness
data (Danescu-Niculescu-Mizil et al., 2013) show
competitive performances on all languages, weigh-
ing in the universality of politeness phenomena
across languages. We also witness impressive zero-
shot performance of a high-capacity pretrained lan-
guage model (Brown et al., 2020). We observe a
degradation in classification performances when
we translate the target language (via Google Trans-
late API) to English, suggesting politeness might
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Typologically fair multilingual evaluation

Data collection

1. Retrieve papers that contain typological diversity* in their title or abstract

2. Annotate whether the paper claims that a language set is typologically diverse. If so:
• Does it introduce a new dataset?
• Which languages does it contain?

We retrieve 194 papers, of which 110 contain a claim of typological diversity.

Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is' Typological Diversity'in NLP?. arXiv preprint arXiv:2402.04222.
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What is ‘Typological Diversity’ in NLP?

Anonymous ACL submission

Abstract

The NLP research community has devoted001
increased attention to languages beyond En-002
glish, resulting in considerable improvements003
for multilingual NLP. However, these improve-004
ments only apply to a small subset of the005
world’s languages. Aiming to extend this, an006
increasing number of papers aspires to enhance007
generalizable multilingual performance across008
languages. To this end, linguistic typology is009
commonly used to motivate language selection,010
on the basis that a broad typological sample011
ought to imply generalization across a broad012
range of languages. These selections are of-013
ten described as being ‘typologically diverse’.014
In this work, we systematically investigate015
NLP research that includes claims regarding016
‘typological diversity’. We find there are no set017
definitions or criteria for such claims. We in-018
troduce metrics to approximate the diversity of019
language selection along several axes and find020
that the results vary considerably across papers.021
Crucially, we show that skewed language se-022
lection can lead to overestimated multilingual023
performance. We recommend future work to024
include an operationalization of ‘typological025
diversity’ that empirically justifies the diversity026
of language samples.027

� anonymous.4open.science/r/typ-div-survey-21EE028

1 Introduction029

Most research in the field of natural language pro-030

cessing (NLP) is conducted on the English lan-031

guage (Ruder et al., 2022). Competitive monolin-032

gual language modelling beyond English remains033

challenging, as current state-of-the-art methods rely034

on the availability of large amounts of data, which035

are not available for most other languages (Joshi036

et al., 2020). This data sparsity can be mitigated037

by leveraging cross-lingual transfer through the038

training of a language model on multilingual data.039

Despite the potential of multilingual language mod-040

elling, methodologies are primarily developed for041
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Figure 1: There is an increase in the number of publica-
tions with ‘typological diversity’ claims across time.

English. However, there is no guarantee that an ap- 042

proach that works well for one language will work 043

equally well for others (Gerz et al., 2018). For in- 044

stance, morphologically complex languages can be 045

over-segmented by current widely-used tokeniza- 046

tion methods (Rust et al., 2021). Evaluation on a 047

broad range of languages is important for drawing 048

more generalizable conclusions about the perfor- 049

mance of multilingual language technology. For 050

instance, including only morphologically simple 051

languages, such as English, can give an unrealistic 052

image of the effectiveness of a tokenization method, 053

because morphologically simple languages are gen- 054

erally easier to tokenize compared to complex ones. 055

Current work increasingly evaluates models on 056

multiple languages, but because of resource con- 057

straints, it is not realistic to test a model on the thou- 058

sands of languages in the world. In order to still 059

ensure a degree of generalizability, previous work 060

recognizes the importance of diverse language sam- 061

pling. Ponti et al. (2020) suggest that merely evalu- 062

ating on a small set of similar languages is an unre- 063

liable method for estimating a multilingual model’s 064

performance, since such evaluations lack robust- 065

ness to previously unseen typological properties, 066

for instance. For mitigating these sampling issues, 067

1
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Figure 2: Number of papers with a claim by venue.

agreement for the language selection annotation260

(3) is somewhat low, which is partially explained261

by the fact that we calculate agreement over all262

languages together, rather than on the micro-level263

for individual languages. This is because there is264

no ground truth regarding the number of languages265

to annotate. Furthermore, a number of inconsis-266

tencies are due to ISO-639-3 variants (jap! jpn267

or ger! deu) and different codes for ambiguous268

language mentions (‘Norwegian’ could be nor or269

nob). We iteratively resolve these issues to get our270

final list of languages per paper.

Annotation item  Agreement

1. has_claim 0.78 Substantial
2. introduces_dataset 0.71 Substantial
3. iso_codes 0.44 Moderate

Table 1: Inter-annotator agreement per item.
271

4 Results272

4.1 Publication Overview273

In total we retrieve 194 papers, of which 110 are274

found to contain a claim. The rest of this analysis is275

based on these 110 papers. Figure 2 shows the most276

common venues where papers with a claim have277

been published. The top six venues are all high-278

ranking NLP conferences, with SIGMORPHON279

being the first workshop at the seventh spot. The280

AI-centered venues only have a small number of281

papers with claims; ICLR and AAAI both have two,282

ICML one, and the rest none. In total, 38 papers283

introduce a dataset, most of which are published at284

ACL and LREC since 2020 (Figure 1 and 2).4285
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Figure 3: Number of papers using N languages.

4.2 Language Overview 286

Four of the papers that claim typological diversity 287

do not mention which languages they use at all. The 288

other papers use a median of 11 languages (Q1=8, 289

Q3=18), with a minimum of 2 and a maximum of 290

90. In total, the papers use 315 unique languages, 291

of which 160 are used just once. Figure 3 shows 292

the distribution of the number of languages used 293

per paper. 294

English is the most used language (63 papers), 295

followed by German (60), Russian (58) and Finnish 296

(57).5 The paper that uses the most languages is 297

Vylomova et al. (2020), which contains 90. Fig- 298

ure 4 shows where these languages are primarily 299

spoken according to the World Atlas of Language 300

Structures (WALS) (Dryer and Haspelmath, 2013). 301

We observe a skew towards languages spoken in 302

Europe, where multiple languages are used in more 303

than 50 papers, while not a single language from 304

the Americas is included in more than 10 papers. 305

4.3 Justifications 306

The papers include a wide spectrum of justifica- 307

tions for their claims. A large portion provide no 308

justification at all. Some use genealogy: the selec- 309

tion of 24 languages from Xu et al. (2022) aims to 310

cover “a reasonable variety of language families”, 311

while the dataset created by Zhang et al. (2023) 312

consists of “[18] languages (. . . ) from 10 language 313

families and 13 sub-families”. Others use a selec- 314

4Details are listed in Appendix C, Table 4.
5The long tail of this distribution is listed in Appendix B,

Figure 8.

4
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Median: 11
Q1: 8
Q3: 18

Minimum: 2
Maximum: 90

Total languages: 315
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Figure 4: Map of languages in all papers claiming ‘typological diversity’, where the hue corresponds number of
papers that uses a language. Coordinates are taken from WALS.

tion of typological features, for instance, Mott et al.315

(2020) mention that “the nine languages in our316

corpus cover five primary language families (. . . ),317

and a range of morphological phenomena (. . . )”.318

Some also mention typological databases in their319

language selection: Muradoglu and Hulden (2022)320

consider “languages that exhibit varying degrees321

of complexity for inflection. We also consider mor-322

phological characteristics coded in WALS (. . . )”.323

A rather systematic approach to language selec-324

tion is found in Jancso et al. (2020). They use a325

clustering algorithm on vectors with features from326

two typological databases to find the most distant327

clusters to sample languages from.328

Still, most other papers justify their typological329

diversity in a ‘post-hoc’ way. They do not men-330

tion the language selection considerations based331

on which languages were selected. Rather, they332

mention how diverse the sample is after it has been333

created. The XTREME-R dataset (Ruder et al.,334

2021), which we will discuss further in Section335

6, is exemplary of this. They mention ‘diversity336

indices’ that cover family, as well as typology and337

compare theirs to other datasets, but do not detail338

how or if these were used in sampling.339

5 Typological Analysis340

From Section 4.2, it follows that – when looking341

at all papers that claim ‘typologically diverse’ lan-342

guage selection – there is a geographical skew in343

language selection, where languages from certain344

areas are over-represented (Figure 4). A skew is345

not surprising, as it is often more feasible to select346

languages for which there are existing resources347

and typological descriptions, than languages for 348

which these have to be gathered from scratch. This 349

constitutes bibliographic bias (Rijkhoff and Bakker, 350

1998). However, we cannot draw conclusions about 351

typological diversity on this basis, as typology is 352

not equal to geography (Cysouw, 2013). Therefore, 353

in this section, we analyze the typological diversity 354

according to metrics that take into account syntac- 355

tic features, and the absolute included typological 356

feature values. We do this by comparing pairwise 357

language distances (Section 5.1) and absolute typo- 358

logical feature value inclusion (Section 5.2) across 359

papers. Lastly, we look into the relationship be- 360

tween the number of included languages and ty- 361

pological diversity, to help guide future language 362

selection efforts (Section 5.3). 363

5.1 Mean Language Distance 364

We first approximate the typological diversity of 365

each paper’s language selection with lang2vec 366

(Littell et al., 2017). This toolkit provides language 367

distances that are calculated based on language 368

vectors from URIEL, a resource that contains infor- 369

mation from a range of typological databases, in- 370

cluding WALS. We choose URIEL and lang2vec 371

specifically, because its aggregated information en- 372

ables analysis across databases, and because its vec- 373

torized format mitigates issues stemming from in- 374

complete feature coverage in typological databases. 375

For each paper in our survey that claims a typo- 376

logically diverse language set and that is covered in 377

lang2vec (312 / 315 unique languages), we calcu- 378

late the mean pairwise syntactic distance (MPSD) 379

for the included languages. That is, we take the 380

5

Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is' Typological Diversity'in NLP?. arXiv preprint arXiv:2402.04222.



Typologically fair multilingual evaluation

Justifications

No justification Genealogical groupings 
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Xu et al. (2022) aim
to cover “a 
reasonable variety of 
language families”

Often post-hoc

No information on the 
sampling criteria or 
method

Jancso et al. (2020): 
clustering with 
typological databases
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Figure 5: Distributions of mean pairwise lang2vec distances and feature inclusion per paper. On the left are
approximations based on common justifications for claiming ‘typological diversity’: geography and genealogy. On
the right two different approximations based on typological features: MPSD and Grambank feature value inclusion.

average of all pre-computed syntactic lang2vec381

distances for each pair of languages in the selec-382

tion. We only take into account languages that have383

at least 5% coverage in the URIEL vectors. We do384

this to make sure the very low coverage languages385

do not distort the results. This affects 31 papers in386

our dataset, resulting in a total of 242 unique lan-387

guages. Figure 5 shows the distribution of MPSDs388

across papers. We illustrate the range of syntactic389

distance with some examples from well-covered390

languages. The distance between Danish and Nor-391

wegian (same family, same genus) is 0.22, Danish-392

Spanish (same family, different genus) is 0.59 and393

Danish-Japanese (different family, different genus)394

is 0.69. Additionally, we compare our typology-395

based approximations with mean geographical and396

genetic pairwise distances. Interestingly, the ge-397

netic distance is much higher and less spread out398

than the syntactic distance. This emphasizes that399

genealogical sampling does not by default ensure400

typological diversity.401

The typological distances vary considerably,402

with outliers on either side (Figure 5). In pa-403

pers claiming typological diversity, the minimum404

MPSD is found in Goel et al. (2022), who use En-405

glish, French and Spanish. The maximum MPSD is406

found for North Sámi, Galician, and Kazah (Vania407

et al., 2019).408

5.2 Inclusion of Typological Features409

Because lang2vec distance calculations are based410

on feature vectors, our previous analysis does not411

provide information regarding which typological412

feature values are actually included in the language413

set. For example, it does not tell us which word414

order variations are covered in a given language415

selection. This can be useful, because covering416

more typological feature values in an evaluation set417

means that robustness towards previously unseen418

typological characteristics is increased. Firstly, we419

look into the inclusion of individual typological 420

feature values per language selection from each pa- 421

per. We use the Grambank (Skirgård et al., 2023b) 422

database for this, because it has high coverage for 423

grammatical features and is currently actively main- 424

tained. For each feature in Grambank, we count 425

whether all possible, non-missing feature values 426

are represented in the paper’s language selection.6 427

That is, for a feature such as GB020: Are there 428

definite or specific articles?, we count whether all 429

non-missing options are represented by the particu- 430

lar set of languages from a paper and divide this by 431

the total number of features. The spread of these 432

values is shown in the bottom right graph in Fig- 433

ure 5. We treat missing languages the same as in 434

the MPSD calculations; we discard them during 435

calculation, but we do not discard the entire paper. 436

Twelve papers are affected by this. The average 437

Grambank feature value inclusion is 0.73. 438

While the accumulation of absolute feature val- 439

ues covered in a language selection provides useful 440

robustness insights, it does not capture that lan- 441

guages consist of combinations of features that are 442

not entirely independent. Skirgård et al. (2023a) 443

show how language families can reliably be visual- 444

ized as distinct groupings in Grambank’s typologi- 445

cal design space using principle component analy- 446

sis (PCA). Similarly, in Figure 6 we show the PCA 447

plot for the paper that has the highest Grambank 448

feature inclusion of all papers: Gutierrez-Vasques 449

et al. (2021). While their language sample covers 450

much of the Grambank’s typological space, we ob- 451

serve a skew towards certain languages (bottom 452

right), and a lack of representation for others (e.g., 453

bottom left). This means that even the paper in 454

our survey with the highest feature value inclusion 455

contains challenges when it comes to complete and 456

fair evaluation. 457

6Note that for our purposes, we treat ? as a missing value.
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Figure 6: PCA plot for the paper with the highest abso-
lute feature coverage (Gutierrez-Vasques et al., 2021),
where each point represents a language in Grambank.

5.3 Number of Languages458

As shown in Figure 3, the number of included lan-459

guages varies across papers. Should one aim to460

evaluate on as many languages as possible? What461

is the effect of selecting many (similar) languages?462

Figure 7a and 7b show the relationship between the463

number of languages and the MPSDs, and the ab-464

solute typological feature value inclusion, respec-465

tively. We find that smaller language sets (0-10466

languages) exhibit considerable variation in terms467

of average syntactic distances, while the larger lan-468

guage sets (30+ languages) seem consistent be-469

tween 0.6 and 0.7. This implies that adding more470

languages does not necessarily raise the average471

syntactic distance much. In NLP, adding more472

languages typically means adding more similar473

languages, since it is easier to incorporate existing474

datasets than it is to create new ones. As a result,475

the average performance will also be skewed to-476

wards these similar languages in evaluation (see477

Section 6). Furthermore, we observe that up to478

a certain point, including more languages implies479

that more typological feature values are covered.480

However, this increase flattens at approximately 40481

languages. Importantly, this highlights the fact that482

simply adding more languages to an experimen-483

tal study is not by itself a contribution in terms of484

typological generalizability – one must take care485

which languages are included. To illustrate this,486

we highlight the MKQA dataset (Longpre et al.,487

2021). This dataset includes 25 languages, more488
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Figure 7: MPSD (a) and Grambank feature value inclu-
sion (b) per paper by number of languages.

than twice the median, but has a rather average 489

MPSD of 0.61 (and a Grambank feature inclusion 490

of 0.89). This is in part due to its inclusion of sev- 491

eral typologically similar languages: {English, Ger- 492

man, Dutch}, {Cantonese, Mandarin}, {Spanish, 493

Portuguese} and {Swedish, Danish, Norwegian}. 494

6 Downstream Implications 495

Inconsistencies in ‘typologically diverse’ language 496

selection can have an effect on downstream evalua- 497

tion. While reporting all metrics for all languages 498

is preferable, space constraints often lead to report- 499

ing averages in multilingual evaluation. However, 500

Anastasopoulos (2019) demonstrates that when a 501

language set contains a skew towards a certain lan- 502

guage family, simply taking the micro average over 503

all languages for evaluation gives an overestima- 504

tion of performance. While family can serve as 505

a proxy for typological diversity, we here present 506

an analysis based directly on typological charac- 507

teristics. In this way, we gain more fine-grained 508

insights into the effects of typologically skewed 509

language selection for model evaluation. 510

Specifically, we use XTREME-R (Ruder et al., 511

2021), a popular7 ‘typologically diverse’ multi- 512

lingual benchmark covering several tasks and do- 513

mains. XTREME-R contains and expands upon 514

ten existing datasets. As a result, not all tasks are 515

available in all languages; while there are 50 unique 516

languages in total, the number of languages per task 517

ranges from 7 to 48.8 We group these languages 518

by the ‘Prefixing vs. Suffixing in Inflectional Mor- 519

phology’ (26A) and ‘Order of Subject, Object and 520

Verb’ (81A) features, as provided by WALS (Dryer, 521

2013b,a). These features have high language cov- 522

erage, which makes our analysis as comprehensive 523

7The original XTREME dataset has almost 800 citations as
of writing, XTREME-R, which is an extension of the original,
more than 100.

8See Appendix E, Figure 9.
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Anastasopoulos (2019) demonstrates that when a 501

language set contains a skew towards a certain lan- 502

guage family, simply taking the micro average over 503

all languages for evaluation gives an overestima- 504

tion of performance. While family can serve as 505

a proxy for typological diversity, we here present 506

an analysis based directly on typological charac- 507

teristics. In this way, we gain more fine-grained 508

insights into the effects of typologically skewed 509

language selection for model evaluation. 510

Specifically, we use XTREME-R (Ruder et al., 511

2021), a popular7 ‘typologically diverse’ multi- 512

lingual benchmark covering several tasks and do- 513

mains. XTREME-R contains and expands upon 514

ten existing datasets. As a result, not all tasks are 515

available in all languages; while there are 50 unique 516

languages in total, the number of languages per task 517

ranges from 7 to 48.8 We group these languages 518

by the ‘Prefixing vs. Suffixing in Inflectional Mor- 519

phology’ (26A) and ‘Order of Subject, Object and 520

Verb’ (81A) features, as provided by WALS (Dryer, 521

2013b,a). These features have high language cov- 522

erage, which makes our analysis as comprehensive 523

7The original XTREME dataset has almost 800 citations as
of writing, XTREME-R, which is an extension of the original,
more than 100.

8See Appendix E, Figure 9.
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ten existing datasets. As a result, not all tasks are 515

available in all languages; while there are 50 unique 516
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What does this mean for evaluation?

Subtask Model Overall By F �
Strong

Pre
Weak
Pre

Equal
Pre & Suf

Strong
Suf

Weak
Suf

Little
Aff NA

Mewsli-X
H XLM-R-L 45.75 (11) 36.23 (11) -9.52 - (0) - (0) - (0) 47.86 (10) 24.60 (1) - (0) - (0)

mBERT 38.58 (11) 27.29 (11) -11.29 - (0) - (0) - (0) 41.09 (10) 13.50 (1) - (0) - (0)

XNLI
©

XLM-R 79.24 (15) 76.54 (15) -2.70 - (0) 71.20 (1) - (0) 80.06 (12) - (0) 78.35 (2) - (0)
mBERT 66.51 (15) 60.17 (15) -6.35 - (0) 49.30 (1) - (0) 68.60 (12) - (0) 62.60 (2) - (0)
mT5 84.85 (15) 82.92 (15) -1.92 - (0) 80.60 (1) - (0) 85.57 (12) - (0) 82.60 (2) - (0)

LAReQA
H XLM-R-L 40.75 (11) 40.54 (11) -0.22 - (0) - (0) - (0) 40.88 (9) - (0) 40.20 (2) - (0)

mBERT 21.58 (11) 19.24 (11) -2.35 - (0) - (0) - (0) 22.92 (9) - (0) 15.55 (2) - (0)

XQuAD
´

XLM-R-L 77.21 (11) 77.24 (11) +0.04 - (0) - (0) - (0) 77.19 (9) - (0) 77.30 (2) - (0)
mBERT 65.05 (11) 61.84 (11) -3.21 - (0) - (0) - (0) 66.89 (9) - (0) 56.80 (2) - (0)
mT5 81.54 (11) 80.55 (11) -0.99 - (0) - (0) - (0) 82.10 (9) - (0) 79.00 (2) - (0)

MLQA
´

XLM-R-L 72.71 (7) 73.33 (7) +0.62 - (0) - (0) - (0) 72.47 (6) - (0) 74.20 (1) - (0)
mBERT 61.30 (7) 60.84 (7) -0.46 - (0) - (0) - (0) 61.48 (6) - (0) 60.20 (1) - (0)
mT5 75.59 (7) 75.97 (7) +0.38 - (0) - (0) - (0) 75.43 (6) - (0) 76.50 (1) - (0)

Tatoeba
© XLM-R 77.29 (41) 64.92 (36) -12.36 - (0) 31.30 (1) 58.60 (1) 82.10 (28) 76.37 (3) 77.43 (3) 63.74 (5)

mBERT 43.33 (41) 32.03 (36) -11.30 - (0) 12.10 (1) 31.00 (1) 49.24 (28) 39.27 (3) 32.90 (3) 27.68 (5)

UD-POS
´ XLM-R-L 74.96 (38) 71.12 (36) -3.84 - (0) - (0) 74.30 (1) 79.75 (28) 71.05 (2) 45.98 (5) 84.50 (2)

mBERT 70.90 (38) 64.43 (36) -6.47 - (0) - (0) 59.30 (1) 75.51 (28) 60.75 (2) 48.66 (5) 77.95 (2)

XCOPA
©

XLM-R 69.22 (11) 65.93 (9) -3.28 - (0) 61.80 (1) - (0) 73.93 (6) - (0) 75.30 (2) 52.70 (2)
mBERT 56.05 (11) 54.75 (9) -1.30 - (0) 52.20 (1) - (0) 57.70 (6) - (0) 56.20 (2) 52.90 (2)
mT5 74.89 (11) 73.24 (9) -1.65 - (0) 74.10 (1) - (0) 78.00 (6) - (0) 77.60 (2) 63.25 (2)

WikiANN-NER
´ XLM-R-L 64.43 (48) 62.02 (40) -2.41 - (0) 69.90 (1) 62.10 (1) 66.92 (31) 61.37 (3) 48.17 (4) 63.66 (8)

mBERT 62.68 (48) 61.73 (40) -0.95 - (0) 72.70 (1) 65.00 (1) 64.93 (31) 57.23 (3) 49.38 (4) 61.12 (8)

TyDiQA
´

XLM-R-L 64.29 (9) 62.57 (8) -1.72 - (0) 66.40 (1) - (0) 65.67 (6) - (0) 59.10 (1) 59.10 (1)
mBERT 58.36 (9) 55.09 (8) -3.26 - (0) 59.70 (1) - (0) 60.97 (6) - (0) 46.20 (1) 53.50 (1)
mT5 81.94 (9) 83.73 (8) +1.78 - (0) 87.20 (1) - (0) 80.52 (6) - (0) 83.60 (1) 83.60 (1)

Table 2: XTREME-R results grouped by inflection type. Overall refers to the average over all languages. By Feature
is the average of the WALS feature averages, excluding languages for which there is no coverage. The delta shows
the difference of Overall and By F. Tasks that have coverage for all their included languages are on top, those
partially covered are in the bottom portion. Morphological inflection types are: Aff = affixing, Suf = suffixing, Pre
= prefixing and NA referring to Not Available (in WALS). The highest and the lowest non-zero number of languages
per grouping are highlighted. The (italicized) number refers to the number of languages in a particular subset.
Metrics: © = Accuracy, H = mAP@20, ´ = F1.

as possible. Table 2 shows groupings and coverage524

of the inflectional feature, the word order analysis525

is included in Appendix D, Table 5.526

Firstly, we see that XTREME-R contains a skew527

in terms of morphological inflection. For all tasks,528

the majority of languages are strongly suffixing529

(see orange cells). Some feature values, such as530

equal prefixing and suffixing and weak prefixing531

are underrepresented, with at most one language532

per subtask. Remarkably, strong prefixing does533

not appear in XTREME-R at all. This implies534

that one should be careful with the implication of535

generalizability that evaluating on a ‘typologically536

diverse’ dataset gives.537

The delta column shows the difference between538

the macro average over all languages and the macro539

average per feature value. Here, we observe simi-540

lar patterns as in Anastasopoulos (2019), namely541

that estimations of multilingual model performance542

vary considerably when accounting for typological543

imbalances. We suggest that drawing and imply-544

ing generalizable conclusions about typologically545

diverse evaluation should ideally be supported by546

showing that performance holds across a range of547

typological properties.548

7 Insights and Recommendations 549

We systematically analyze claims of ‘typological 550

diversity’ in NLP research. We approximate diver- 551

sity in terms of average syntactic language distance 552

(MPSD) and absolute typological feature value in- 553

clusion in Grambank. Our analysis shows that (1) 554

there is no consistent definition or methodology 555

when making ‘typological diversity’ claims, (2) our 556

estimates of typological diversity exhibit a consid- 557

erable variation across papers and (3) aggregated 558

results can give distorted views of multilingual per- 559

formance estimates. 560

We recommend future approaches to include an 561

operationalization of ‘typological diversity’ when 562

making such claims. This can be in terms of gen- 563

eralizability or regarding a particular typological 564

phenomenon of interest. Additionally, we recom- 565

mend adding an empirical justification, especially 566

when claims relate to generalizability. The fea- 567

ture value inclusion, MPSD or PCA plots we have 568

shown are examples of these justifications. Includ- 569

ing these has the potential to benefit multilingual 570

NLP, as it enables more fine-grained insights into 571

typological challenges of language modelling. 572
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When it comes to ‘typological diversity’ in NLP …

• There are no set definitions or criteria

• There is no consistent link with linguistic typology

• According to our approximations, the actual typological diversity varies considerably

• This can affect downstream evaluation

Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is' Typological Diversity'in NLP?. arXiv preprint arXiv:2402.04222.
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Ok... But how could we actually improve upon this?

“A Principled Framework for Evaluating on Typologically Diverse Languages”
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Bell, A. (1978). Language samples. Universals of human language, 1, 123-156.
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Sampling universe

Bell, A. (1978). Language samples. Universals of human language, 1, 123-156.

Sampling frame

Sample
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Linguistic typology (example):

• Goal: investigate relations between typological properties
• Resources: sample from diverse families and areas
• Sampling methods: random, variety or probability sampling

Multilingual NLP (example):

• Goal: see how well a language model performs on typologically diverse languages
• Resources: sample from diverse families and areas

 Actually… there is no circularity if we do not investigate typological features directly!
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A Principled Framework for Evaluating on
Typologically Diverse Languages

Anonymous submission
Abstract

morbi tristique senectus et netus et malesuada fames ac turpis egestas integer eget aliquet nibh praesent tristique
magna sit amet purus gravida quis blandit turpis cursus in hac habitasse platea dictumst quisque sagittis purus sit
amet volutpat consequat mauris nunc congue nisi vitae suscipit tellus mauris a diam maecenas sed enim ut sem
viverra aliquet eget sit amet tellus cras adipiscing enim eu turpis egestas pretium aenean pharetra magna ac placerat
vestibulum lectus mauris ultrices eros in cursus turpis massa tincidunt dui ut ornare lectus sit amet est placerat in
egestas erat imperdiet sed euismod nisi porta lorem mollis aliquam ut porttitor leo a diam sollicitudin tempor id eu
nisl nunc mi ipsum faucibus vitae aliquet nec ullamcorper sit amet risus nullam eget felis eget nunc lobortis mattis
aliquam faucibus purus in massa tempor nec feugiat nisl pretium fusce id velit ut tortor pretium viverra suspendisse
potenti nullam ac tortor

Keywords: keyword1, keyword2, keyword3

1. Introduction
Multilingual pre-trained language models such as
XLM-R (Conneau et al., 2020) and multilingual
BERT (Devlin et al., 2019) facilitate cross-lingual
transfer into languages for which there are limited or
no monolingual models available. This has made
them increasingly popular in few-shot or zero-shot
scenarios. For assessing whether such a model
performs well across languages, ideally, one would
evaluate it on all languages. However, collection
of high-quality data on such a scale is not realistic.
Therefore, multilingual models are evaluated on a
subset of the world’s languages. To ensure gener-
alizability, these languages should be diverse, one
of the axes is typological diversity. This means test-
ing on languages with varying characteristics and
properties. However, approaching this so far has
not been optimal: there is no clear terminology and
methodology for what constitutes ‘typological diver-
sity’. Currently, most approaches use phylogeny or
genus to estimate or ensure ‘typological diversity’,
either in language selection for dataset creation or
for multilingual model evaluation.

In this paper, we show that this approximation of
typological diversity through language phylogeny
has severe shortcomings, and provide a framework
for selecting languages based on typological dis-
tance measures. Furthermore, as the inclusion of
�rare’ features is essential for making broad claims
about a language model’s capabilities on human
language as a whole, we add this into our frame-
work by allowing for weighing in feature value rel-
evance. Moreover, we find that some typological
similarities are more conducive for facilitating cross-
lingual transfer than others. We accommodate for
this in our framework by quantifying and weighing
transfer learning relevance of individual typological
features.

Our findings suggest that ...write
about
post-hoc
and down-
stream
results
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Figure 1: Language selection by measuring dis-
tance from typological vectors.

Our contributions include the following:

• We establish that phylogeny is limited when it
comes to assessing typological diversity

• We provide a systematic framework for select-
ing typologically relevant diverse languages
for multilingual evaluation scenarios

• We reveal the importance of individual typolog-
ical similarities for transfer learning

• We provide an online resource that aims to
facilitate typologically diverse language selec-
tion

2. Related Work
Computational typology Linguistic typology is
a field of linguistics that investigates and classi-
fies human languages according to their structural
and functional features (Comrie, 1988). A num-
ber of such classifications have accumulated into

1
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Sampling algorithm objectives

MaxSum MaxMin
Sample k languages from N, where we iteratively 
add the next point that yields the largest 
summed distance.

Sample k languages from N, where we iteratively 
add the next point that yields the maximum 
minimum distance between any two points in k.

Variety sampling!
Probability sampling!
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How do our typology-based sampling methods compare to genealogical baselines?
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Using linguistic typology for the 

Interpreting

Evaluating

Improving

of multilingual language models

The Past, Present, and Future of Typological Databases in NLP (Baylor et al., Findings 2023)

Linguistic Typology in NLP
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What are relevant improvements given the current state of multilingual NLP?

• Low-resource scenarios

• Efficiency
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Improving multilingual NLP with typology?

Üstün, A., Bisazza, A., Bouma, G., & Noord, G. V. (2022). UDapter: Typology-based language adapters for multilingual dependency parsing and sequence labeling. Computational Linguistics, 48(3).

Üstün et al. Typology-based Language Adapters for Multilingual Parsing

URIEL
Language
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mBERT

Task-Specific Layer

Italian Chinese Turkish
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(a) Multilingual Fine-tuning on HR
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Lang. Adapter

mBERT
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Kazakh Belarussian Tamil

... ...
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Language
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Database

(b) Zero-shot Evaluation on LR

Figure 1
Overview of UDapter experimental setup. We start with mBERT, and fine-tune it multilingually
on 13 high-resource (HR) languages (1a). For low-resource (LR) languages, we evaluate
UDapter in a zero-shot setup (1b). For zero-shot evaluation, the only source of information is the
URIEL database (Littell et al. 2017) that provides typological features of the languages.

attention respectively; and s(arc)
i,j is the probability distribution for the corresponding arc.

Label scores are calculated similarly by using another biaffine classifier over two sepa-
rate feedforward layers. Finally, the Chu-Liu/Edmonds algorithm (Chu 1965; Edmonds
1967) is used to find the highest-scoring valid dependency tree.

POS Tagging, Morphological Tagging, and NER. We use task-specific linear layers followed
by a softmax along output classes to score labels as in a standard neural sequence
labeling architecture:

s(label)
i = softmax(WT

taskri) (5)

where Wtask are the weights of the linear layer for the target task and s(label)
i is the

probability distribution for the output labels for word i.
For morphological tagging, we experiment both with predicting morphological

attributes of a word as a separate label, namely, an unfactored tag string (Inoue, Shindo,
and Matsumoto 2017), and jointly predicting the value of each individual morphological
attribute such as aspect, case, tense, and number (Kondratyuk et al. 2018). The first
method predicts one label per word by concatenating all its morphological tags. The
latter method predicts each morphological tag separately with separate softmax layers

561
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Üstün et al. Typology-based Language Adapters for Multilingual Parsing

(a) (b) (c)

Figure 8
(a) Impact of language typology features on parsing performance (LAS). (b) Average zero-shot
parsing results for 13 low-resource languages with a proxy. (c) Average normalized feature
weights obtained from linear projection layer of the language embedding network.

the use of centroid embedding performs very poorly: 9.0 vs. 36.5 average LAS over 30
languages.

As discussed in Section 6, a better alternative is using the embedding of a proxy
language belonging to the same family as the evaluated low-resource language, if
available. In our setup, this is possible for 13 low-resource languages (see Appendix C
for the detailed list). As shown in Figure 8b, UDapter outperforms proxy embeddings
even on this subset of languages.

Taken together, these results show that a model can learn reliable language em-
beddings directly from the data. However, this type of adaptation can only benefit
in-training languages at the expense of zero-shot performance. By contrast, using
typological information to condition language embeddings allows UDapter to achieve
improvements on the high-resource languages while preserving (or even improving)
zero-shot performance. As opposed to our model, UDify (multi-udify) achieves compet-
ing performance in zero-shot languages with a cost in parsing quality for high-resource
languages due to the limited language-specific capacity.

7.4 How and When to Jointly Predict Typological Features?

The main results (Section 6.3) show that predicting typology jointly with dependency
parsing leads to similar parsing accuracy as our base model. Moreover, when compared
to no-prediction models, joint prediction improves zero-shot parsing performance in
terms of LAS. In the main experiments, we used all syntax, phonology, and inventory
features, for a total of 289 binary features, some of which are not annotated for many
languages. However, URIEL (Littell et al. 2017) also provides geographical features
(geo) representing distances to fixed points on the surface of the earth (i.e., geographical
locations). These features are instead available for all languages. Figure 9 shows the
parsing results when geo features are used in the corresponding model. Although the
contribution of geo features for high-resource languages is very limited (9a), for low-
resource languages, geo features considerably improve parsing performance, leading
to a model that is very competitive with udapter-knn with the additional advantage of
not requiring external predictions. By contrast, udapter-knn does not benefit from the
addition of geo features as these were already used for KNN prediction.

575

“The main limitation in our 
approach remains the low 
representation quality for 
languages with zero or little 
data in the pre-trained 
encoder (multilingual pre-
training).“

Üstün, A., Bisazza, A., Bouma, G., & Noord, G. V. (2022). UDapter: Typology-based language adapters for multilingual dependency parsing and sequence labeling. Computational Linguistics, 48(3).

Üstun et al. (2022): UDapter
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Blevins, T., et al. (2024). Breaking the Curse of Multilinguality with Cross-lingual Expert Language Models. arXiv preprint arXiv:2401.10440.

Blevins et al. (2024): X-ELM
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Figure 1: Overview of the X-ELM pretraining procedure. Left: We partition the multilingual text corpus into k
subsets either through automatic TF-IDF clustering of documents or through grouping languages by linguistic

typology. Center: Branch-Train-Merge (BTM) pretraining method. We initialize (branch) k experts from a seed
LM, train each expert on a different cluster from the pretraining corpus, and merge the experts into a set of X-ELMs.
Right: Hierarchical Multi-Round (HMR) training procedure (§4).

ing a set of X-ELMs is more computationally effi-
cient than a comparable dense model; each expert is
trained independently, which removes the overhead
cost of cross-GPU synchronization (Li et al., 2022)
and allows experts to be trained asynchronously in
low-compute settings. Similarly, adapting X-ELMs
to new languages is more efficient than continued
training of a dense LM and does not risk catas-
trophic forgetting of previously seen languages, as
adding a new X-ELM does not change the existing
experts. As a result, X-ELMs allow much more effi-
cient modeling than prior multilingual approaches,
democratizing work on building and improving
multilingual systems.

2 Background: Branch-Train-Merge

Multilingual LMs are typically trained in a dense

manner, where a single set of parameters are up-
dated with every training batch. When training
large LMs, the dense training setup calculates gradi-
ents on and synchronizes model parameters across
many GPUs.1 This requires all GPUs to be avail-
able simultaneously and incurs communication
costs that prolong training.

Branch-Train-Merge (BTM; Li et al. 2022) alle-
viates this cost by dividing the total compute among
smaller expert language models that are trained in-
dependently on different domains (or subsets of a
corpus) and then combined during inference time.
While the total number of parameters increases
with the number of experts, inference with these

1For example, the XGLM-7.5B model “was trained on 256
A100 GPUs for about 3 weeks” (Lin et al., 2022).

models often uses a subset of experts (see §3.3),
keeping inference costs manageable.

c-BTM (Gururangan et al., 2023) generalizes the
above approach with cluster-based representations
of domains. Across multiple corpora, they show
that (1) the optimal number of experts increases
with data and compute and (2) a set of small expert
models performs similarly to equivalently sized
dense models at vastly reduced FLOP budgets.

Our work extends these studies to the multilin-
gual setting, in which experts are specialized to
different languages instead of (primarily) English-
language domains. In the multilingual setting, we
can also use typological structure to specialize ex-
perts, which we show provides additional benefits
over automatic data clustering. We also demon-
strate that training along the hierarchy of language
families in multiple rounds yields further perfor-
mance benefits.

3 Cross-lingual Expert Language Models

Multilingual language models are jointly trained
on many different languages (e.g., Lin et al., 2022),
despite the well-documented curse of multilingual-
ity that comes from the competition between lan-
guages for fixed model capacity (Conneau et al.,
2020; Wang et al., 2020). We propose Cross-
lingual Expert Language Models, or X-ELMs,
to address this performance disparity (Figure 1).
These experts are trained with x-BTM, an exten-
sion of the Branch-Train-Merge (BTM) pretraining
paradigm (Li et al., 2022; Gururangan et al., 2023):
we asynchronously train many expert LMs on sub-
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Blevins et al. (2024): X-ELM

Figure 4: Average and language-specific (EN and SW) perplexities across expert counts (k) when clustering with
TF-IDFtop1 (square) and Linguistic Typology (triangle). The best k for each setting is marked with a star.

5 Experimental Design

We present a series of experiments to test whether
the X-ELM pretraining paradigm remedies the de-
crease in individual language performance ob-
served in dense multilingual models.

5.1 Pretraining Data and Languages
We train our X-ELMs on mC4, an open-source, mul-
tilingual pretraining corpus derived from Common-
Crawl (Xue et al., 2021).5 mC4 provides language
tags for each document in the corpus, which were
automatically assigned with cld36 when the dataset
was constructed; we use these language tags dur-
ing typological clustering (§3.2). We focus our
experiments on the 16 highest-resourced languages
out of the 30 languages on which the seed LM,
XGLM-1.7B, was trained. For languages with sig-
nificantly more data than the others (e.g., English),
we subsample their data to the first 1,024 shards.
Appendix Table 5 gives the languages and data
quantities in our pretraining corpus.

5.2 Pretraining Settings
Each expert in the X-ELM experiments is a 1.7B
parameter model with the same architecture as the
1.7B XGLM transformer model (Lin et al., 2022),
and they are initialized with XGLM’s weights in
the initial round of BTM training. Unless otherwise
stated, we keep the training parameters from the
original XGLM training procedure; further details
are given in Appendix A.1.

We train the experts for a fixed number of train-
ing steps. The exact parameters and resources used
for each X-ELM experiment are reported in Table
4: in every setting, we control for the number of

5While one could also continue pretraining with the same
corpus that the seed LM was trained on, the pretraining data
for XGLM is not publicly available.

6https://github.com/google/cld3

tokens seen during training. This ensures that all ex-
perts in a setting see the same amount of data (and
undergo the same number of training updates) and
that experiments across different expert set sizes
but under the same training budget are comparable.
For most experiments, we use a shared budget of
10.5B tokens; where indicated, we increase this to
21.0B tokens to test the effect of further training.

5.3 Perplexity Evaluation
To evaluate the language modeling performance of
the X-ELMs, we separately calculate the perplex-
ity on the mC4 validation sets of each pretraining
language. For languages with larger evaluation
sets, we estimate performance on the first 5,000
validation examples. This perplexity metric is not
comparable across languages, as they have differ-
ent validation sets.

6 Language Modeling Experiments

We now test the effectiveness of sparse language
modeling in the multilingual setting. First, we
determine the optimal number of clusters for our
given compute budget and dataset (§6.1). We then
demonstrate that X-ELMs outperform comparable
dense models on seen languages (§6.2) and more
effectively adapt to new, unseen languages (§6.3).
Finally, we examine the effect of sparse training on
forgetting previously-held knowledge of languages
in specific X-ELM experts (§6.4).

6.1 Choosing the Number of X-ELMs
We first consider which choice of k clusters
gives the best multilingual language modeling
performance. Figure 4 compares the choice of
k = 1, 4, 8, 16 X-ELMs when trained on 10.5B to-
kens.7 k = 8 is the best-performing setting on 75%

7The k = 16 setting is equivalent to training monolingual
experts for every language. Full results are in Table 1 for
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Main RQ:
(How) can we leverage typological groupings in MNMT to 
maximize transfer between related languages and minimize 
negative inference (to improve performance)?
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Figure 2: Different types of encoder layer sharing in the mod-
ular architecture. Note that the width of layers in the figure
does not correspond to the actual width but rather reflects the
sharing extent, i.e. all layers in the encoder have the same
width dimension. U – universal, G – Germanic, R – Romance.

In this paper, we focus on improving the overall
translation quality by using different knowledge-
and layer-sharing methods. More specifically, we
investigate the effect of sharing encoder layers to
improve the generalizability and quality of NMT
models. Secondly, we present novel language
group based models that are inspired by the univer-
sal and modular systems. We propose (1) various
degrees of granularity (or specificity) of modules
(illustrated in Fig. 1); (2) layer sharing, includ-
ing combining layers of various granularities into
a tiered architecture (illustrated by Fig. 2). Our
methods show better translation quality in all test-
ing scenarions compared to the universal model
without increasing training or inference time by
having variable degrees of modularity or sharing
in the encoder.

Our research looks beyond zero-shot and high-
resource NMT performance – we set up our ex-
periments to investigate model performance for
many data scenarios like zero-shot and low- to
high-resource settings. We use a combination
of Europarl (Koehn, 2005), EMEA (Tiedemann,
2012), and JRC-Acquis (Steinberger et al., 2006)
datasets for training and evaluation and six lan-
guages grouped into two language groups: Ger-
manic (German, English, Danish) and Romance
(French, Spanish, Portuguese). The results show
that our approaches can provide an improvement
to universal models in all data scenarios. Further-
more, our approaches improve the zero-shot and
low-resource translation quality of the modular ar-
chitecture without harming the high-resource lan-
guage translation quality.

The main contributions of our paper are:

• We introduce a novel language-group-
specific modular encoder and decoder
architecture (Fig. 1b).

• Showing that different architectures of shared
encoder layers (Fig. 2) improve the low-
resource MT quality of the modular model
while also improving the high-resource MT
quality that suffers in the universal NMT set-
ting.

• We empirically show what effect sharing en-
coder layers has and present a detailed analy-
sis that supports layer sharing.

2 Related Works

Multilingual neural machine translation models
follow the encoder-decoder architecture and ap-
proaches following this architecture can vary in the
amount of parameter sharing (Dabre et al., 2020).

The most straightforward approach with no pa-
rameter sharing would be having a system of uni-
directional models. While it is feasible with a
small amount of high-resource languages, it be-
comes problematic in scenarios with low-resource
languages or a large number of languages. Firstly,
the number of uni-directional models in the sys-
tem grows quadratically with the number of lan-
guages, harming maintainability. Secondly, there
is no transfer learning between language pairs due
to separate models, which means that low-resource
languages generally have low translation quality.
These issues are addressed by pivoting with some
success, however, it does not come without trade-
offs (Habash and Hu, 2009). The main problem
with pivoting is that it is not possible to fully uti-
lize all the training data since we only use training
data that contains the pivot language. Furthermore,
due to multiple models being potentially used for
a translation, the translation is slower, and there is
a chance of error propagation and loss of informa-
tion.

The most widely used approach in multilingual
NMT uses a fully shared (universal) model, which
has a single encoder and decoder shared between
all the languages and uses a token added to the in-
put sentence to indicate the target language (John-
son et al., 2016). Arivazhagan et al. (2019) iden-
tified that the universal model suffers from the
capacity bottleneck: with many languages in the
model, the translation quality begins to deteriorate.

Subquestions:
1. Are typological groupings more useful than genealogical 

groupings?
2. What is the eGect of typologically-informed parameter 

sharing on source language interference?
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In typological databases, language are described with concrete datapoints

Current issues

Feature 83A: Order of Object and VerbFeature 82A: Order of Subject and Verb

Matthew S. Dryer. 2013. Order of Subject and Verb. In: Dryer, Matthew S. & Haspelmath, Martin (eds.) WALS Online (v2020.3)
Matthew S. Dryer. 2013. Order of Object and Verb. In: Dryer, Matthew S. & Haspelmath, Martin (eds.) WALS Online (v2020.3)



In typological databases, language are described with concrete datapoints

Current issues

“Multilingual NLP is challenging.”

“Can we leverage this information for NLP?”

SV:

VS:



In typological databases, language are described with concrete datapoints

Current issues

“Word order variability should be 
regarded as a basic assumption, 
rather than as something exceptional.”
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“Gradient approaches follow naturally 
from the emergentist usage-based 
view of languages …”

Levshina, Natalia, et al. "Why we need a gradient approach to word order." Linguistics (2023).



Does this matter for NLP?

Current issues



Does this matter for NLP?

Current issues

• Language models are trained on text

• Ponti et al. (2019):

”this sort of gradient representation is also more compatible 
with machine learning algorithms and particularly with deep 
neural models that naturally operate with real-valued multi- 
dimensional word embeddings and hidden states.”

Ponti, E. M. et al. (2019). Modeling language variation and universals: A survey on typological linguistics for natural language processing. Computational Linguistics, 45(3), 559-601.



A Solution?

Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL. 

• A method for retrieving gradient word order typology from UD treebanks

• A dataset with continuous word order values

• A new typological feature prediction task with baseline results

Contributions:



Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL. 

• Ordering of adjectives and their nouns
• Ordering of numerals and their nouns
• Ordering of subjects and verbs
• Ordering of objects and verbs 
• Ordering of objects and subjects 

Five word order features:

A Solution?



Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL. 

for all d 2 UD Datasets do

na 0 . na is the Noun-Adj count
an 0 . an is the Adj-Noun count
for all sentence s 2 d do

na na+ count Noun-Adj in s
an an+ count Adj-Noun in s

end for

na_proportion na
na+an

end for

Figure 2: Pseudocode depicting our process of collect-
ing data for one linguistic feature.

proportion of Adjective-Noun vs. Noun-Adjective143

instances that occur in the dataset.144

We repeat this process for every dataset in UD145

that includes the necessary Noun and Adjective146

part of speech annotations. This algorithm is de-147

scribed in pseudocode in Figure 2. Because some148

languages have multiple datasets in UD, these lan-149

guages have multiple Adjective-Noun and Noun-150

Adjective proportion datapoints. In the case of our151

seed dataset, we were able to extract information152

from 132 different UD datasets, within which there153

are 91 unique languages.154

For this seed dataset, we extract data for five155

features:156

1. Ordering of adjectives and their nouns157

2. Ordering of numerals and their nouns158

3. Ordering of subjects and verbs159

4. Ordering of objects and verbs160

5. Ordering of objects and subjects161

Each feature required manual adjustments of the162

dataset creation code in order to extract the neces-163

sary part of speech information from the annotated164

UD data. These changes are small overall, gener-165

ally requiring only an adjustment of the UD tags166

being matched. The tags we used can be found in167

Table 4 of Appendix A.168

3.2 Value Distributions169

As figure 1 demonstrates, each feature’s data cre-170

ates a different distribution across the range of pos-171

sible proportions. Using these raw proportions al-172

lows us to observe linguistic differences between173

languages that would previously be collapsed into174

the same category. This is made especially clear by175

the visualization of WALS data (black) in 1, which176

is a much more limited distribution than its Noun 177

Adjective counterpart in yellow. 178

4 Proposed Task and Baseline Models 179

Because previous categorical typological datasets 180

are a core part of many of the previous typology- 181

related NLP tasks, these tasks also suffer from 182

many of the problems that the datasets do. Ex- 183

amples of these tasks include typological feature 184

prediction (Bjerva et al., 2020), low-resource lan- 185

guage vocabulary prediction (Rani et al., 2023), 186

and language identification from speech (Salesky 187

et al., 2021). It is for this reason that we introduce, 188

along with the seed dataset, a new task predicting 189

these novel continuous typological features. Unlike 190

the previous typological prediction tasks, the one 191

we present here is regression-based. 192

4.1 Baseline Models 193

As a baseline, we have used pretrained language 194

vectors from Östling and Tiedemann (2017) and 195

Malaviya et al. (2017) as input to simple linear 196

regression models, which are then trained to predict 197

the continuous feature values. For these models, 198

we use the following: 199

Y = X� + " 200

where X is a matrix made up of pretrained lan- 201

guage vectors, Y is a vector made up of the input 202

language vectors’ corresponding typological fea- 203

ture values, � is the vector of learned regression 204

coefficients, and " is the bias vector. We use the 205

Scikit-learn (Pedregosa et al., 2011; Buitinck et al., 206

2013) implementation of linear regression to train 207

the model, which does so by minimizing the resid- 208

ual sum of squares between the real feature values 209

and the predicted feature values. 210

As a comparison, we have also rounded each 211

proportion to 0 or 1 (with all numbers 0.5 and above 212

going to 1), and have used these to train logistic 213

regression models from the same input language 214

vectors to simulate a still-categorical version of the 215

data. In this case, we use the following: 216

Y =
1

1 + e(��X��0)
217

where X is again a matrix made up of pretrained 218

language vectors, Y is again a vector made up of 219

the input language vectors’ corresponding typolog- 220

ical feature values, and � and �0 are the learned 221

parameters. Again, we employ the Scikit-learn 222

3

A Tags for algorithm beyond476

Adjective-Noun order477

POS UD upos value UD deprels value

Noun NOUN –
Adjective ADJ amod

Numeral NUM nummod

Subject – nsubj

Object – obj

Verb VERB –

Table 4: Tags used to extract the necessary parts
of speech from the Universal Dependencies treebank
(Nivre et al., 2020). Dashes indicate that that value did
not need to be specified.

B Geographical distribution of478

Adjective-noun gradient479

Figure 3: Distribution of gradient values for adjective-
noun order in Western-European geographical area.
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132 UD treebanks, within which there are 91 unique languages

A Solution?
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Abstract

While information from the field of linguis-
tic typology has the potential to improve per-
formance on NLP tasks, reliable typological
data is a prerequisite. Existing typological
databases, including WALS and Grambank,
suffer from inconsistencies primarily caused
by their categorical format. Furthermore, ty-
pological categorisations by definition differ
significantly from the continuous nature of phe-
nomena, as found in natural language corpora.
In this paper, we introduce a new seed dataset
made up of continuous-valued data, rather than
categorical data, that can better reflect the vari-
ability of language. While this initial dataset fo-
cuses on word-order typology, we also present
the methodology used to create the dataset,
which can be easily adapted to generate data
for a broader set of features and languages.

1 Introduction

Data from the field of linguistic typology has the
potential to be useful in training NLP models (Ben-
der, 2016; Ponti et al., 2019). However, the main
existing typological databases, WALS (World At-
las of Language Structures) (Dryer and Haspel-
math, 2013) and Grambank (Skirgård et al., 2023),
contain inconsistent and contradictory information
(Baylor et al., 2023). These issues stem, in large
part, from the categorical format of the data, which
is over-simplistic and therefore cannot capture the
nuance and variability that exist in natural lan-
guage.

For example, one of the features describes the
ordering of adjectives and the noun they mod-
ify. The categories in these datasets are Noun-
Adjective, Adjective-Noun, or Variable. Limit-
ing the options to these three categories removes
any information differentiating a language that em-
ploys Noun-Adjective ordering 10% of the time
from one that does so 90% of the time. In addi-
tion, the threshold between the Noun-Adjective and

* These authors contributed equally to this work.

Figure 1: Proportion of languages with proportion of
relevant words ordered as labeled, by feature. The black
represents WALS Noun Adjective categories, with the
far left being the Adjective Noun languages, the far right
being the Noun Adjective languages, and the center
being the variable languages. All other distributions
come from our dataset.

Adjective-Noun categories and the Variable cate-
gory is often not clear, which can lead to inconsis-
tencies in the data. As an example, the same 90%
Noun-Adjective language might be classified as
Variable in one database, but might be seen as con-
sistently Noun-Adjective enough to be classified in
the Noun-Adjective category in another database.

In this paper, we apply recommendations pre-
sented in Levshina et al. (2023) and extend their
analysis by introducing a new continuous-valued ty-
pological dataset that removes the need to oversim-
plify data into categories. In particular, we focus
on word-level typology, and present a method for
extracting gradient typology that utilizes the part
of speech annotations available in the Universal
Dependencies (UD) treebank corpus (Nivre et al.,
2020). We then propose a novel regression-based
typology task.

This new dataset and the methods used to create
it are beneficial not only to NLP, but also potentially
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A Solution?



Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL. 

Order of adjective and noun

A Solution?



Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL. 

• Predict typological features based on for instance language embeddings

• Language-level probing of multilingual models

• Logistic regression (e.g. Malaviya et al., 2017; Östling and Kurfalı, 2023)

So far:

A Solution?



Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL. 

A new baseline:

• Probing with linear regression

• Language embeddings: 
• Östling and Tiedemann (2017)
• Malaviya et al. (2017)

• Compare with logistic regression by rounding the values in our dataset 

A Solution?



Baylor, E., Ploeger, E., & Bjerva, J. (2024). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings EACL. 

Östling Linear Regr. Östling Logistic Regr. Malaviya Linear Regr. Malaviya Logistic Regr.

Noun-adjective 0.146 0.261 0.141 0.378
Noun-numeral 0.140 0.132 0.129 0.399
Subject-verb 0.0781 0.306 0.101 0.156
Object-verb 0.169 0.237 0.0757 0.122
Object-subject 0.0127 – 0.0349 0.00940

Table 2: Mean squared error scores for linear regression and logistic regression models for each feature, using
language vectors from Östling and Tiedemann (2017) and Malaviya et al. (2017). Better scores are closer to 0.

Östling Linear Regr. Östling Logistic Reg. Malaviya Linear Regr. Malaviya Logistic Regr.

Noun-adjective -0.0423 -1.41 0.0810 -0.780
Noun-numeral 0.246 -3.15 -14.0 -2.45
Subject-verb -0.233 -1.21 -0.627 -0.776
Object-verb -0.137 -3.12 0.00891 -0.486
Object-subject -0.299 – -0.277 -1.84

Table 3: r2 scores for linear regression and logistic regression models for each feature, using language vectors from
Östling and Tiedemann (2017) and Malaviya et al. (2017). Better scores are closer to 1.

(Pedregosa et al., 2011; Buitinck et al., 2013) im-223

plementation, which aims to find the optimal values224

of � and �0 by minimizing the log likelihood of225

the data.226

For all models, both linear and logistic, we227

trained on a subset of the available languages, and228

display results, measured both in mean squared229

error and r2 score, calculated on a held-out test230

set. Because we employed pretrained language231

vectors as part of the training process, we were232

only able to train and evaluate each feature model233

on the set of languages that had both a pretrained234

language vector, and a value in our dataset for that235

feature. Unfortunately, this meant that our training236

set for each model had only around 40 datapoints,237

while our held-out evaluation set had only around238

10 (with some slight variation depending on the239

feature and the language vector source). Detailed240

results are displayed in Tables 2 and 3.241

5 Discussion242

Given that the data at hand is continuous, and that243

linear regression models predict categorical val-244

ues while logistic regression models predict binary245

values, we expected the linear regression models246

to outperform the logistic regression models on247

this task. Indeed, the linear regression models per-248

form better on average than the logistic regression249

models, when evaluated using mean squared error250

and r2 score. While not always the case, this is251

most often true as well on the individual feature252

level. While improvements to the modelling can253

be implemented, these baselines serve as an initial254

exploration of how to approach the novel task of 255

regression-based typology prediction. 256

An important note from our statistical results, 257

is that the differences we observe between the 258

data driven distributions and typological databases 259

(Fig. 1) clearly shows the limitations of estab- 260

lished databases in terms of language descriptive- 261

ness on a fine-grained scale. This discrepancy may 262

to some extent explain the difficulty observed in 263

empirical NLP experiments, when trying to inte- 264

grate coarse-level WALS features in various NLP 265

pipelines (Ponti et al., 2019). The introduction 266

of this regression-based typology prediction task 267

may prove useful for incorporation of typological 268

features in NLP modelling - for instance by incor- 269

poration as an auxiliary task. 270

6 Conclusion 271

Information from the field of linguistic typology 272

has the potential to benefit the field of NLP. Un- 273

fortunately, the data from existing typological 274

databases has been unreliable, largely due to its 275

reliance on categorical features and those features’ 276

inability to represent the variability found in natural 277

language. In this paper, we attempt to address this 278

problem by introducing a new continuous-valued 279

seed dataset, and argue that it is indeed better able 280

to reflect the nuance of natural language. In addi- 281

tion, we provide our dataset creation methodology 282

that can be easily adapted in the future to generate 283

data for a wider array of languages and features. 284

Finally, we present a novel regression task based 285

on predicting the feature values of this new dataset. 286
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Limitations:

• Text-based typology is heavily influenced by the corpus

• Extension to more features is not trivial

• Extenion to more languages is not trivial

A Solution?



Alternative Solutions
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Can we do without typological databases as an intermediate step?

Alternative Solutions



Can we do without typological databases as an intermediate step?

Alternative Solutions

Tanzer, G., Suzgun, M., Visser, E., Jurafsky, D., & Melas-Kyriazi, L. (2023, October). A Benchmark for Learning to Translate a New Language from One Grammar Book. In The Twelfth  ICLR.

How well can a model “learn a language from a single human-readable book of grammar 
explanations, rather than a large mined corpus of in-domain data?”



Can we do without typological databases as an intermediate step?

Alternative Solutions

Tanzer, G., Suzgun, M., Visser, E., Jurafsky, D., & Melas-Kyriazi, L. (2023, October). A Benchmark for Learning to Translate a New Language from One Grammar Book. In The Twelfth  ICLR.

How well can a model “learn a language from a single human-readable book of grammar 
explanations, rather than a large mined corpus of in-domain data?”

Preprint. Under review.
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Llama 2-7B-ft

Llama 2-13B

Llama 2-13B-ft

Llama 2-70B

text-davinci-003

gpt-3.5-turbo

gpt-4

Claude 2

Human

Figure 3: chrF scores for kgv→eng (left) and eng→kgv (right) translation across experimental
settings. See Section 4.1.1 for details on the models in the legend; -ft represents finetuning on
the grammar book text. See Section 4.1.2 for details on the provided context; W represents word
list entries, S sentence pairs, Gs grammar book excerpts, Gm

∼50K grammar book tokens, Gl

∼100K grammar book tokens, and + combinations thereof. We see that quality depends both on the
underlying model and the provided reference materials, with the best results coming from Claude
2 in the W + S + Gl setting. Human performance considerably exceeds all model baselines.

then performed the translations, referring back to the training materials as references for Kalamang,
and the entire internet as a reference for anything else.10

5 RESULTS

In order to match the human baseline, we report model scores on disjoint halves (50 each) of the test
set for each translation direction, rather than the full (100) test set.11 See Figure 3 for chrF scores
across our experimental settings.12 The top baseline is Claude 2 in the W + S + Gl setting, which
achieves 44.7 chrF on kgv→eng and 45.8 chrF on eng→kgv, substantially lower than the human
baseline of 51.6 chrF and 57.0 chrF. See Figures 4 & 5 for qualitative examples of both translation
directions and analysis of model vs. human translation errors.13

Effect of scale. Models that are larger and trained on more data tend to perform better, e.g., across
the LLaMA and Llama 2 families. Though details of the API-based models are not known, models
that perform better in general tend to perform better on this particular task, e.g., gpt-4 consistently
matches or outperforms text-davinci-003.

Effect of context. Without any context (-), the models are completely unable to perform transla-
tion, relying on cues like capitalization, punctuation, and sentence length to guide the hallucinated
translations for kgv→eng and generating other languages like Indonesian for eng→kgv. Scores are
non-zero due to the nature of chrF and because models sometimes correctly copy proper nouns from
the input. The API-based models (rightfully) refuse to translate more often in this setting.

Predictably, externally retrieving context improves results. When considered individually, of the
kinds of retrieved context, sentences (S) are the most beneficial, followed by entries from the word
list (W), followed by excerpts from the grammar book (Ge and Gs; LCS consistently outperforms

10In practice, this meant using Google Translate to look up whether words not included in the word list
were borrowed from high-resource languages, like gereja (“church”) from Indonesian, and looking up more
examples of grammatical concepts like focus crosslinguistically.

11See Appendix E for more details.
12See Appendix F for complete tables and more metrics.
13See Appendix G for more qualitative examples across experimental settings.
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Abstract

How can large language models (LLMs)
process and translate endangered languages?
Many languages lack a large corpus to train a
decent LLM; therefore existing LLMs rarely
perform well in unseen, endangered languages.
On the contrary, we observe that 2000 endan-
gered languages, though without a large corpus,
have a grammar book or a dictionary. We pro-
pose LINGOLLM, a training-free approach to
enable an LLM to process unseen languages
that hardly occur in its pre-training. Our key
insight is to demonstrate linguistic knowledge
of an unseen language in an LLM’s prompt,
including a dictionary, a grammar book, and
morphologically analyzed input text. We imple-
ment LINGOLLM on top of two models, GPT-4
and Mixtral, and evaluate their performance on
5 tasks across 8 endangered or low-resource
languages. Our results show that LINGOLLM
elevates translation capability from GPT-4’s 0
to 10.5 BLEU for 10 language directions. Our
findings demonstrate the tremendous value of
linguistic knowledge in the age of LLMs for en-
dangered languages. Our data, code, and model
generations can be found at https://github.
com/LLiLab/llm4endangeredlang.

1 Introduction

Large language models (LLMs) are already power-
ful in many language understanding and generation
tasks (Brown et al., 2020; Ouyang et al., 2022).
Their language processing capabilities rely on very
large amounts of training data (Kaplan et al., 2020;
Hoffmann et al., 2022). For example, a recent
LLM Llama-2 uses a pre-training dataset with 2
trillion tokens (Touvron et al., 2023). While lan-
guages such as English or Spanish enjoy abundant
accessible data, the majority of the world’s 7000
languages lack a rich corpus, including most endan-
gered languages recognized by UNESCO (Mose-
ley, 2010). Existing LLMs such as Llama (Touvron
et al., 2023) and GPT-4 show poor performance

Figure 1: Among the world’s ⇠7000 languages, 95%
don’t have enough data (>100K sentences) for training
LLMs (Bapna et al., 2022), while most have a grammar
book (60%) or dictionary (75%) (Nordhoff and Ham-
marström, 2011), including many endangered languages
(Moseley, 2010). Therefore, we utilize these linguistic
descriptions to bring LLMs to endangered languages.

on languages that may not occur in pre-training
(Robinson et al., 2023). We believe that speakers
of endangered languages deserve equitable access
to NLP technologies including LLMs. How can we
enable an LLM with language processing capabili-
ties on unseen and endangered languages?

We are motivated by how human linguists ana-
lyze utterances in a language they don’t know —
they use existing grammar books and dictionaries.
Fortunately, thanks to the efforts of generations
of linguists over the years, many endangered lan-
guages have published dictionaries and descriptive
grammar. Compared to LLMs’ training corpora,
which mostly consist of unstructured text, these
linguistic descriptions have two major differences.
First, they are instructional. Though they are much
smaller than typical training sets, they contain ex-
plicit grammar rules of a language that can be used
as instructions for both LLMs and humans. Second,
linguistic descriptions have much broader cover-
age. As shown in Figure 1, very few languages
have training corpora, but most have documented
grammar or dictionary. However, directly using
these linguistic descriptions in an LLM’s prompt is
infeasible. A grammar book and a dictionary are
often too large to fill in the prompt of an LLM.
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• Beyond machine translation
• More languages
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• Language sampling seems highly relevant in multilingual NLP

• Typological features are potentially useful for interpreting, evaluating and improving 
multilingual language models

• There are many open questions for incorporating linguistic typology in NLP
• How can questions of language sampling in NLP best be addressed?
• Can we automatically infer corpus typology? Does this help NLP?
• Can we leverage linguistic grammars directly?

Conclusions



Funding Acknowledgements

This work was supported by a Semper Ardens: Accelerate research grant 
(CF21-0454) from the Carlsberg Foundation.

The current research visit is co-funded by the Otto Mønsteds Fond.



References (1/3)

Baylor, E., Ploeger, E., & Bjerva, J. (2023, December). The Past, Present, and Future of Typological Databases in NLP. In Findings of the Association for 
Computational Linguistics: EMNLP 2023 (pp. 1163-1169).

Baylor, E., Ploeger, E., & Bjerva, J. (2024, January). Multilingual Gradient Word-Order Typology from Universal Dependencies. In Proceedings of the Conference of 
the European Chapter of the Association for Computational Linguistics (EACL). Association for Computational Linguistics.

Belinkov, Y. (2022). Probing classifiers: Promises, shortcomings, and advances. Computational Linguistics, 48(1), 207-219.

Bell, A. (1978). Language samples. Universals of human language, 1, 123-156.

Blevins, T., Limisiewicz, T., Gururangan, S., Li, M., Gonen, H., Smith, N. A., & Zettlemoyer, L. (2024). Breaking the Curse of Multilinguality with Cross-lingual Expert 
Language Models. arXiv preprint arXiv:2401.10440.

Dryer, Matthew S. & Haspelmath, Martin (eds.) 2013. WALS Online (v2020.3)

Grambank’s Typological Advances Support Computational Research on Diverse Languages (Haynie et al., SIGTYP 2023)

Greenberg, J. H. (1963). Some universals of grammar with particular reference to the order of meaningful elements. Universals of language, 2, 73-113.

Hewitt, J., & Liang, P. (2019, November). Designing and Interpreting Probes with Control Tasks. In Proceedings of the 2019 Conference on Empirical Methods in 
Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 2733-2743).

Jänicke, S., Franzini, G., Cheema, M. F., & Scheuermann, G. (2015). On Close and Distant Reading in Digital Humanities: A Survey and Future Challenges. EuroVis 
(STARs), 2015, 83-103.

Kashyap, A. K. (2019). Language typology. The Cambridge handbook of systemic functional linguistics, 767-792.



References (2/3)

Levshina, Natalia, et al. "Why we need a gradient approach to word order." Linguistics (2023).

Malaviya, C., Neubig, G., & Littell, P. (2017, September). Learning Language Representations for Typology Prediction. In Proceedings of the 2017 Conference on 
Empirical Methods in Natural Language Processing (pp. 2529-2535).

Matthew S. Dryer. 2013. Order of Object and Verb. In: Dryer, Matthew S. & Haspelmath, Martin (eds.) WALS Online (v2020.3) [Data set]. Zenodo. 
https://doi.org/10.5281/zenodo.7385533

Matthew S. Dryer. 2013. Order of Object and Verb. In: Dryer, Matthew S. & Haspelmath, Martin (eds.) WALS Online (v2020.3)

Matthew S. Dryer. 2013. Order of Subject and Verb. In: Dryer, Matthew S. & Haspelmath, Martin (eds.) WALS Online (v2020.3)

Östling, R., & Kurfalı, M. (2023). Language embeddings sometimes contain typological generalizations. Computational Linguistics, 49(4), 1003-1051.

Ploeger, E., Poelman, W., de Lhoneux, M., & Bjerva, J. (2024). What is ‘Typological Diversity' in NLP?. arXiv preprint arXiv:2402.04222.

Ponti, E. M. et al. (2019). Modeling language variation and universals: A survey on typological linguistics for natural language processing. Computational 
Linguistics, 45(3), 559-601.

Purason, T., & Tättar, A. (2022, June). Multilingual neural machine translation with the right amount of sharing. In Proceedings of the 23rd Annual Conference of the 
European Association for Machine Translation (pp. 91-100).

Rijkhoff, J., & Bakker, D. (1998). Language sampling. Linguistic Typology, 2(3), 263-314.

Rijkhoff, J., Bakker, D., Hengeveld, K., & Kahrel, P. (1993). A method of language sampling. Studies in Language. 17(1), 169-203.

Skirgård, Hedvig et al. (2023). Grambank v1.0 (v1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7740140

https://doi.org/10.5281/zenodo.7740140


References (3/3)

Tanzer, G., Suzgun, M., Visser, E., Jurafsky, D., & Melas-Kyriazi, L. (2023, October). A Benchmark for Learning to Translate a New Language from One Grammar 
Book. In The Twelfth International Conference on Learning Representations.

Üstün, A., Bisazza, A., Bouma, G., & Noord, G. V. (2022). UDapter: Typology-based language adapters for multilingual dependency parsing and sequence 
labeling. Computational Linguistics, 48(3).

Visser, E. (2022). A grammar of Kalamang. Language Science Press.
Zhang, K., Choi, Y. M., Song, Z., He, T., Wang, W. Y., & Li, L. (2024). Hire a Linguist!: Learning Endangered Languages with In-Context Linguistic Descriptions. arXiv 
preprint arXiv:2402.18025.


