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Agenda

A. Investigating the interplay between word predictability, prominence, and 
emotion recognition in Large Language Models (LLMs) as well as the 
prosodic information that LLMs encode:
1. prosodic information in BERT,
2. word surprisal and emotion recognition in speech,
3. word surprisal, prominence, and speech synthesis.

B. Exploring the use of Large Speech Models for prosodic analysis tasks:
1. dialect identification.

C. Development of new pooling methods from Large Speech Models for 
prosodic tasks:
1. correlation pooling,
2. attentive correlation pooling.



A. Word predictability, 
prominence, and emotion 

recognition with LLMs



Information theory as a means of 
understanding prosody



Guiding research questions

• How acoustic and linguistic variation is statistically organized into 
perceived prosody?

• How can we harness the identified relationships to advance the 
capabilities of speech technology applications?
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Prosody in large speech and language 
models
• Representations from large language and speech models have 

become nearly ubiquitous in state-of-the-art speech and language 
applications.
• These models have achieved state-of-the-art results also in prosody 

tasks.
• As these models do not define predetermined linguistic targets during 

training, we need to address the following questions:
• Is prosody linguistically encoded in LLMs?
• What kind of prosodic characteristics do large speech models encode?



Kakouros, S. and O'Mahony, J. (2023). What does BERT learn about prosody? In R. 
Skarnitzl, & J. Volín (Eds.), Proceedings of the 20th International Congress of 
Phonetic Sciences (ICPhS-2023) (pp. 1454-1458). GUARANT International spol. s 
r.o.., Prague, Czechia.



Prosody in BERT?

• Language models (LMs) are nearly ubiquitous in natural language 
processing applications.
• LM design does not define predetermined linguistic targets during training.
• Several studies have explored the linguistic information that models 

capture providing some insights on their representational capacity.
• However, there have not been investigations exploring whether prosody is 

part of the structural information of the language that models learn.
• Is prosody linguistically encoded in BERT?



Layer weights

• We obtain the contribution of BERT 
layers to the prediction task by 
introducing learnable scalar weights 
attached to each transformer layer of 
the model.
• We take representations from all 

transformer layers in the model and 
collapse them to one via a weighted 
average.
• There is one weight for each layer and 

all weights are trained jointly with the 
classification network.
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Layer weights

• To probe the contribution of individual BERT layers, we extract the 
embeddings from each layer separately.
• We then train a classification head consisting of a single dense layer 

followed by the Softmax function. 
• For each embedding layer, we then obtain the classification accuracy 

for the task.



Data

• In the experiments we use three datasets: two consisting of read 
speech and one of spontaneous dialogue speech:

1. BURNC: The Boston University Radio News Corpus is a corpus 
of professionally read news data in American English annotated 
with ToBI labels.

2. NXT Switchboard: NXT is a dataset that includes dialogues from 
the Switchboard corpus annotated with ToBI labels.

3. LibriTTS: The LibriTTS is a read speech corpus (subset of the 
LibriSpeech corpus). Prosody labels are automatically generated 
and are taken from the Helsinki Prosody Corpus (HPC).



Experimental setup

• Prominence and POS prediction.
• POS tags extracted with spaCy.
• 80-15-5 split for train, validation, and test.
• Training run for 20 epochs with a batch size of 4.
• Each experiment repeated five times.
• Results are averaged.
• We test both frozen and fine-tuned models.



Results

Fig. BERT layer weights for prominence (top) and POS (bottom) prediction.



Results



Results

• Layer weights vary with respect to the two tasks.
• The three datasets show differences in their overall performance.
• However, the overall weight allocation for each task is consistent.
• POS information is encoded in the early BERT layers.
• Most POS information comes from layers 0-4 which have been shown 

to encode surface linguistic features.
• Weights for prominence are primarily focused within layers 2-8 with a 

peak appearing at layer 3
• Fine-tuning leads to better performance.



Conclusions

• BERT captures information about prosodic prominence through a 
widespread allocation of weights across its layers reaching high 
performance.
• The weight allocations suggest that BERT relies on a variety of 

linguistic information including surface features such as POS but also 
syntactic and semantic information.



Kakouros, S. (submitted). Enhancing Speech Emotion Recognition through Word 
Informativeness. Submitted to the Annual Conference of the International Speech 
Communication Association (Interspeech-2023)



Emotions and word informativeness

• In emotion recognition from speech, a key challenge lies in identifying 
speech signal segments that carry the most relevant acoustic 
variations for discerning specific emotions.
• Traditional approaches compute functionals for features such as 

energy and F0 over entire sentences or longer speech portions, 
potentially missing essential fine-grained variation.
• Can we identify semantically important segments using word 

informativeness derived from LLMs?



Background

• The challenges in SER are multifaceted but can generally be split into 
three main areas:

1. development of representations that can accurately and robustly 
encapsulate the acoustic variation indicative of various emotions,

2. modelling the temporal dimension of emotions, which can manifest over 
short or extended speech sequences,

3. inherent ambiguity of emotional expressions leading to high disagreement 
in annotating emotions from speech.

• In this work we focus on [2].



Data

• The Ryerson Audio-Visual Database of Emotional Speech and Song 
(RAVDESS) was used in this study. 
• RAVDESS is a multimodal database consisting of recordings from 24 

professional actors (12 female) in North American accent.

Livingstone, S. R., & Russo, F. A. (2018). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A 
dynamic, multimodal set of facial and vocal expressions in North American English. PloS one, 13(5), e0196391.



Methods – feature extraction

• Acoustic representations were extracted using:
• Wav2vec 2.0:

• representations are extracted using Wav2vec 2.0 base. The features were extracted from 
the pre-trained Wav2vec 2.0 by taking the representation from the last transformer layer 
of the model. To obtain an utterance-level description, the feature-level representations 
are pooled by taking the mean and standard deviation (std) of the features over each 
speech segment.

• eGeMAPS:
• includes 88 different features and feature functionals including means and standard 

deviations of F0, loudness, spectral tilt, and MFCCs. The 88 eGeMAPS features and 
functionals are computed for each selected speech segment, with one single feature 
vector representing the entire segment.



Methods – word metrics

• Word probabilities are computed using predictions from GPT-2 small 
(gpt2; 124M parameters),
• For unigram computation publicly available word counts were used 

derived from the Google Web Trillion Word Corpus.
• Word rank is computed by taking the position in a sorted list of all 

possible words, ordered by their predicted probabilities (from highest 
to lowest) by the LLM.



Methods – word metrics

• Word surprisal can be seen as an information-theoretic measure of 
the amount of new information conveyed by a word.
• Why use word rank? A word's rank can change based on the context 

and the probabilities of other words, even if its own probability 
remains the same.
• For each word in a sentence, the following are computed:
• Unigram surprisal
• LLM surprisal (word surprisal values are extracted by taking the aggregate 

token surprisal)
• Normalized word rank



Methods – segmentation

• Speech segments of variable lengths were selected by sorting the 
words within each sentence according to their surprisal value or rank 
(e.g., from high to low surprisal). 
• For each sentence, words were ordered by their surprisal or rank, and 

the first n words were isolated from the speech signal for subsequent 
feature extraction. 
• Two distinct approaches were considered: 
• top-n, wherein the speech segments corresponding to the top n ordered 

words are concatenated and then subjected to feature extraction, and 
• independent-n, wherein only the speech segment of the word at position n, 

based on its surprisal or rank, is extracted from the sentence for feature 
extraction. 



Methods – model training

• Features were used to train a feed-forward Deep Neural Network 
(DNN)  classifier (four hidden layers; [256, 128, 64, 32]) with emotions 
as the target classes.
• The data were selected to leave two unseen speakers out in the test 

set while the remaining speakers were used for training and 
validation. 
• The splits were designed in order to have an equal proportion of 

female and male speakers in both the train and test sets. 
• Each split of the dataset had a different set of speakers in the test set.



Results



Results



Conclusions

• Using word informativeness as extracted from an LLM such as GPT-2 
can lead to improved performance.
• Using the few most informative words in a sentence to extract 

acoustic features is sufficient, leading to performance close to that of 
processing the entire utterance.
• Using few words (utilizing a word selection criterion based on 

surprisal) rather than the entire utterance was more beneficial for 
model training leading to improved performance.
• Word informativeness seems to provide a useful tool in the aid of 

temporal segment selection from speech for SER.



Kakouros, S., Šimko, J., Vainio, M., and Suni, A. (2023). Investigating the Utility of 
Surprisal from Large Language Models for Speech Synthesis Prosody. In 
Proceedings of the 12th ISCA Speech Synthesis Workshop (SSW-2023), Grenoble, 
France, pp. 127–133. 10.21437/SSW.2023-20



Word-level surprisal from pre-trained LLMs

• Does word surprisal, extracted from LLMs, correlate with prominence, 
a signal-based measure of the salience of a word in a given discourse?

• If this is true, can we use word surprisal as a feature to aid speech 
synthesis prosody?



Introduction

• While text-to-speech (TTS) has become indistinguishable from human 
speech for short utterances, it still struggles with contextual prosody.
q Selecting appropriate style, loudness or emotion.
q Applying proper word accentuation patterns.

• Why?
qTTS models are largely trained from text-audio pairs of isolated sentences.
qThis limits the quantity and quality of the linguistic data the models are 

exposed to.

ØHow can we address this issue?



Links between prosody and surprisal

• We investigate word surprisal, a measure of the predictability of a word 
in a given context, as a feature to aid speech synthesis prosody

• Surprisal has been shown in the literature to be connected to the 
impression of highlighting, and in prosodic terms, to the phenomenon of 
prosodic prominence (Kakouros & Räsänen, 2016)

• In general, (semantic) predictability has been shown to correlate 
negatively with prominence in speech (cf. “smooth signal redundancy” 
of Aylett & Turk, 2004)



Language modeling

• State-of-the-art large language models (LLMs):
qCan process and generate coherent responses from information that spans 

much more than a single sentence.
qGPT-2 can manage contexts up to 1024 tokens.
qGPT-3 up to 2048 tokens.
qGPT-3.5 can process up to 4096 tokens.

qTrained on vast amounts of diverse textual data far surpassing the textual 
data a TTS has been exposed to during training.
qGPT-2 has been trained on the WebText dataset that consists of 40Gb of text.

ØCan we use word-level surprisal calculated using LLMs to improve 
context-dependent realization of prosodic prominence patters?



Givenness

• Given words, i.e., the words and concepts already previously 
introduced in a narrative, can be expected to be realized with less 
prominence than the novel ones (Watson et al., 2006; Sridhar et al., 
2008; Féry & Ishihara, 2010).

• Surprisal-based models operating on a large context can be expected 
to account for this type of givenness, attributing higher probability 
(lower surprisal) to the words that had occurred previously in the 
text, particularly for content words. 



Givenness



Method

• Data:
qLJ Speech dataset

• Word surprisal was estimated using predictions from four variants of 
GPT-2, the GPT-J model, and unigrams:
qGPT-2 small (gpt2; 124M parameters)
qGPT-2 medium (gpt2-medium; 355M)
qGPT-2 large (gpt2-large; 774M)
qGPT-2 extra large (gpt2-xl; 1.5B)
qGPT-J (EleutherAI/gpt-j-6b)
qFor unigram computation we used publicly available word counts derived 

from the Google Web Trillion Word Corpus.



Method

• Context modeling:
qWe construct a context for each target sentence by prepending the target 

sentence with the text segments that preceded it. 
qFor our analysis, we included context of up to 5 previous segments —context 

sizes from 0 − 5 are denoted in the text as sup_0, sup_1, sup_2, sup_3, sup_4, 
and sup_5 where 0 refers to a sentence without context.

• Prominence estimation with CWT:
qTo assess the correlation of surprisal values with speech prosody, we utilized 

word prominence estimates, derived automatically using Wavelet prosody 
toolkit.



Method

• Speech synthesis:
qTo assess the effect of word surprisal on speech synthesis prosody, we 

applied a transformer-based FastPitch model architecture augmented with 
local conditioning.

qTo implement the local conditioning, we repeated the continuous 
conditioning features (word prominence or surprisal value) for each 
segmental sound (phone) of the word.

qWe then embedded the features using a linear layer to a dimension of 384 
and summed the resulting embeddings with the phone representations of the 
FastPitch encoder.



Results



Signal-based prosodic characteristics and 
surprisal
EXPECTATION: The surprisal values will (positively) correlate with 
    prominence estimates and other  
     “prominence yielding features”

The correlations were calculated 
for all words in the corpus as well as 
separately for stop-words and 
content words, respectively



Signal-based prosodic characteristics and 
surprisal



Signal-based prosodic characteristics and 
surprisal



Signal-based prosodic characteristics and 
surprisal

• Correlations are higher for the entire corpus than for the two sub-
groups separately (and higher for stop-words than for content words).
• Correlations are generally higher for the smaller models than for the 

larger ones, and, in most cases, decrease with the size of the context 
used for the surprisal values.
• The measures of prominence, duration and f0-sd correlate best with 

unigram-based surprisal.



Givenness

• To compare the givenness-related prominence patterns with 
corresponding surprisal values within the analyzed corpus, we 
assigned each content word in the corpus a distance from its previous 
occurrence.



Speech synthesis



Surprisal in speech synthesis

q To assess the effect of word surprisal on speech synthesis prosody, we 
applied a transformer-based FastPitch model architecture augmented with 
local conditioning.

q To implement the local conditioning, we repeated the continuous 
conditioning features (word prominence or surprisal value) for each word.



Surprisal in speech synthesis

• Two anchor systems were trained:
qa baseline system with no conditioning and
qa top line system with CWT prominence conditioning (prom)

• To assess the effect of surprisal, we trained two systems conditioned 
with word surprisal values: 
qsmallest GPT2 with no context (gpt_small_sup0) and 
qGPT_J with context of five previous sentences (gpt_j_sup5).



Surprisal in speech synthesis

• We synthesized the test material with appropriate conditioning: 
surprisal values extracted with respective language models with same 
context sizes as during training. 
• For topline model prom, we used prominence labels extracted from 

the actual speech of the test sentences instead of predicting labels 
from text.



Surprisal in speech synthesis



Conclusions

• Prominence correlated with surprisal rather weakly, and increasing 
the model size and the context window had mostly detrimental 
effect.
• The synthesis results also suggest a limited efficacy of using surprisal 

values for eliciting appropriate prominence patterns, while providing 
a minimal improvement over the baseline.
• In general, information theoretical aspects explain only a part of the 

prosodic variation.



B. Large Speech Models for 
prosodic analysis tasks



Kakouros, S. and Hiovain-Asikainen, K. (2023). North Sámi Dialect Identification 
with Self-supervised Speech Models. In proceedings of the Annual Conference of 
the International Speech Communication Association (Interspeech-2023), Dublin, 
Ireland, pp. 5306–5310. 10.21437/Interspeech.2023-1928



Introduction

• The North Sámi language (NS) encapsulates four primary dialectal 
variants.
• ~20,000 – 30.000 speakers
• NS is spoken in the northernmost parts of Norway, Sweden and 

Finland.
• NS speakers are in many cases bilingual in Sámi as well as in the 

dominant state language.
• Can we automatically identify between the NS dialects?
• Are the NS dialects affected by the state language?



Background

• Dialect identification (DID) systems can be used to improve the 
performance of TTS and ASR systems.
• DID systems make use of the (i) text, (ii) speech, or (iii) text + speech 

of the dialects.
• DID typically performed using ML methods based on acoustic and/or 

textual features.
• Self-supervised speech models have not been used before in DID.



Data

• Combined from four datasets:
• LIA Sápmi North Sámi corpus
• The Giellagas Corpus of Spoken Saami Languages
• Divvun/Acapela TTS corpus
• DigiSami read speech corpus

• Data consist of 30% read and 70% spontaneous speech.
• Data were split to utterances and labeled according to the dialect groups of 

the speakers as well as speakers’ gender and country of origin.
• According to the traditional dialectological analysis of NS, the language can 

be divided to four main dialect groups: the Western Inland, the Eastern 
Inland, the Torne, and the Sea.



Methods – architecture

• DID: classification task that includes a light-weight classification 
network using:
• Standard acoustic features such as MFCCs, filter banks, prosodic 

features.
• Self-supervised speech representations (WavLM, HuBERT, XLS-R).
• Majority language influence (MLI): experiment on language 

identification (LID):
• Spoken LID model that is fine-tuned using weights of the pretrained 

XLS-R on the VoxLingua107 corpus that includes Finnish, Norwegian, 
and Swedish.



Methods – architecture



Results – dialect identification

• Perform experiments in both speaker-independent (SI) and speaker-
dependent (SD) setups and average across 3 splits.
• SD: vary the random seed and perform uniform sampling in the entire 

dataset with a ratio of 80% training and 20% for testing.
• SI: in each split we leave 3 speakers from each dialect out (a total of 

12 unseen speakers in the test set).
• Self-supervised representations perform the best (for SI and meanstd, 

XLS-R 62.9%, and HuBERT 47.9%).
• Traditional acoustic features perform systematically with lower 

accuracy.



Results – majority language influence

• LID applied on all utterances in our data. 
• n-best results reported: for each n, we get the top n results from the 

classifier.
• State language where the dialects are spoken has an important 

impact on the NS dialects.
• For Finnish and Norwegian the LID task identifies the correct language 

(1-best) in 28.9% and 20.3% of the cases respectively.



Results

CMs for a speaker-independent split across the four North 
Sami dialects using meanstd pooling with XLS-R (left) 

and HuBERT (right) and DNN for classification.



Conclusions

• We presented an extensive analysis of the classification potential of 
four NS dialects based on acoustic features.
• Our experiments are one of the first evaluating several self-supervised 

models in DID.
• We presented an approach for evaluating the majority language 

influence on dialects.
• We found the best performance in classifying the dialects using XLS-R 

and we also provide strong indications of the majority language 
influence on the dialects.



C. Pooling methods from Large 
Speech Models for prosodic tasks



Stafylakis, T., Mošner, L., Kakouros, S., Plchot, O., Burget, L., and Černocky, J. 
(2023). Extracting speaker and emotion information from self-supervised speech 
models via channel-wise correlations. In Proceedings of the IEEE Spoken 
Language Technology Workshop (SLT-2023), Doha, Qatar, pp. 1136–1143. 
10.1109/SLT54892.2023.10023345



Introduction

Training HuBERT

● Several self-supervised models for speech 
○ e.g. Wav2Vec 2.0, HuBERT, WavLM

● Transformers as backbone network.
● Hard to finetune them for each single task.
● How well do they perform out-of-the-box? 

○ e.g. in speaker and emotion recognition
● We may 

○ add a trainable classifier,
○ use representations from all layers. 



SUPERB 

https://superbbenchmark.org

https://superbbenchmark.org


SUPERB 

Backend models

● Speaker Identification (SID) 
○ Average pooling + Classification head

● Speaker Verification (SV)
○ TDNN + Average pooling with std + Classification head (cosine similarity for 

evaluation)
● Emotion Recognition (ER)

○ Average pooling + Classification head
Layer pooling

● Pool information from all layers based on a learnable set of weights
○ Different set of weights for each task
○ Weighting layers is a reasonable operation for nets with residual 

connections



Standard way of pooling frames 

Average pooling

● Too simplistic… 
● The SSL networks are not trained to preserve speaker/emotion info.
● Their losses suppress this information in uppermost layer.
● Augmenting the pooled representation with standard deviation (std) helps.
● But can we do better?

Average pooling Average pooling augmented with 
std



Proposed way of pooling frames 

Correlation pooling

● What about modelling correlations between channels?
● We first reduce the #channels (e.g. to 128) using a learnable linear layer.
● We then standardize (i.e. mean = 0, std = 1) each channel. 

○ For each utterance, not globally.
● Then, average pooling of the frame-wise outer products ⇒ correlation 

matrix: 
● Dropout whole channels is a helpful regularizer.
● But do these correlation coefficients carry speaker/emotion information?



Experiments in Speaker Recognition



Experiments in Emotion Recognition



Kakouros, S., Stafylakis, T., Mošner, L., and Burget, L. (2023). Speech-based 
emotion recognition with self-supervised models using attentive channel-wise 
correlations and label smoothing. In Proceedings of the IEEE International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP-2023), Rhodes, 
Greece, pp. 1–5. 10.1109/ICASSP49357.2023.10094673



Introduction

• Emotional expressions are a fundamental component of 
spoken interaction.
• However, recognizing emotions in speech remains a 

challenging problem:
1. What kind of acoustic representations are best for speech emotion 

recognition?
2. How can we best model the long temporal context over which emotions take 

place?
3. How can we best tackle the problem of ambiguous labels for the emotions?



Background

• Emotion recognition is typically treated as an utterance-level task.
• Frame-level pooling:
• Mean
• Standard deviation
• Mean + standard deviation

• Can we do things better and capture more informative 
representations from the successive frames?



Method – correlation pooling

• Modelling correlations between channels.
• We first reduce the number of channels from 1024 to 256 using a 

learnable linear layer.
• Then, average pooling of the frame-wise outer products ⇒ correlation 

matrix:

• But emotion information does not appear uniformly 
across our signals. What can we do?



Method – attentive correlation pooling

• We introduce a new flavour of attention by inserting weights in 
the estimates of the statistics:

• The proposed attention enables us:
• to keep the multi-modality of multi-head attention since a single head is too weak to 

capture the phonetic, speaker, emotion and channel variability,
• to robustly estimate the attention by aggregating the matrix similarities prior to the 

Softmax function.
• However, our labels contain a certain degree of ambiguity that we need 

to address.



Method – label smoothing

• With label smoothing we soften the hard (one-hot) targets vectors.
• The aim of label smoothing is to reduce the confidence of 

the classifier on the target labels.
• Label smoothing replaces the one-hot encoded labels with a 

mixture of the one-hot encoded labels and the uniform distribution.
• One-hot encoded labels maximize logit gaps that are fed into 

the Softmax function.
• On the other hand, smoothed labels, encourage smaller logit gaps, 

thus reducing the confidence for the targets.

Müller, R., Kornblith, S., & Hinton, G. E. (2019). When does label smoothing help?. Advances in neural information processing 
systems, 32.



Methods – architecture
• Our setup is based on SUPERB⎯ 

Speech processing 
Universal PERformance Benchmark

• SUPERB is a collection of benchmarking resources 
to evaluate the capability of a universal shared 
representation for speech processing

• We extract embeddings from all transformer 
layers:
• HuBERT
• WavLM
• Wav2Vec 2.0

• Layer pooling
• Weigh embeddings
• Channel-wise dropouts
• Apply attention
• Correlation pooling



Results

• Experiments run on IEMOCAP
• 5-fold cross-validation
• Our method yields results that surpass 

those on the benchmark setup of 
SUPERB
• SUPERB reports an accuracy of 70.62% 

with WavLM and 67.62% with HuBERT
• With our proposed approach we 

obtain 75.60% and 73.86% respectively

Figure: Attentive correlation pooling with WavLM



Conclusions

• SER framework that uses self-supervised representations and is 
based on label smoothing and a novel approach to attention: 
attentive correlation pooling.
• Our method does not require fine-tuning of the pre-trained 

SSL models but rather uses a light-weight classification head.
• Our method reaches high performance in all pre-trained 

models tested surpassing that of the literature in similar tasks.



Thank you!


