Evaluation and Adaptation of Language Models for Under-Resourced Languages

Wietse de Vries

Overview

- Part 1: Do language models actually model Dutch during pre-training?
- Part 2: How well do language models perform on various Dutch tasks?
- Part 3: Can we adapt English models to Dutch and Italian with little training?
- Part 4: Can we adapt models to low-resource languages without labeled data?
- Part 5: How does cross-lingual training work with any source and target language?

Findings of EMNLP 2020

Probing BERT's layers for a Dutch NLP pipeline

de Vries, **W**., van Cranenburgh, A., and Nissim, M. (2020). What's so special about BERT's layers? A closer look at the NLP pipeline in monolingual and multilingual models. In *Findings of the Association for Computational Linguistics: EMNLP 2020*, pages 4339–4350, Online. Association for Computational Linguistics.

Introduction

- Diagnostic probing has revealed a pipeline-like behaviour for English BERT (Tenney et al. 2019)
 - Simple models trained on hidden transformer layer representations
- E.g. low level tasks like POS tagging can be found in early layers and higher-level tasks like coreference resolution at later layers
- Is this pipeline actually this neat?
- Can this behaviour be found for other languages such as Dutch?

Probing BERT's layers for a Dutch NLP pipeline (1/5)

Methodology

- Simple probes: token label prediction with a linear model using hidden layer representations
- Scalar mixing probes: use a weighted sum of all hidden layers and evaluate the learned layer weights
- Models: BERTje (Dutch) and mBERT

- POS tagging (POS)
 - Lassy Small corpus
 - Alpino corpus
- Dependency edge labeling (DEP)
 - Lassy Small corpus
 - Alpino corpus
- Named Entity Recognition (NER)
 - CoNLL-2002
- Coreference resolution (Coref)
 - SoNaR-1

Probing BERT's layers for a Dutch NLP pipeline (1/5)

- Scalar mixing probes show higher accuracies than single-layer probes
- mBERT most informative layers are more central
- Word embeddings are more informative for BERTje
- Final layer is relatively uninformative

bertje

mbert

10 11 12

(d) UDAlpino DEP

(e) CoNLL-2002 NER

(f) SoNaR Coref

Label differences within one task: POS tagging (BERTje; single layers)

Conclusions

- BERTje and mBERT show a similar pipeline structure for Dutch as BERT for English but task differences are not very strong
- The most informative mBERT layers are earlier layers than those of BERTje
- Task information is spread out over multiple layers
 - \circ Rule of thumb: the word embeddings and the layers at 2/3 of the model may be most informative
- BERTje shows consistent results across datasets
- More general: task-specific information is learned during pre-training

EMNLP 2023

DUMB: A <u>Du</u>tch <u>Model Benchmark</u>

de Vries, **W**., Wieling, M., and Nissim, M. (2023). DUMB: A benchmark for smart evaluation of Dutch models. In Bouamor, H., Pino, J., and Bali, K., editors, *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 7221–7241, Singapore. Association for Computational Linguistics.

Introduction

- There are multiple Dutch and multilingual pre-trained language models
 - Unclear which model is most useful for which task
 - New models tend to be re-trained models of the same type: RobBERT-v1, RobBERT-v2, RobBERT-2022, RobBERT-2023...
- English (and other monolingual) benchmarks such as GLUE are not perfect:
 - Task duplication (e.g. 4/10 tasks in GLUE are just Natural Language Inference)
 - Averaging absolute scores undervalue improvement of already high scores
- Our benchmark:
 - 9 tasks of which 4 not previously available in Dutch
 - A different task scoring method: Relative Error Reduction

Tasks

- Word tasks:
 - Part-Of-Speech tagging (POS): New standardized train/dev/test splits with Lassy Small corpus
 - Named Entity Recognition (NER): New standardized train/dev/test splits with SoNaR-1 corpus
- Word pair tasks:
 - Word Sense Disambiguation (WSD): New Words in Context (WiC) task based on DutchSemCor
 - **Pronoun Resolution (PR)**: New task data based on coreference annotations in SemEval 2010 Task 1
- Sentence pair tasks:
 - Causal Reasoning: Choice of Plausible Alternatives (COPA) translated from English to Dutch
 - Natural Language Inference (NLI): Existing SICK-NL dataset (translated SICK from English)
- Document tasks:
 - Sentiment Analysis (SA): Existing Dutch Book Reviews Dataset (DBRD)
 - Abusive Language Detection (ALD): Existing Dutch Abusive Language Corpus (DALC)
 - Question Answering (QA): Translated SQuAD (v2) from English to Dutch

Evaluation metric: Relative Error Reduction

- Problem with normal averaging:
 - Absolute score differences are weighted equally for every task
 - An accuracy improvement from 50% to 55% has the same effect on the average as 90% to 95%
 - My assumption: a small absolute improvement on a high score can be very meaningful
- Solution: Evaluate on Relative Error Reduction
 - E.g. 50% to 55% is only a 10% error reduction while 90% to 95% is a 50% error reduction
- In our benchmark, we use the BERTje model as a baseline for all other models

Models

- Only transformer encoder models
- Three model types:
 - BERT (MLM + Sentence pair task)
 - RoBERTa (MLM)
 - DeBERTaV3 (ELECTRA-style generator-discriminator)
- Two model sizes:
 - Base: 12 layers (768 dimensions)
 - Large: 24 layers (1024 dimensions)
- Three pre-training language groups:
 - Dutch
 - Multilingual (including Dutch)
 - English

Results

		Wo	ord	Word Pair		📔 Sent. Pair		Document		ıt
Model	Avg	POS	NER	WSD	PR	CR	NLI	SA	ALD	QA
🚍 BERTje	0	0	0	0	0	0	0	0	0	0
E RobBERT _{V1}	-16.3	12.5	-19.4	-15.3	-24.0	-14.7	-12.7	-58.2	4.8	-19.4
RobBERT _{V2}	1.6	16.2	4.1	-5.3	0.1	-10.2	-3.8	-0.5	12.0	2.2
RobBERT ₂₀₂₂	3.6	17.3	7.6	-6.4	-1.8	-10.1	3.1	4.0	18.9	-0.2
mBERT _{cased}	-5.8	6.2	9.2	7.7	-11.0	-18.4	-6.2	-41.7	-4.5	6.9
XLM-R _{base}	-0.3	13.9	10.8	1.9	-16.2	-26.8	2.0	-3.6	3.4	12.3
mDeBERTaV3 _{base}	12.8	18.2	17.2	10.8	-20.8	19.7	25.2	3.3	12.4	29.2
States XLM-R _{large}	14.4	26.5	29.7	21.3	-15.8	-25.8	24.4	13.2	19.0	37.2
BERT _{base}	-42.8	-19.8	-30.8	-22.4	-18.7	-28.0	-19.2	-203.9	-16.1	-26.2
RoBERTa _{base}	-25.6	-6.5	-27.3	-14.0	-20.4	-24.1	-19.7	-99.9	-16.0	-2.1
DeBERTaV3 _{base}	-1.6	6.5	1.7	-4.2	-25.3	-20.5	8.6	-14.6	3.5	29.7
BERT _{large}	-35.1	-12.0	-25.9	-25.4	-29.3	-31.2	-15.4	-158.7	-7.8	-10.4
RoBERTa _{large}	-14.1	6.4	-12.3	-19.8	-23.3	-26.1	-8.5	-63.8	1.2	19.7
DeBERTaV3 _{large}	15.7	17.9	10.9	12.7	-14.4	35.4	24.1	-6.4	12.5	48.4

Correlations between tasks

	POS	NER	WSD	PR	CR	NLI	SA	ALD	QA
POS NER	- 0.85	0.85	0.75 0.92	0.31	0.43	0.77 0.88	0.89	0.93	0.66
WSD PR	0.75 0.31	0.92 0.41	- 0.35	0.35	0.52	0.86 0.15	0.77 0.50	0.61 0.38	0.75 -0.03
CR NLI	0.43 0.77	0.42 0.88	0.52 0.86	0.29 0.15	- 0.64	0.64 -	0.48 0.74	0.47 0.79	0.51 0.87
SA ALD QA	0.89 0.93 0.66	0.87 0.81 0.75	0.77 0.64 0.75	0.50 0.38 -0.03	0.48 0.47 0.51	0.74 0.79 0.87	- 0.82 0.66	0.82 - 0.59	0.66 0.59 -
	0.70	0.74	0.70	0.30	0.47	0.71	0.72	0.68	0.59

Missing models: A lot of room for improvement

- Dutch pre-training is better than multilingual, which is better than English
- Large models perform better than smaller
- DeBERTaV3 models are better than RoBERTa and BERT
- More information and a leaderboard can be found on dumbench.nl

	Du	tch	Multi	ilingual	English		
	base large		base	large	base	large	
BERT	0	4.3 ^{9.6}	-5.8	2.8 8.1	-42.8	-35.1	
RoBERTa	3.6	$13.4^{7.8}$	-0.3	14.4	-25.6	-14.1	
DeBERTaV3	24.1 ^{8.1}	38.0 ^{10.8}	12.8	36.4 ^{8.6}	-1.6	15.7	

Findings of ACL 2021

Recycling GPT-2 for Dutch and Italian

de Vries, **W**. and Nissim, M. (2021). As good as new. How to successfully recycle English GPT-2 to make models for other languages. In *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pages 836–846, Online. Association for Computational Linguistics.

Introduction

- English models can be effective for Dutch
- At the time of this research, there was no generative Dutch model
- Can GPT-2 generate Dutch and Italian without training the transformer layers?
- Word embedding / Lexical layer retraining for Dutch and Italian
 - The lexical layer is the layer that maps hidden representations to the byte pair encoding vocabulary

Method

- Unlabeled data from Wikipedia, web scraped data, newspapers and books
- Train GPT-2 (small) with randomly initialized word embeddings and frozen transformer layers
- Result: separate new word embeddings for Dutch and Italian that should be compatible with the English transformer model

Sanity check: word embedding alignment

- Dutch/Italian word embeddings should have similar embeddings as literal translations in English
- This is actually true!

English	Italian	Dutch
while	mentre	terwijl
genes	geni	genen
clothes	vestiti	kleren
musicians	composi[]	artiesten
permitted	ammessa	toegelaten
Finally	infine	Eindelijk
satisfied	soddisfatto	tevreden
Accuracy:	85%	89%

Table 4.1 Alignment of closest tokens in the lexical embeddings of sml_{rle} for Italian and Dutch. Accuracy scores are based on a manual evaluation by the authors of 200 randomly selected aligned tokens.

Scaling to larger models by using alignments

- We have aligned GPT-2 word embeddings for English/Dutch/Italian
- A transformation that converts GPT-2 small to GPT-2 medium embeddings can be applied to the Dutch/Italian embeddings
- Transformation strategies:
 - Linear regression (lstsq; least-squares regression)
 - Orthogonal Procrustes (proc)
 - Weighted K-Nearest Neighbors (knn)

	Ita	alian			
Model	Int@1k	PPL	Int@1k	PPL	PPL (1 epoch)
med _{rle} (1 epoch)	0.38	-	185.02	-	-
$\operatorname{sml}_{\operatorname{rle}} \xrightarrow{\operatorname{proc}} \operatorname{med}$	0.61	$\textbf{8.12}\times\!10^{12}$	0.61	$\textbf{5.02}\times 10^{12}$	52.69
$\operatorname{sml}_{\operatorname{rle}} \xrightarrow{\operatorname{lstsq}} \operatorname{med}$	0.56	364.06	0.56	293.61	47.57
$\operatorname{sml}_{\operatorname{rle}} \xrightarrow{1-nn} \operatorname{med}$	0.37	2,764.19	0.36	1,101.59	50.25
$\operatorname{sml}_{\operatorname{rle}} \xrightarrow{10-nn} \operatorname{med}$	0.37	20,715.80	0.35	11,871.66	56.88

Table 4.3 | Scores for different transformation methods. Int@1K are the average 1k nearest English neighbors intersection (int) fractions between sml and transformed med embeddings. *PPL* is the perplexity on the test sets for Italian and Dutch. *PPL (1 epoch)* indicates the perplexity after one epoch of training, which is low if the transformed embeddings were close to a good local optimum.

Quality: Quite good but with anglicisms

(b) Human judgment scores for Dutch texts.

Italian	Literal English translation
La prima parte del film venne <i>distribuito</i> in Giappone con l'aggiunta della colonna sonora.	The first part of the film was <i>distributed</i> in Japan with the addition of the soundtrack.
L'unico motivo <i>di la</i> mia insoddisfazione fu il fatto che l'inizio della sua attività []	The only reason <i>of the</i> my unsatisfaction was the fact that the beginning of-the his/her activity []
Il suo nome deriva da un vocabolo arabo.	The his/her name derives from a word Arabic.
Dutch	Literal English translation
In een artikel in de Journal of	
Economicologie (1998), The New York Times schrijft:	In an article in the Journal of Economicology (1998), <i>The New York</i> <i>Times writes</i> :
Economicologie (1998), <i>The New</i> <i>York Times schrijft</i> : Ik kan me niet voorstellen dat mensen van mijn generatie <i>zijn zo</i> <i>boos op mij te wachten</i> .	In an article in the Journal of Economicology (1998), <i>The New York</i> <i>Times writes</i> : I can me not imagine that people of my generation <i>are so mad at me to</i> <i>wait</i> .

Table 4.2 | A selection of generated sentences by the sml model with Italian andDutch lexical embeddings. Words or phrases marked in italics are ungrammatical in the target language.

Conclusion

- GPT-2 can be adapted to Dutch and Italian with only word embedding retraining
- However, extra full model fine-tuning is needed for better performance
- This cheaper adaptation generates the same quality of Italian as an Italian model of the same size trained from scratch (with more data and much longer training)
- We did not find a meaningful difference between Dutch and Italian as target languages

Findings of ACL 2021

Adapting monolingual models to low-resource languages

de Vries*, **W**., Bartelds*, M., Nissim, M., and Wieling, M. (2021). Adapting monolingual models: Data can be scarce when language similarity is high. In *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pages 4901–4907, Online. Association for Computational Linguistics.

* equal contribution

Introduction

- Word embedding retraining can be effective, but can we use that for real low-resource languages?
- Target languages: Gronings (Low Saxon) and Frisian
- Source languages: Dutch, German and English
 - All languages are germanic languages, Frisian and Gronings are most similar to Dutch
- Independent word embedding retraining and Transformer layer fine-tuning
- Tested with monolingual BERT models and mBERT

Gronings	Tom is n jong en Mary is n wicht.
West Frisian	Tom is in jonge en Mary is in famke.
Dutch	Tom is een jongen en Mary is een meisje.
German	Tom ist ein Junge und Mary ist ein Mädchen.
English	Tom is a boy and Mary is a girl.
Gronings	Zie haar n bloum ien heur haand.
West Frisian	Se hie in blom yn har hân.
Dutch	Ze had een bloem in haar hand.
German	Sie hatte eine Blume in der Hand.
English	She had a flower in her hand.
Gronings	Dat was n poar joar leden.
West Frisian	Dat wie in pear jier lyn.
Dutch	Dat was een paar jaar geleden.
German	Das war vor ein paar Jahren.
English	That was a couple of years ago.

Separate fine-tuning and word embedding retraining

Results: original word embeddings

(a) Monolingual POS accuracies for BERT, gBERT and BERTje.

(b) Multilingual POS accuracies for mBERT.

(a) Monolingual POS accuracies for BERT, gBERT and BERTje.

(b) Multilingual POS accuracies for mBERT.

Results

Test language:			5	Source		Gron	ings	West Frisian		
Trai	in language:		orig.	gro.	<u>fri.</u>	orig.	gro.	orig.	<u>fri.</u>	
EN	GUM	BERT mBERT	93.5 93.5	13.5 22.0	23.5 22.2	19.7 61.6	55.4 85.0	21.0 87.5	78.8 88.2	
	ParTUT	BERT mBERT	94.0 94.0	16.6 41.3	26.4 47.6	33.5 66.6	67.7 84.3	37.1 86.7	77.4 89.2	
DE	GSD	gBERT mBERT	92.6 92.2	23.3 25.1	22.4 22.2	31.3 65.9	84.2 83.9	28.4 87.5	89.3 88.3	
	HDT	gBERT mBERT	94.0 93.7	28.5 26.1	26.2 22.1	19.5 45.8	86.7 81.1	16.9 84.7	89.0 83.0	
NL	Alpino	BERTje mBERT	96.0 96.2	90.8 87.8	78.1 82.8	66.7 7 4.3	92.4 90.5	50.0 91.9	95.4 95.1	
	LassySmall	BERTje mBERT	96.8 96.8	89.6 80.4	70.3 51.3	63.0 70.6	90.9 88.1	45.9 92. 7	95.1 94.4	

Table 5.2 | Accuracy per target language variety (columns) per lexical layer (sub-
columns). This table shows that not all datasets are equally effective for transfer
to Gronings and West Frisian.

How much data is needed for word embeddings

]			Gr	onings					West	t Frisia	ın	
			<u>1MB</u>	5MB	10MB	<u>20MB</u>	<u>40MB</u>	<u>43MB</u>	1MB	5MB	10MB	<u>20MB</u>	<u>40MB</u>	59MB
	BEDT	GUM	29.2	47.8	66.1	67.1	58.9	55.4	48.0	69.5	76.6	79.8	79.4	78.5
EN	DLKI	ParTUT	37.8	55.1	70.4	72.0	67.8	85.0	53.1	70.4	75.9	78.1	77.8	88.7
LII	mBEDT	GUM	19.6	73.5	84.8	84.9	84.8	67.7	69.7	87.1	88.0	88.4	88.5	77.0
	MDLKI	ParTUT	30.0	76.7	84.0	84.2	84.1	84.3	74.3	88.1	88.4	89.7	89.4	89.3
	GBEDT	GSD	48.8	82.3	83.9	84.0	83.8	84.2	77.7	87.3	88.8	88.5	88.7	89.1
DE	BERI	HDT	30.9	84.5	86.5	87.0	86.3	83.9	73.8	86.3	86.6	87.6	87.1	88.0
21	mPEDT	GSD	24.0	74.0	82.4	82.4	82.7	86.7	71.1	87.1	87.3	88.1	88.1	89.3
	IIIDEKI	HDT	03.7	44.2	75.1	72.2	79.5	81.1	34.4	72.0	79.1	78.7	81.2	83.5
	DEDTIO	Alpino	73.2	90.3	92.0	91.9	92.0	92.4	43.5	94.2	94.8	95.1	94.9	95.4
NI	ыктје	LassySmall	67.0	88.3	90.0	90.2	89.9	90.5	44.3	93.6	94.9	94.4	94.6	95.0
111	mPEDT	Alpino	31.0	79.6	89.1	88.5	89.3	90.9	74.9	93.7	93.8	94.5	94.7	94.9
	IUDERI	LassySmall	15.9	57.4	85.0	85.7	86.7	88.1	67.8	91.6	93.0	93.7	94.1	94.2

Table 5.3 | POS-tagging accuracy for Gronings and West Frisian with subsets ofthe unlabeled lexical layer retraining data.

Conclusion

- Word embedding retraining is an extremely effective way to adapt task-specific models!
- Only 10mb of data (~1.9 million tokens) is enough to adapt from a very similar language
- Monolingual models outperform mBERT cross-lingually
- How important is language similarity in general?

ACL 2022

Cross-lingual training with over 100 languages

de Vries, **W**., Wieling, M., and Nissim, M. (2022). Make the best of cross-lingual transfer: Evidence from POS tagging with over 100 languages. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 7676–7685, Dublin, Ireland. Association for Computational Linguistics.

Introduction

- Previous 2 papers: adaptation from English or from highly similar source languages
- How does this generalize to other languages and language families?
- Simple setup: Fine-tune XLM-RoBERTa for POS tagging with all languages in Universal Dependencies v2.8
 - 65 languages with (enough) training data
 - $\circ \qquad 114 \, \text{languages with test data}$
- 65 x 114 = 7410 test scores (!)

Cross-lingual training with over 100 languages (5/5)

Introduction

- Previous 2 papers: adaptation from English or from highly similar source languages
- How does this generalize to other languages and language families?
- Simple setup: Fine-tune XLM-RoBERTa for POS tagging with all languages in Universal Dependencies v2.8
 - 65 languages with (enough) training data
 - \circ 114 languages with test data
- 65 x 114 = 7410 test scores (!)

Analysis

,	Predictor	Coef.	Std. Err.
	(Intercept)	42.2	3.3
What are the effects of	Target pre-trained	19.2	2.5
What are the chects of.	LDND distance	-12.7	1.0
 Inclusion in pre-training 	Both pre-trained	7.4	7.4
 Language similarity 	Same family	6.8	6.8
 automatic LDND measure for lexical 	Source pre-trained	5.6	2.0
similarity)	Same writing system type	3.6	0.4
	Same writing system	1.4	0.3
• Language rammes	Same SOV word order	1.3	0.2

- Writing systems
- Word order
- Mixed effects regression analysis
 - Random effects for source and target languages (no interactions)

Table 6.1 | Coefficients and standard errors of predictors in the final mixedeffects regression model with Accuracy as the dependent variable. All predictors were significant at the p < 0.01 level. LDND distances were scaled between 0 (minimum) and 1 (maximum). The predictors are sorted in order of decreasing importance.

Effects of writing systems and language families

Source/Target symmetry

- Estonian and Finnish
- Icelandic and Faroese
- French and Italian
- Chinese and Japanese
- Irish and Scottish Gaelic
- Croatian and Serbian
- Catalan and Spanish
- Belarusian and Ukrainian
- Hindi and Urdu
- Armenian and Western Armenian
- English and Swedish

- From same or neighbouring countries
 - Exceptions: English-Swedish
- Genetically closest siblings (or actually two variants of the same language)
 - Exceptions: English-Swedish, Chinese-Japanese,
 Catalan-Spanish

What is the best source language?

- Real answer: pick the highest resource language that is closely related to the target language
- Our experiments contain multiple language families and writing systems, but Indo-European languages are still overrepresented. Therefore, aggregates are biased

What is the best source language?

- Anyway: **Romanian** and **Swedish** are the best for most target languages (**10** and **7** respectively)
- They also achieve the highest global average accuracy: **67.2%** and **65.9%**
- English is only the 19th best source language (out of 65)
- English is even just the 5th best Germanic Indo-European language...

Conclusion

- Languages need to be included in pre-training (can be overcome with the strategy of the previous paper)
- Cross-writing system performance is good for alphabetic writing systems but not for logo-syllabic systems
- Any cross-lingual experiment that you will see does **not** show how good a multilingual model works for a target language, but how good it will transfer from English to that target language

Every language except English is under-resourced

- Dutch is not considered a low-resource language, but we show that other model types and larger sizes would yield much better results than current models
- Smarter transfer strategies such as word embedding retraining or using adapters work better than just fine-tuning a multilingual model. Especially with monolingual models
- Cross-lingual performance of multilingual models is highly dependent on the relationship between source and target languages
- The models that I used are small by today's standards. How this affects huge generative models is an open question

Thanks for your attention!

- Please get in touch if you have any questions
 - Only via email: wietse.de.vries@rug.nl