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Abstract

We generalize and apply quantile residuals to multivariate nonlinear time series

models for which conventional residuals are unreliable. We formulate a general

framework of obtaining misspecification tests that also allows non-ergodic data and

takes the effect of parameter estimation properly into account. Computationally

simple tests developed to detect serial correlation, conditional heteroscedasticity,

and non-normality in quantile residuals illustrate the usefulness of our approach.

Our tests are generalizations of previous tests based on moments of conventional

residuals and the Lagrange Multiplier principle. We apply the developed tests to

exchange rate series. In simulations our tests show good size and power properties.
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1 Introduction

This paper studies multivariate quantile residuals and, based on their asymptotic

properties, develops misspecification tests in a general likelihood framework. These

residuals exist for any parametric model with continuous (conditional) cumulative

distribution function. Thus, they are applicable, for example, to various regime-

switching models and other models based on mixture distributions or involving

latent variables. With these models the use of traditional (or Pearson’s) resid-

uals, in contrast, leads to erroneous inference. Kalliovirta (2006) discusses this

in a univariate setting and demonstrates the usefulness of quantile residual based

tests. This previous work and the recent interest in multivariate models based on

mixtures of distributions motivate the generalization of this paper.

The idea of quantile residuals originates from Rosenblatt (1952) and Cox and

Snell (1968), and was developed, among others, by Smith (1985), Dunn and Smyth

(1996), and Palm and Vlaar (1997). The term quantile residual is due to Dunn and

Smyth (1996). Two transformations define quantile residuals: 1) the estimated cu-

mulative distribution function implied by the model transforms the observations

into approximately independent uniformly distributed random variables, and 2)

the inverse of the cumulative distribution function of the standard normal dis-

tribution retransforms these variables into approximately independent standard

normal. These results assume that the model is correctly specified and parame-

ters are consistently estimated. If not, quantile residuals are expected to exhibit

detectable departures from the characteristic properties described above.

We give regularity conditions under which a central limit theorem holds for

smooth functions of quantile residuals. This result yields misspecification tests
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which, under correct specification, have limiting χ2−distributions. These tests are

applicable in standard stationary or ergodic models as well as in non-ergodic mod-

els such as co-integrated VAR-models with the number of unit roots correctly spec-

ified and other models involving trending variables. Furthermore, our approach is

theoretically sound: it takes the uncertainty caused by parameter estimation prop-

erly into account. We illustrate the approach by deriving tests aimed to detect

serial correlation, conditional heteroscedasticity, and non-normality in multivari-

ate quantile residuals. Using our framework one can similarly design more tests

to detect other departures from the characteristic properties of quantile residu-

als. Our three tests have the following advantageous properties. First, they are

easy to use once the parameter estimates of the model are available. Second, they

have Lagrange Multiplier (LM) or score test interpretations and are, therefore,

asymptotically optimal against local alternatives. Third, in conventional models

with normal errors, where quantile residuals are Pearson’s residuals, our test sta-

tistics reduce to classical tests for autocorrelation, conditional heteroscedasticity

and non-normality.

Several previous papers (see Kalliovirta (2006), and the references therein)

consider quantile residuals. Most of them concentrate on out-of-sample forecast

evaluation in a univariate setting and, contrary to us, lack proper theoretical justi-

fication for the employed procedures. Only Hong and Li (2005) and Bai and Chen

(2008) study in-sample evaluation of multivariate models. Compared to the non-

parametric approach of Hong and Li (2005), our approach, in addition to being

theoretically optimal in parametric setting, is simpler in practice. The reliabil-

ity of the generalized Kolmogorov-Smirnov test of Bai and Chen (2008) requires

quantile residuals to be independent. This property, however, may not hold and
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should be tested. Our tests of serial correlation and conditional heteroscedasticity

are designed for this purpose. Furthermore, we allow for non-ergodic data and,

therefore, our approach applies to a wider class of models than the ones in Hong

and Li (2005) and Bai and Chen (2008).

Multivariate quantile residuals are functions of marginal and conditional distri-

butions at each time point. Even if the observations are multivariate, we suggest

also to consider univariate quantities, henceforth joint quantile residuals, that

are functions of products of marginal and conditional distributions. Previously,

Diebold et al. (1999), Clements and Smith (2000), and Clements and Smith (2002)

have applied this idea in the context of multivariate density forecast evaluation.

Our general testing principle applies to a wide range of multivariate models

including mixture distribution based models or models with unobservable regime

switching. These include Markov switching VAR models rigorously studied by

Douc et al. (2004) and applied in special cases, for example, by Paap et al.

(2009) and Lanne et al. (2010). A similar mixture distribution based VAR model

was considered by Lanne and Lütkepohl (2010) whereas a different mixture VAR

model, the ACR model, was studied and applied by Bec et al. (2008). Our ap-

proach also applies to nonlinear multivariate autoregressive models, multivariate

GARCH models, and co-integrated VAR models with the number of unit roots

correctly specified, because with these models quantile residuals reduce to conven-

tional residuals. We apply our developed methods to the Multivariate Generalized

Orthogonal Factor GARCH model of Lanne and Saikkonen (2007). A mixture

version of this model illustrates how our approach supports graphical analysis and

is able to formally compare the goodness of fit between models based on different

structural or distributional assumptions or both.
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Our simulation study shows that the size properties of the proposed tests are

satisfactory once a simulation method is used to compute a covariance matrix

needed in the test statistics. We use a previous multinormality test as an example

to demonstrate by simulation that the size of a test can be totally incorrect if

traditional residuals are incorrectly used or if the uncertainty caused by parameter

estimation is ignored.

The remainder of this paper is organized as follows. Section 2 defines both the

multivariate and joint quantile residuals, and examines their theoretical properties,

which are used in Section 3 to derive misspecification tests. Section 4 presents the

empirical example, Section 5 shows simulation results, and Section 6 concludes.

2 Quantile residuals

This section recalls the definition of univariate quantile residuals, defines multi-

variate and joint quantile residuals in a general likelihood framework, and derives

a general approach of obtaining misspecification tests.

2.1 Univariate case

Let y = (y1, ..., yT ) be a vector of observations with density function f(θ0,y),

where θ0 ∈ Θ is the unknown true parameter value. Denote with P = {f(θ,y) :

θ ∈ Θ⊂ Rk, y ∈RT
}
the collection of potential models for y. For each

f : Θ×RT → R+ we can write

f(θ,y) =
T∏
t=1

ft−1(θ,yt), (1)
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where ft−1(θ,yt) = f(θ,yt|Gt−1), t ∈ {1, ..., T} , yt ∈ R, is the conditional den-

sity function given Gt−1 = σ(Y0, Y1, ..., Yt−1), the sigma-algebra generated by the

random variables {Y0, Y1, ..., Yt−1} . The random vector Y0 represents the needed

initial values. The theoretical quantile residual is defined by

Rt,θ = Φ−1(Ft−1(θ, Yt)), (2)

and the observed quantile residual is rt,θ̂T = Φ−1(Ft−1(θ̂T , yt)), where Φ−1(·) is

the inversed cumulative distribution function of the standard normal distribution,

Ft−1(θ, yt) =
∫ yt
−∞ ft−1(θ,u)du is the conditional cumulative distribution function

of yt, and θ̂T is an estimate of θ0.

2.2 Multivariate case

Let y1, ...,yT be vector valued observations with conditional density function

ft−1(θ,yt) defined for every yt = (y1t, · · · , ynt). The collection of potential models

is denoted by P =
{
f(θ,y) : θ ∈ Θ⊂ Rk, y ∈RnT

}
.

If the components of yt are independent, the quantile residuals extend straight-

forwardly to the vector case. Because the conditional cumulative distribution func-

tion of yt has the product form Ft−1(θ,yt) =
n∏
j=1

Fj,t−1(θ, yjt), where Fj,t−1(θ, yjt)

is the marginal distribution function of the jth component, we can make the trans-

formation (2) component-wise.

If the components of yt are dependent, quantile residuals are defined as follows.

Write the conditional density function of yt in the product form

ft−1(θ,yt) =

n∏
j=1

fij ,j−1,t−1(θ, yij ,t) (3)
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by conditioning with respect to any chosen order of the components. The index

j−1 in the formula denotes conditioning with respect to the sigma-algebra Aj−1 =

σ
{
Yi1,t, ..., Yij−1,t

}
generated by the component variables. Interpret fi1,0,t−1(θ, yi1,t)

= fi1,t−1(θ, yi1,t), and Fij ,j−1,t−1(θ, yij ,t) =
∫ yij ,t
−∞ fij ,j−1,t−1(θ,u)du. Thus, the vector

of theoretical quantile residual at time point t takes the form

Rt,θ =



R1t,θ

R2t,θ

...

Rnt,θ


=



Φ−1(Fi1,t−1(θ, Yi1,t))

Φ−1(Fi2,1,t−1(θ, Yi2,t))

...

Φ−1(Fin,n−1,t−1(θ, Yin,t))


. (4)

This vector is non-unique, it can be formed in n! different ways. The results pre-

sented in this paper are independent of the chosen order of conditioning, however.

The vector of observed quantile residual at time point t is obtained by replacing θ

with θ̂T , an estimate of θ0, in (4).

One can also base the model evaluation on univariate quantities. Congruent

with Clements and Smith (2000), we define theoretical joint quantile residual as

Qt,θ = Φ−1(Zt,θ), (5)

where Zt,θ = Xt,θ

∑n−1
k=0

(−1)k

k!
(lnXt,θ)

k with Xt,θ =
n∏
j=1

Fij ,j−1,t−1(θ, Yij ,t).

Clements and Smith (2000) and Clements and Smith (2002) studied this transfor-

mation in a bivariate case and applied it to evaluate forecast densities. Previously,

no general form of joint quantile residuals has been suggested. The observed joint

quantile residual at time point t is obtained by replacing θ with θ̂T , an estimate

of θ0, in (5).
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2.3 Theoretical properties

Under mild regularity conditions quantile residuals have properties that make them

useful in model evaluation: 1) Lemma 2 shows that observed multivariate quan-

tile residuals are asymptotically independently multinormally distributed, if the

estimated model is correctly specified, 2) Lemma 3 yields the same result for the

observed joint quantile residuals. The following Condition 1 is suffi cient for Lem-

mas 2 and 3 to hold. Unless otherwise stated, all limit statements assume that

T → ∞. The symbol W→ signifies weak convergence, and P→ signifies convergence

in probability.

Condition 1 Let the following assumptions hold.

(1) The collection P is correctly specified, i.e., f(θ0,y) ∈ P.

(2) ft−1 : Θ×Rn → R is a continuous conditional density function for all θ ∈ Θ

and t = 1, ..., T.

(3) θ̂T is an estimator of θ0 such that θ̂T
P→ θ0.

Lemma 2 Under Condition 1,

a) the distribution of the vector of quantile residuals
[
R′1,θ0 · · · R′T,θ0

]′
is

multivariate standard normal, where Rt,θ0 is as in (4) with θ = θ0,

b) for any H fixed, the distribution of
[
R′

1,θ̂T
· · · R′

H,θ̂T

]′
is asymptotically

multivariate standard normal, where Rt,θ̂T
is as in (4) with θ =θ̂T , and

c) for any s ≥ 1, Rt+s,θ0 is independent of {Y1, ...,Yt} .

8



The proof is given in Appendix A. Parts a) and b) are used to obtain the tests

and part c) is used in some subsequent derivations.

Lemma 3 Under Condition 1,

a) the distribution of the vector
[
Q1,θ0 · · · QT,θ0

]′
is multivariate standard

normal, where Qt,θ0 is as in (5) with θ = θ0,

b) for any H fixed the distribution of
[
Q1,θ̂T

· · · QH,θ̂T

]′
is asymptotically

multivariate standard normal, where Qt,θ̂T
is as in (5) with θ =θ̂T , and

c) for any s ≥ 1, Qt+s,θ0 is independent of {Y1, ...,Yt} .

The proof is given in Appendix A. Again, we use parts a) and b) to obtain the

tests and part c) in some subsequent derivations.

Using the preceding results, one can check the correct model specification by

testing whether the observed multivariate or joint quantile residuals are normally

and independently distributed. As already mentioned, previous literature mainly

considers quantile residuals in the univariate setting without the normalizing trans-

formation whose usefulness was pointed out by Dunn and Smyth (1996), Berkowitz

(2001), and Kalliovirta (2006). Specifically, Kalliovirta (2006) shows (in a univari-

ate setting) that the normalizing transformation makes possible to test indepen-

dence and normality together in a simple way and even motivate the obtained tests

by the LM principle (see also Section 2.5).

We, too, advocate the use of the normalizing transformation and show that

similar optimality results exist in the multivariate setting. In contrast, such re-

sults are unavailable when independence and uniform distribution are tested (cf.

Kalliovirta (2006)). Furthermore, the normalizing transformation makes it easy
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to test the independence using correlations of quantile residuals whereas an iden-

tical approach with uniform distribution appears unnatural. Presumably for this

reason, previous literature, except Hong and Li (2005), ignores testing the inde-

pendence hypothesis. The normalizing transformation is advantageous in practice,

too. As pointed out by Dunn and Smyth (1996), practitioners often find graphs

based on normally distributed residuals easier to interpret than graphs based on

the uniform distribution. Moreover, as discussed in Kalliovirta (2006), the nor-

malizing transformation implies that, in several standard models with Gaussian

likelihood, quantile residuals simplify to conventional residuals. This property

makes comparisons to standard models simple. In contrast, uniformly distributed

quantile residuals lack such a convenience.

2.4 General test statistics

This section develops our general framework for obtaining misspecification tests

based on multivariate and joint quantile residuals. With different choices of the

function g to be introduced shortly, one can construct test statistics for differ-

ent potential departures from the characteristic properties of quantile residuals.

Because our framework is based on fairly standard likelihood theory we only de-

scribe the main features and assumptions needed in this section. Precise regularity

conditions and supplementary discussion can be found in Appendix A.

Conditional on initial values, the log-likelihood function of the sample takes

the form lT (θ,y) =
T∑
t=1

lt(θ,yt) =
T∑
t=1

log ft−1(θ,yt). We define the maximum like-

lihood estimator (MLE) θ̂T to be any local maximizer of lT (θ; y), when such a

maximum exists and +∞ otherwise. We assume that lT (θ,y) is twice continu-
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ously differentiable with the score function ST (θ) = ∂
∂θ
lT (θ,Y) and the Hessian

matrix BT (θ) = − ∂2

∂θ∂θ′ lT (θ,Y). We scale the Hessian with known nonrandom

k × k diagonal matrices ξT to obtain its scaled version WT (θ) = ξ−1
T BT (θ)ξ−1

T .

We assume that the scaled Hessian WT (θ0) converges weakly to a positive def-

inite (possibly) random matrix I(θ0). Thus, the matrices ξT define the rate of

convergence of the Hessian matrix BT (θ) at the true parameter value. They are

similarly assumed to define the rate of (weak) convergence of the score function

ST (θ) and, furthermore, that of the MLE θ̂T . The needed regularity conditions are

presented in Condition 7 in Appendix A. These conditions are typically imposed

to ensure the consistency and asymptotic (mixed) normality of a local maximizer

of the conditional likelihood function. 2

Condition 7 and Proposition 8 in Appendix A yield that ξT (θ̂T − θ0) is as-

ymptotically mixed normal. Specifically, we have ξT (θ̂T − θ0)
W→ I(θ0)−1/2Z

where Z (k × 1) is a standard normal random vector independent of I(θ0). In

standard cases, where conventional limit theorems apply, ξT=
√
T Ik and I(θ0)

is nonrandom so that
√
T (θ̂T − θ0)

W→ N(0, I(θ0)−1). In the non-ergodic case,

that includes co-integrated VAR models with possibly deterministic trends and

number of unit roots correctly specified, the matrix I(θ0) is random and the

diagonal elements of the matrix ξT are powers of
√
T , a typical example being

ξT = diag
[
T 1/2Ik1 : TIk2 : T 3/2Ik3

]
(see Johansen (1995)). As will be seen below,

we rule out the case where the diagonal elements of ξT increase at a rate slower

than
√
T .

2In a similar context, Sweeting (1980) and Basawa and Scott (1983) consider the more general
case where the matrices ξT need not be diagonal and can belong to a class of continuous functions
of the parameter θ. All of our results can be extended to this case but, for simplicity, we do not
pursue this extension.
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Condition 7 in Appendix A that suffi ces for the aforementioned results can be

verified in various contexts. In the standard stationary case the conditions given

in Francq and Zakoian (2010) for multivariate GARCH models are suffi cient and

the same is true for the multivariate mixture distribution based ACR model of Bec

et al. (2008). Regarding non-ergodic models, the needed conditions can be verified

in co-integrated VAR models by using results in Johansen (1995).

Condition 4 below allows test statistics to be any continuously differentiable

transformation of the multivariate or joint quantile residuals with zero expecta-

tion. A large number of different hypotheses are, therefore, testable within this

framework.

Condition 4 Let one of the following assumptions hold.

(1a) g : Rnm → Rw is a continuously differentiable function such that E(g(Ut,θ0)) =

0, where Ut,θ0 =

[
R′t,θ0 · · · R′t−m+1,θ0

]′
∈ Rnm is a vector of quantile

residuals defined in (4).

(1b) g : Rm → Rw is a continuously differentiable function such that E(g(Ut,θ0)) =

0, where Ut,θ0 =

[
Qt,θ0 · · · Qt−m+1,θ0

]′
∈ Rm is a vector of joint quantile

residuals defined in (5).

Before we can state the theorem from which the limiting distributions of our

test statistics are obtained, we need further notation and conditions. Again, we

only describe the main features here and provide details and supplementary dis-

cussion in Appendix A where Condition 9 presents the needed regularity condi-

tions. These conditions mainly concern moments of the function g(Ut,θ0) and its

derivatives with Ut,θ0 as in Condition 4. Thus, we assume that the expectations
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G =E( ∂
∂θ′ g(Ut,θ0)) and H = E(g(Ut,θ0)g(Ut,θ0)

′) exist and are finite with H pos-

itive definite. We also need a condition on (weak) convergence of sample cross

moments between g(Ut,θ0) and
∂
∂θ
lt(θ,Yt), and to this end we introduce the (pos-

sibly) random matrix Ψ. In the standard stationary case it is only required that

a (weak) law of large numbers applies to these sample cross moments so that in

this case the matrix Ψ is nonrandom and equals E(g(Ut,θ0)
∂
∂θ
lt(θ,Yt)). Finally, we

define a matrix J which is assumed to be the limit of
√
Tξ−1

T so that it is known,

nonrandom, and diagonal. In particular cases the elements of J consist of zeros

and ones; the elements equal to 0 correspond to the components of θ̂T that con-

verge at a rate faster than
√
T whereas the elements equal to 1 correspond to the

components of θ̂T that converge at the usual rate
√
T . Thus, in standard cases we

have J = Ik.

Theorem 5 Under Conditions 4 and Conditions 7 and 9 in Appendix A

(
1√
T

T∑
t=1

g(Ut,θ̂T
), Ω̂T

)
W→
(
Ω1/2U ,Ω

)
(6)

where U ∼ N(0, Iw),

Ω = GJI(θ0)−1J′G′ + ΨI(θ0)−1J′G′ + GJI(θ0)−1Ψ′ + H, (7)

and Ω̂T is computed by replacing the matrices G, I(θ0), Ψ, and H in the definition

of Ω by ĜT = 1
T

T∑
t=1

∂
∂θ′ g(Ut,θ̂T

), WT (θ̂T ) = ξ−1
T BT (θ̂T )ξ−1

T ,

Ψ̂T = 1√
T

T∑
t=1

g(Ut,θ̂T
)
[
∂
∂θ
lt(θ̂T ,Yt)

]′
ξ−1
T , and ĤT = 1

T

T∑
t=1

g(Ut,θ̂T
)g(Ut,θ̂T

)′.

The proof is in Appendix A.
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The assumptions of Theorem 5 imply that the limiting (conditional) covariance

matrix Ω is positive definite (see Condition 9(2) in Appendix A). The first three

terms of the matrix Ω are due to the uncertainty caused by parameter estimation.

If G = 0, there is (asymptotically) no need to take the uncertainty caused by

parameter estimation into account in the test statistics. Then the estimate of Ω

simplifies in an obvious way, because only the matrix H needs to be estimated. In

particular cases, the matrix H may even be known, as seen in the next section.

The estimator Ω̂T is convenient for most nonlinear models for which the com-

ponents of Ω are impossible or diffi cult to obtain analytically. One obtains the

numerical value of Ω̂T easily by employing the estimation algorithm, one only

needs the knowledge of the estimate θ̂T , the scaled Hessian matrix WT (θ̂T ), the

log-likelihood function lt(θ̂T ,yt), and the derivatives
∂
∂θ′ g(ut,θ̂T ) and ∂

∂θ
lt(θ̂T ,yt).

Lemma 10 in Appendix A provides explicit expressions for the derivatives ∂
∂θ′Rt,θ

and ∂
∂θ′Qt,θ needed to form the estimate ĜT . All needed derivatives are easy to

compute numerically if their analytic values are unknown or diffi cult to obtain.

The size properties of our tests were occasionally unsatisfactory in models

based on mixture distributions, when we used the estimator Ω̂T in simulations.

We, therefore, employed the following simulation method: 1) We estimated the

parameters of the model; 2) we used these estimates to simulate a data set of

20000 observations from the model; 3) based on this large sample, we computed

quantile residuals and numerical derivatives for both the log-likelihood function

and quantile residuals; and 4) we used these quantities to compute an estimate of

the covariance matrix Ω. Henceforth, we denote this estimate by Ω̃T .
3 We then

3Specifically, the estimate Ω̃T is defined as Ω̃T = G̃TJW̃T (θ̂T )
−1J′G̃′T+Ψ̃T W̃T (θ̂T )

−1J′G̃′T+

G̃TJW̃T(θ̂T)
−1Ψ̃

′
T + H̃T , where G̃T , W̃T (θ̂T )

−1, Ψ̃T , and H̃T are as in Theorem 5 except that
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used the quantile residuals of the original data and the estimate Ω̃T to compute

values of the test statistics to be introduced next. This procedure is easy to use

in practice. It adds little to the programming task, because one needs to write a

code that simulates data from the estimated model. As far as computing time is

concerned, the effect of using Ω̃T is insignificant.

Based on the results of Theorem 5, we can deduce that 1√
T

T∑
t=1

g(Ut,θ̂T
)′ · Ω̂−1

T ·

1√
T

T∑
t=1

g(Ut,θ̂T
)
W→ U ′Ω1/2Ω−1Ω1/2U = U ′U . This yields a general test statistic

S =
1

T −m+ 1

T∑
t=m

g(ut,θ̂T )′ · Ω̂−1
T ·

T∑
t=m

g(ut,θ̂T )
W→ χ2(w), (8)

where m and w are the dimensions defined in Condition 4.

A test based on Theorem 5 uses a strategy that requires no specification of

an alternative hypothesis. Cox and Hinkley (1974) introduced tests of this type

and called them pure significance tests. Such tests are robust, but generally lack

optimality against particular alternatives. However, multivariate quantile residual

based tests can possess LM test interpretations against particular alternatives,

also. This is the case for the three tests to be derived in the next section. From

this LM interpretation and results of Chesher and Smith (1997) it further follows

that the autocorrelation test has also a LR test interpretation. For the tests based

on joint quantile residuals we make no attempt to provide LM interpretations,

because of certain diffi culties in the formulation of the needed augmented model.

We determine the LM interpretations in the same way as Kalliovirta (2006) in

the univariate case. We choose a suitable auxiliary model for quantile residuals

they are computed using the simulated data set and the estimate θ̂T based on the original data.
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and incorporate it into the model of interest to obtain an extended likelihood

function. We then obtain the test by using the LM principle to an appropriate

null hypothesis in the auxiliary model (for details, see Appendix B). We note,

however, that the above-mentioned auxiliary model is not suggested for use in

practice. It is only a device to obtain a test and understand its properties.

As already mentioned, an advantage of the LM interpretation is that the ob-

tained test is asymptotically optimal against local alternatives (see Basawa and

Scott (1983)). In contrast, no similar results exist for uniformly distributed quan-

tile residuals, because then the likelihood function of the resulting auxiliary model

is not continuous, and hence, not regular enough.

3 Tests based on Quantile Residuals

Our general framework can be used to derive tests based on a continuously dif-

ferentiable function of multivariate or joint quantile residuals. This includes, but

is unlimited to, higher moments of multivariate or joint quantile residuals. We

exemplify this by deriving separate misspecification tests for serial correlation,

conditional heteroscedasticity, and non-normality of multivariate and joint quan-

tile residuals.4 We suggest that one should use these tests jointly. As our tests

check for both normality and independence of quantile residuals non-rejections in

all of them can be considered as convincing evidence that the model is adequate.

Instead of these separate tests, we could have chosen to generalize the approach

in Jarque and Bera (1980), and use our framework to derive a joint test for these

4If the uncertainty caused by parameter estimation has effect only in small samples, these three
test statistics are asymptotically independent. However, dynamic models or even conventional
models with normal errors rarely meet this property. On the contrary, in most cases the effect
maintains asymptotically.
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three features. However, because the sensitiveness of the individual tests against

different misspecifications varies, outcomes of separate tests can give useful hints of

the reasons of a potential misspecification. In addition, separate tests complement

the information provided by graphical methods such as histograms, Q-Q plots,

autocorrelation and cross correlation functions of quantile residuals and squared

quantile residuals. We illustrate this by providing confidence bounds for graphs of

autocorrelation functions and, thereby, justify their use.

In this section we assume a correct model specification, thusRt,θ0 ∼ n.i.d.(0, In)

and Qt,θ0 ∼ n.i.d.(0, 1).

3.1 Test for Autocorrelation

For our autocorrelation test based on multivariate quantile residuals we intro-

duce the general null hypothesis H0 : E(Rt,θ0R
′
t−s,θ0) = 0 for all t and s > 0.

The test is based on the statistics Ĉs = 1
T−s

∑T
t=1+s rt,θ̂T r′

t−s,θ̂T
, s = 1, ..., K1.

Thus, we assume that the first K1 autocovariance matrices reflect the potential

inadequacy of the model. The use of uncentered sample autocovariance matri-

ces is reasonable here, because theoretically E(Rt,θ0) = 0, even though in general

r̄θ̂T = 1
T

∑T
t=1 rt,θ̂T 6= 0. Also, Chitturi (1974) used a similar test statistic based

on autocorrelations of traditional Pearson’s residuals in a VAR model.

To apply our general approach we define the (continuously differentiable) func-

tion g : Rn(K1+1) → Rn2K1 as

g(ut,θ) = vec

[
rt,θr

′
t−1,θ · · · rt,θr

′
t−K1,θ

]
, (9)

where vec denotes the columnwise vectorization of a matrix. Then clearly E(g(Ut,θ0))
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= 0. Of the matrices H = E(g(Ut,θ0)g(Ut,θ0)
′) and G =E( ∂

∂θ′ g(Ut,θ0)) in the co-

variance matrix Ω (see Theorem 5), the former is equal to In2K1
by properties of

the standard multinormal distribution whereas the latter is given in Derivatives

section in Appendix A. These analytic computations are unnecessary, when one

employs the numerically obtained value Ω̂T (or Ω̃T ), however.

Theorem 5 yields the test statistic AK1 computed as the general test statistic

(8) with m = K1 + 1, w = n2K1, and g(ut,θ̂T ) defined by (9). We also use the

function defined in (9) to obtain the estimate Ω̂T (or alternatively Ω̃T ). One can

interpret this test statistic as a LM test when a K1th order autoregressive model

is specified for quantile residuals. Appendix B provides details on this.

In addition to the overall test statistic AK1 , it is always useful to consider

individual autocovariance and cross covariance estimates ĉijs. A large value of ĉijs

compared to its approximate standard error, obtained from the relevant diagonal

element of the matrix T−1Ω̂T (or T−1Ω̃T ), suggests model inadequacy. Therefore,

a useful model criticism procedure is to plot ĉij1, ..., ĉijr, divided by their standard

errors for each j and some r, and compare them with their approximate 95%

critical bounds, as already suggested in McLeod (1978). For each j this procedure

corresponds to performing r individual tests, and, therefore, the resulting joint

significance level lies between the maximum p-value of the individual tests and

their sum.

Now consider obtaining an autocorrelation test based on joint quantile residu-

als. The relevant null hypothesis is H0 : E(Qt,θ0Qt−s,θ0) = 0 for all t and s > 0.

The test is obtained by applying the preceding autocorrelation test in univariate

form. Thus, rt,θ, ..., rt−K1,θ are replaced with qt,θ, ..., qt−K1,θ in the function g(·),

and appropriate changes are made in the matrices G, Ψ, and H in the covariance

18



matrix Ω (see Theorem 5). We denote the resulting test statistic by AJK1
.

3.2 Test for Conditional Heteroscedasticity

Again, we first use multivariate quantile residuals to obtain a test of poten-

tial conditional heteroscedasticity. As usual, we relate conditional heteroscedas-

ticity to correlation of squares and consider the general null hypothesis H0 :

E(R2
it,θ0

, R2
j,t−s,θ0) = 0 for i, j ∈ {1, ..., n}, all t, and s > 0. This is a natural gener-

alization of the hypothesis used in the corresponding univariate test in Kalliovirta

(2006). As in that paper, we modify the ideas suggested in McLeod and Li (1983)

and Ling and Li (1997) and base the test on the autocovariance type statistics

d̂ijs = 1
T−s

∑T
t=1+s

(
r2
it,θ̂T
− 1
)(

r2
j,t−s,θ̂T

− 1
)
i, j ∈ {1, ..., n}, s = 1, ..., K2. We

assume that a relatively small number of these statistics reflect suffi ciently the

potential inadequacy of the model. Appendix B shows that one can motivate the

resulting test as a LM test when multivariate quantile residuals follow aK2th order

multivariate ARCH model.

Let Ut,θ =

[
R′t,θ · · · R′t−K2,θ

]′
, and, according to the preceding discussion,

define the function g : Rn(K2+1) → Rn2K2 as

g(ut,θ) = vec

[
vt,θv

′
t−1,θ · · · vt,θv

′
t−K2,θ

]
(10)

with vt−s,θ =

[
r2

1,t−s,θ − 1 · · · r2
n,t−s,θ − 1

]′
, s = 0, 1, ..., K2. Then E(g(Ut,θ0)) =

0, and Derivatives section in Appendix A gives the matrix G =E( ∂
∂θ′ g(Ut,θ0)) of

Condition 9. Properties of the standard multinormal distribution give that the

matrix H = E(g(Ut,θ0)g(Ut,θ0)
′) in the covariance matrix Ω (see Theorem 5) is
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equal to In ⊗ 4IK2 , where ⊗ denotes the Kronecker product. Theorem 5 yields

the test statistic HK2 computed as the general test statistic (8) with m = K2 + 1,

w = n2K2, and g(ut,θ̂T ) and, further, Ω̂T (or Ω̃T ) defined by (10).

Similarly to the autocorrelation test, it is useful to supplement the overall

test statistic HK2 by plotting individual estimates d̂ijs divided by their approxi-

mate standard errors obtained from the diagonal elements of the matrix T−1Ω̂T

or (T−1Ω̃T ).

A heteroscedasticity test can be based on joint quantile residuals, also. Then

one tests the null hypothesis H0 : E(Q2
t,θ0
, Q2

t−s,θ0) = 0 for all t and s > 0 and

modifies the preceding test statistic to obtain a test statistic HJ
K2
in the following

way: ChooseUt,θ =

[
Qt,θ · · · Qt−K2,θ

]′
so that rt,θ, ..., rt−K2,θ are replaced with

qt,θ, ..., qt−K2,θ in the function g(·), and make appropriate changes in the matrices

G, Ψ, and H in the covariance matrix Ω (see Theorem 5).

3.3 Normality tests

Our multinormality tests use ideas in Lomnicki (1961), Bera and John (1983),

Jarque and Bera (1987), and Doornik and Hansen (2008). First we choose Ut,θ =

Rt,θ in Condition 4, and develop a multinormality test for multivariate quantile

residuals. The null hypothesis we employ uses three moments of multivariate

quantile residuals, that is, H0 : E
[
R2
jt,θ0
−1 R3

jt,θ0
R4
jt,θ0
− 3

]
= 0 for all j ∈

{1, ..., n} and t. This hypothesis is true if Rjt,θ0 ∼ n.i.d.(0, 1). The independence

structure of theoretical quantile residuals within and between observations allows

us to test multinormality in a similar manner as in Doornik and Hansen (2008).
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Now define the function g : Rn → R3n as

g(ut,θ) =

[
g1(r1t,θ)

′ · · · gn(rnt,θ)
′

]′
, (11)

where gj(rjt,θ) =

[
r2
jt,θ − 1 r3

jt,θ r4
jt,θ − 3

]′
.5 Properties of the standard multi-

normal distribution give E(g(Ut,θ0)) = 0. The matrix G =E( ∂
∂θ′ g(Ut,θ0)) in the

covariance matrix Ω (see Theorem 5) is given in Derivatives section in Appendix

A, whereas

H = E(g(Ut,θ0)g(Ut,θ0)
′) = In ⊗


2 0 12

0 15 0

12 0 96

 . (12)

Theorem 5 yields the test statistic N computed as the general test statistic (8)

with m = 1, w = 3n, and g(ut,θ̂T ) and, further, Ω̂T (or Ω̃T ) defined by (11).

Arguments similar to those in Bera and John (1983) show that test statistic N

can be motivated by the LM principle (find details in Appendix B).

We test the normality of the joint quantile residuals by choosing the null hy-

pothesis H0 : E
[
Q2
t,θ0
−1 Q3

t,θ0
Q4
t,θ0
− 3

]
= 0 for all t. This hypothesis is true

if Qt,θ0 ∼ n.i.d.(0, 1). Therefore, we construct a univariate form of the normality

test obtained above and denote the resulting test statistic by NJ .. Thus, we set

Ut,θ = Qt,θ in g(ut,θ̂T ), and we define accordingly the matrices G, Ψ, and H of

Condition 9.
5Compared to earlier normality tests based on Pearson’s residuals, we include the term r2t,θ−1.

We have found that the addition of this term improves small sample properties of the test for
nonlinear models. It has to be removed, however, if the variance of quantile residuals of the
estimated model is automatically one. Otherwise, the matrix defined in (12) is not positive
definite and the asymptotic result does not hold. This happens, for example, when models can
be estimated using ordinary least squares (OLS).
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4 Empirical example

This section analyzes properties of exchange rate series by applying multivariate

GARCH models, multivariate and joint quantile residuals, and tests based on

them. These considered models employ mixture distributions and, therefore, the

interpretation of traditional residuals is unreliable.

4.1 The Model

The Multivariate Generalized Orthogonal Factor GARCH model uses generalized

orthogonal factors to solve some typical problems encountered in multivariate

GARCH models. The aim is to determine a relatively small number of factors that

describe the multivariate conditional variance structure of the data adequately.

Compared to the model proposed by Lanne and Saikkonen (2007), we consider a

slightly generalized version.

Let yt be a n dimensional process with a conditional density function of the

form

ft−1(yt) = p(2π)−
n
2 det(WH1tΦ

−1
1 W′)−

1
2 exp{−1

2
y′t
(
WH1tΦ

−1
1 W′)−1

yt} (13)

+(1− p)(2π)−
n
2 det(WH2tΦ

−1
2 W′)−

1
2 exp{−1

2
y′t
(
WH2tΦ

−1
2 W′)−1

yt},

where p ∈ (0, 1), W (n × n), Φ1 = pIn + (1 − p)Φ, Φ2 = Φ1Φ
−1, and Φ =

diag [φ1 · · ·φn] are parameter matrices with W nonsingular, and H1t and H2t (n×

n) are stochastic diagonal matrices defined below. We assume that the matrix Φ

has positive diagonal elements; φi > 0 for all i ∈ {1, ..., n}. The stochastic diagonal

matrices H1t and H2t describe conditional heteroscedasticity in the process yt.
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They are of the form Hjt = diag[Vjt : In−r] with Vjt = diag
[
v

(j)
1t · · · v

(j)
rt

]
, where

v
(j)
it = (1− αji − βji) + βjiv

(j)
i,t−1 + αji(b

′
iyt−1)2, i = 1, ..., r, and j = 1, 2, (14)

and b′i is the ith row of the parameter matrix B′ = W−1. Thus, each of the

processes v(j)
it is a conventional (univariate) GARCH(1,1) process except that we

normalize the intercept terms so that the components of B′yt have unit uncon-

ditional variance. As in GARCH(1,1) models, the parameters α1i, α2i, β1i, β2i in

(14) are assumed to satisfy αji > 0, βji ≥ 0, and αji + βji < 1 for all i and j.

Thus, the conditional distribution of yt is a mixture of two normal distributions

with Et−1(yt) = 0 and covt−1(yt) = pWH1tΦ
−1
1 W′ + (1 − p)WH2tΦ

−1
2 W′. The

model is identified up to multiplying the columns of B by minus one.

The model has an alternative representation as a function of parameters and

two unobservable random variables

yt = W
(
I(st = 0) ·H1/2

1t Φ
−1/2
1 + I(st = 1) ·H1/2

2t Φ
−1/2
2

)
εt, (15)

where I(·) is the indicator function, εt ∼ n.i.d.(0, In), and st is an i.i.d. random

variable with Pr(st = 0) = p and Pr(st = 1) = 1− p. Moreover, the processes {εt}

and {st} are independent. From (15) one clearly obtains the conditional density

(13) for yt. The representation (15) is easily compared with the model in Lanne

and Saikkonen (2007), where

yt = WH
1/2
t

(
I(st = 0) + I(st = 1) ·Φ1/2

)
Φ
−1/2
1 εt. (16)

This model can be obtained from (15) by imposing the parameter restrictions
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α1i = α2i and β1i = β2i for all i = 1, ..., r. Thus, in our model the mixture

structure is not limited to the distribution of the error term εt, it also affects

parameters in the conditional covariance matrix.

The restrictions imposed on the parameters in (14), with some further assump-

tions, imply that the process yt, defined by (16), is strictly stationary and ergodic

and also second order stationary (see Lanne and Saikkonen (2007) and the refer-

ences therein). To the best of our knowledge, conditions that guarantee similar

results in the more general model (15) are unknown. Therefore, we assume that the

model is stationary and ergodic under the assumptions made on the parameters.

Then standard limit theorems apply, and verification of the high level conditions

imposed in Section 2 becomes possible with ξT=
√
T Ik and J = Ik. Due to space

constraints, no attempt is made to provide details, however.

We analyze 4 weekly exchange rate series of the French Franc (FRF), Dutch

Guilder (NLG), German Mark (DEM) and Swiss Franc (CHF) against the U.S.

Dollar (USD) for the years 1984—1997. That makes 782 observations. This data

was also employed in Lanne and Saikkonen (2007). We used Gauss 10.0 and

the algorithm library cml MT-package to compute maximum likelihood estimates

of the parameters. We calculated the initial values of Ĥ11 and Ĥ21 using the

sample variances of b̂′jyt, thus, the initial values differed at each iteration. Before

estimation, we centered the series for the mean to be zero.

4.2 Comparison of the estimated models

We use quantile residuals to compare four different Multivariate Generalized Or-

thogonal Factor GARCH models. Two of them, already estimated in Lanne and
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Saikkonen (2007), are a two factor model under normality (Model 1) and a one

factor mixture-normal model (Model 2), both based on equation (16). The esti-

mation results of these two models of can be found in their paper. Tables 1 and 2

give the estimation results of a one factor mixture-normal model (Model 3) and a

two factor mixture-normal model (Model 4) based on equation (15). We estimated

these two new models to discover whether we could remove the inadequacies in

the previous models (1 and 2) detected by our analysis. We used two factors in

Model 4 because, according to the tests derived in Lanne and Saikkonen (2007),

the null hypothesis of two conditionally heteroscedastic factors was not rejected at

the 5% significance level.

We computed the quantile residuals according to equations (4) and (5), and

chose the conditioning order (i1, i2, i3, i4) = (1, 2, 3, 4). Hence, our observed multi-

variate quantile residuals are

rt,θ̂T =



r1t,θ̂T

r2t,θ̂T

r3t,θ̂T

r4t,θ̂T


=



Φ−1(F1,t−1(θ̂T , y1t))

Φ−1(F2,1,t−1(θ̂T , y2t))

Φ−1(F3,2,t−1(θ̂T , y3t))

Φ−1(F4,3,t−1(θ̂T , y4t))


.

The factorization of the joint density into a product of one marginal and three

conditional densities was eased by the fact that for the family of mixtures of multi-

normal distributions the marginal and conditional distributions belong to the same

family of distributions. Thus, one can solve the residuals for each observation iter-

atively by solving the parameters of one marginal and one conditional distribution

at a time. For completeness we provide details on this in Appendix C.
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Table 3 shows the values of the test statistics, developed in Section 3, for each

model along with the values of two information criteria, AIC and BIC. They are

computed as AIC = 2 · k − 2 · lT and BIC = k · log(T − u) − 2 · lT , where

lT is the value of the maximized log-likelihood of the sample, k is the dimension of

the parameter vector, T is the sample size, and u is the number of needed initial

values. Similarly to Kalliovirta (2006), we compute the values of the tests statistics

in Table 3 with a simulated covariance matrix Ω̃T (for definition, see Section 2)

because, according to simulations in Section 5, they provide more reliable versions

of the tests.6

Table 3 shows that the autocorrelation test AJ3 based on three lags of joint

quantile residuals is not critical on any of the models. One observes the same by

looking at autocorrelation functions based on the joint quantile residuals (reported

only for Model 4 in Figure 1). The normality test based on joint quantile residuals

NJ rejects all models at 1% significance level. This is also the case for the con-

ditional heteroscedasticity test HJ
3 based on three lags of joint quantile residuals

with the exception of Model 4, and the p−value is as small as 1.1% even for this

model. Figure 1, that depicts both the autocorrelation graphs of the joint quantile

residuals and squared joint quantile residuals of Model 4 along with 99% critical

bounds7, illustrates this further. Tests based on multivariate quantile residuals

reject the models at conventional critical levels. Overall the tests are least critical

towards Model 4 that is also favoured by the information criteria.

The third multivariate quantile residual r3t,θ̂T
is negatively autocorrelated at

6The Gauss code to implement our tests is available from the author upon request.
7Section 3 explains how these 99% critical bounds are derived. Because we actually test several

tests at the same time, we should make the Bonferroni correction. If we use 99% confindence
bounds for 5 tests at the same time, we are, according to the correction, actually basing our
inference on 95% confidence bounds.
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lag one with the absolute value around 0.20 in all four models. Figure 1 depicts

this for Model 4 along with the 99% critical bounds. This figure explains why

the autocorrelation test A3 rejects all the models, and indicates that the mean

might be time-varying. We ignore this problem, but acknowledge that it can cause

bias in our analysis. The squared multivariate quantile residuals are autocorrelated

especially in Model 1. The autocorrelation is smaller in mixture distribution based

models. But even for Model 4, autocorrelation exists in the series of r2
4t,θ̂T

and,

therefore, H3 rejects (see Figure 1).

The multivariate quantile residual series of Models 1 and 4, depicted in Figures

2 and 3, show that Model 4 captures the fluctuations of the data much better than

Model 1. The same is true when Model 4 is compared with Models 2 and 3 (the

graphs not shown). An inspection of the distributional fit by other methods, like

histograms and normal probability plots based on multivariate quantile residuals

(not reported), favour Models 3 and 4.

To conclude, the tests and figures are more informative than previously avail-

able AIC and BIC. The graphs based on multivariate quantile residuals indicate

that the mixture models provide better descriptions for the exchange rate series

than the normal distribution based Model 1. A further advantage of the graphs

is that they suggest possible reasons of misspecification. We wish to emphasize,

however, that our aim has been to illustrate how different models with non-nested

structures can be analyzed with the methods proposed in this paper. Therefore,

it is beyond the scope of this work to consider new specifications even though the

diagnostics accepted none of the examined models.
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5 Simulations

This section studies the size and power properties of the proposed tests based

on joint and multivariate quantile residuals (AJK1
, HJ

K2
, NJ , AK1 , HK2 , and N).

Our simulations consider the sample sizes 250, 500, 750, and 1000, depending

on the model to be estimated. All results are based on 2000 replications. We

report empirical rejection frequencies when one considers tests at 5% and 1%

significance levels. To avoid the initial value problem, 200 extra observations were

simulated and removed from the beginning of every sample. We obtained the

MLEs of the parameters of the considered models using the cml MT library in

GAUSS Windows Version 10.0. We used the inverse of the cross-product of the

first derivatives to compute the approximate covariance matrix of estimators. This

procedure guarantees positive semidefinite estimates.

As already mentioned, the size properties of the tests were occasionally unsat-

isfactory when we used the covariance matrix estimator Ω̂T in models based on

mixture distributions. We, therefore, employed the estimate Ω̃T to compute values

of the test statistics.

5.1 Models

We study the size properties and the ability of the considered tests to reveal

misspecification with simple bivariate models. In power comparisons we do not

adjust the tests for size distortions, because the sizes are quite accurate and the

adjustment is impossible to do in empirical applications. Thus, our simulation

study conforms to actual testing situation.

We use Models S.1, S.3, and S.5 to examine the size properties and Models S.1,
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S.2, and S.4 to study power. Results are in Tables 4, 5, 6, and 7.

Model S.1

yt = µ+ εt, where εt ∼ n.i.d.(0,Σ), and Σ > 0.

Model S.2:

yt = (µ1 + εt) · I(ηt ≤ c) + (µ2 + εt) · I(ηt > c),

where ηt ∼ N(0, 1), εt ∼ N2(0,Σ1), and εt ∼ N2(0,Σ2) are mutually independent

unobservable i.i.d. random variables with Σ1 > 0 and Σ2 > 0.

Model S.3:

yt = µ+ Ayt−1 + εt, where εt ∼ n.i.d.(0,Σ) and Σ > 0.

Model S.4:

yt = µ+ I(ηt ≤ c) ·A1yt−1 + I(ηt > c) ·A2yt−1 + εt,

where ηt ∼ n.i.d.(0, 1) and εt ∼ n.i.d.(0,Σ) are mutually independent withΣ > 0.

Model S.5:

yt = Σ
1
2
t εt,

where εt ∼ n.i.d.(0,Σt) with Σt= WHtW
′ > 0 for all t, Ht = diag

[
vt 1

]
, and

vt = (1− α) + α(b′1yt−1)2 with b1being the first row of matrix (W′)−1.
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5.2 Size and power properties

The size properties of the tests are satisfactory, though the conditional heteroscedas-

ticity test based on multivariate quantile residuals (H3) is somewhat oversized (Ta-

bles 4, 5, and 6). For sample sizes larger than 1000, however, the size properties

are quite accurate even for this test (not reported).

We study the power properties of the tests by simulating Models S.2 and S.5,

and then estimating Model S.1 (Table 4). Model S.2 is a mixture of two normal

distributions with small differences in the means and covariance structures based

on i.i.d. innovations. Therefore, it is unsurprising that the tests show only little

power. One also expects the normality tests to react, and indeed the multivariate

quantile residual based version N has power in larger samples. When the differ-

ence in means increases, the tests become powerful in small samples as well (not

reported). When Model S.5 generates the data, one expects that especially the

conditional heteroscedasticity tests H3 and HJ
3 have power. This is the case for

the multivariate quantile residual based test (H3) even though the value of the

parameter α is relatively small (Table 4). However, the corresponding test based

on joint quantile residuals (HJ
3 ) shows only little power and is even less powerful

than the normality test based on multivariate quantile residuals (N). When larger

values of α are used, both of the two conditional heteroscedasticity tests are very

powerful, as expected. The autocorrelation tests A3 and AJ3 are at their nominal

levels. This is unsurprising, because Models S.2 and S.5 contain no time varying

conditional mean (Table 4).

The conditional heteroscedasticity test based on multivariate quantile residuals

(H3) shows power, when Model S.4 is simulated and Model S.3 is estimated (Table
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5). The corresponding test based on joint quantile residuals (HJ
3 ) also has fairly

good power compared with the other joint quantile residual based tests. The

other tests have low power except the autocorrelation test based on multivariate

quantile residuals (A3). However, even the power of this test is rather modest

and decreases when the sample size increases. The cause for this may be that,

compared to Models S.3, the additional regime is conditionally heteroscedastic,

but not autocorrelated in Model S.4.

To conclude, according to our simulations the tests based on multivariate quan-

tile residuals are more powerful than their counterparts based on joint quantile

residuals. However, despite their relatively low power, tests based on joint quan-

tile residuals may nevertheless be useful especially when both the dimension and

the number of the observations are large.

5.3 Comparisons to other tests

Kalliovirta (2006) found in the univariate case that, when a mixture model is

simulated and estimated, tests based on Pearson’s residuals8 are unreliable. Table

7 illustrates this in the multivariate case using mixture distribution based Model

S.2 and the normality test BJp of Bera and John (1983). The size properties of

Pearson’s residual based test are unacceptable: the true null hypothesis is rejected

with 100% certainty. If we employ the normality test of Doornik and Hansen

(2008), the size properties are exactly the same (not reported).

Kalliovirta (2006) also found that previous tests based on moments can suffer

from severe size distortions when employed without taking the uncertainty caused

8We define Pearson’s residual as ̂Covt−1(yt)
− 1
2 · (yt − Êt−1yt), where Êt−1yt is estimated

conditional expectation vector and ̂Covt−1(yt) is estimated conditional covariance matrix.
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by parameter estimation into account. For this reason, we consider in Model S.2

quantile residual based test N q, computed using Ω = H. This test is heavily un-

dersized (Table 7). When the effect of parameter estimation is taken into account,

the size properties are satisfactory. This is displayed in Table 7 with both our

multivariate quantile residual based test N and joint quantile residual based test

NJ . To compare our tests with existing uniformly distributed quantile residual

based test, we also computed the pooled test statistic of Bai and Chen (2008).

This test turned out to be oversized. We tried several different parameter values

in Model S.2 (not reported), but our findings were the same as in Table 7.

To conclude, the above results demonstrate that with mixture distribution

based models it is important to use quantile residual based tests that properly

take the effect of parameter estimation into account. Similar results may occur

with other models as well. Especially with such models where no analytic results

exist to guarantee that the uncertainty caused by parameter estimation vanishes

asymptotically.

6 Conclusion

We studied multivariate and joint quantile residuals that are generalizations of

traditional residuals. Under regularity conditions, we stated the theoretical prop-

erties of quantile residuals, developed a general framework, and used it to obtain

misspecification tests based on quantile residuals. Our tests are theoretically sound

in that they take the uncertainty caused by parameter estimation into account.

We illustrated how to apply our framework by deriving tests for serial correlation,

conditional heteroscedasticity, and non-normality in quantile residuals. These tests
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are simple to compute once the parameters of the model are estimated, and their

application only requires the conventional χ2 criterion.

We enlarged the set of models for which traditional graphical diagnostics and

related statistical tests are applicable. Examples of models now included in this

set are models involving mixture distributions or latent variables that have re-

cently found applications in econometrics. Our simulations showed that for these

models diagnostics based on traditional Pearson’s residuals can be unreliable. Our

misspecification tests are reliable and applicable for all models for which quan-

tile residuals are suited. This includes models for which also traditional residuals

work. Because our testing approach properly takes the uncertainty caused by pa-

rameter estimation into account, it can even improve size properties of previous

tests which ignore the estimation uncertainty. We demonstrated this by using a

normality test and simulation. We illustrated the practical usefulness of our ap-

proach by an empirical example that applied mixtures of Multivariate Generalized

Orthogonal Factor GARCH models.
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A Appendix: Proofs

We assume the usual framework of a parametric model, where (Ω,A,P) is a fixed

probability space with a complete measure P, Yθ : Ω → RnT a family of ran-

dom variables indexed by the parameter θ belonging to the set Θ ⊂ Rk, and

(RnT ,BnT ,Pθ) the probability space induced by Yθ. Then P = {Pθ : θ ∈ Θ} is

a collection of probability measures defined on BnT , the Borel sigma-algebra of

RnT . The collection P can equally well be defined by the density functions f(θ,y),

P =
{
f(θ,y) : θ ∈ Θ, y ∈RnT

}
, the definition we use in the main text.

Proof of Lemma 2. Following the proof of Rosenblatt (1952) and the notation

in the main text, we write Zjt = Fij ,j−1,t−1(θ0, Yij ,t) for each j = 1, ..., n and

t = 1, ..., T. We fix the point (z1, ..., zT ) ∈ (0, 1)nT , where zt = (z1t, ..., znt). Then

for each zjt exists unique yij ,t such that zjt = Fij ,j−1,t−1(θ0, yij ,t) for all j and t. This

follows from the fact that the distributions Fij ,j−1,t−1 are absolutely continuous

w.r.t. Lebesgue measure. We denote

A =

{
T∏
t=1

n∏
j=1

(
−∞, F−1

ij ,j−1,t−1(θ0, zjt)
]

; j = 1, ..., n and t = 1, ..., T

}
⊂ RnT

and B =

{
T∏
t=1

n∏
j=1

(0, zjt] ; j = 1, ..., n and t = 1, ..., T

}
⊂ (0, 1)nT . Now,

F(Z1,...,ZT |Y0)(z1, ..., zT |G0) = P(Z1 ≤ z1, ...,ZT ≤ zT |G0)

= P(Yij ,t ≤ F−1
ij ,j−1,t−1(θ0, zjt) for all j and t|G0)

=
∫
A

T∏
t=1

n∏
j=1

fij ,j−1,t−1(θ0, uij ,t)duij ,t

=
∫
B

T∏
t=1

n∏
j=1

dvjt =
T∏
t=1

n∏
j=1

zjt.
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The second equality follows from absolute continuity of Ft−1. The third equal-

ity uses equations (1) and (3) to rewrite the joint density. The fourth equality

follows by change of variable vjt = Fij ,j−1,t−1(θ0, uij ,t), and the fifth by integra-

tion. Therefore, Z11, ..., ZnT are independent (conditional on Y0)9, and each Zjt ∼

Uniform(0, 1). Because Φ−1 is continuous, it is measurable. Then R1,θ0 , ...,RT,θ0 ,

where Rt,θ0 =

[
Φ−1(Z1t) · · · Φ−1(Znt)

]′
, are independent as measurable map-

pings of independent random variables. Clearly, Rjt,θ0 ∼ N(0, 1) for each j and t,

and [
R′1,θ0 · · · R′T,θ0

]′
=

[
R11,θ0 · · · RnT,θ0

]′
∼ N(0, InT ).

Because the mapping Fij ,j−1,t−1 : Θ×R→ (0, 1) is continuous with respect to θ,

the Continuous Mapping Theorem (see for example van der Vaart (1998), page 7)

and Condition 1(3) together imply that Fij ,j−1,t−1(θ̂T , yij ,t)
P→ Fij ,j−1,t−1(θ0, yij ,t)

whereas the continuity of Φ−1 : (0, 1)→ R yields

Rjt,θ̂T
= Φ−1

(
Fij ,j−1,t−1(θ̂T , yij ,t)

)
P→ Φ−1

(
Fij ,j−1,t−1(θ0, yij ,t)

)
= Rjt,θ0

for each j and t. Then
[
R′

1,θ̂T
· · · R′

H,θ̂T

]′
W→ N(0, InH) for H fixed.

The independence of Rt+s,θ0 and {Y1, ...,Yt} for s ≥ 1 follows easily using the

results above: Rt+s,θ0 is independent of {R1,θ0 , ...,Rt,θ0} , and {Y1, ...,Yt} is a

measurable mapping of {R1,θ0 , ...,Rt,θ0} , because Yij ,t = F−1
ij ,j−1,t−1(θ0,Φ(Rjt,θ0)).

9This remark holds for every independence proven in this paper and is hereafter omitted.

35



A.1 Proof of Lemma 3

We apply Lemma 6 in the proof of Lemma 3.

Lemma 6 Let X1, ..., Xn be i.i.d. uniform random variables on (0, 1) and X=∏n
i=1 Xi, then fn(X) ∼ Uniform(0, 1), where fn(x) = x

∑n−1
i=0

(−1)i

i!
(lnx)i.

Proof. Let n = 2, and denote Z1 = X1X2 and Z2 = X2. The Jacobian determinant

of the inverse transformation is 1
z2
, and hence we get the joint density function

fZ1,Z2(z1, z2) = 1
z2
, when 0 < z1 < z2 < 1, and fZ1,Z2(z1, z2) = 0 otherwise.

Integrating with respect to z2 over the range (z1, 1) yields the marginal density

function fZ1(z1) = − ln z1, and the cumulative distribution function FZ1(z1) =

z1 − z1 ln z1. From the proof of Lemma 2, FZ1(Z1) ∼ Uniform(0, 1), as required.

We make an induction assumption that the result holds for n = k − 1, and

show that it holds for n = k. Denote Z =
∏k−1

i=1 Xi. The induction assumption

gives FZ(z) = z
∑k−2

i=0
(−1)i

i!
(ln z)i. Therefore, derivation with respect to z yields

the density function of the variable Z

fZ(z) =
(−1)k−2

(k − 2)!
(ln z)k−2. (17)

Denote V1 = ZXk and V2 = Xk. Because Z and Xk are independent, the joint

density function of V1 and V2 is obtained by calculating the Jacobian determinant

for the inverse transformation and applying the standard formula to obtain

fV1,V2(v1, v2) = fZ(
v1

v2

)fXk(v2)
1

v2

=
(−1)k−2

(k − 2)!
(ln

v1

v2

)k−2 1

v2

,
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when 0 < v1 < v2 < 1, and fV1,V2(v1, v2) = 0 otherwise. Because

d

dv2

(ln
v1

v2

)k−1 = (−1)(k − 1)(ln
v1

v2

)k−2 1

v2

and ln 1 = 0, the density function of V1 is

fV1(v1) =
(−1)k−2

(k − 2)!

1∫
v1

(ln
v1

v2

)k−2 1

v2

dv2 =
(−1)k−1

(k − 1)!
(ln v1)k−1.

Integrating by parts we get the distribution function of V1

FV1(v1) =

v1∫
0

(−1)k−1

(k − 1)!
(lnx)k−1dx

= v1
(−1)k−1

(k − 1)!
(ln v1)k−1 − lim

x→0
x

(−1)k−1

(k − 1)!
(lnx)k−1 +

v1∫
0

(−1)k−2

(k − 2)!
(lnx)k−2dx

for 0 < v1 < 1.

Using (17), we see that
v1∫
0

(−1)k−2

(k−2)!
(lnx)k−2dx = FZ(v1) = v1

∑k−2
i=0

(−1)i

i!
(ln v1)i. An

application of L’Hospital’s Rule (k − 1) times yields lim
x→0

(−1)k−1

(k−1)!
(lnx)k−1

x−1 = lim
x→0

x =

0. Therefore,

FV1(v1) = v1

∑k−1

i=0

(−1)i

i!
(ln v1)i,

and, from the proof of Lemma 2, FV1(v1) ∼ Uniform(0, 1). Since V1 =
∏k

i=1Xi,

the induction principle completes the proof.

Proof of Lemma 3. Write Xt,θ =
n∏
j=1

Fij ,j−1,t−1(θ, yij ,t) using (3). Lemma 2

shows that Fij ,j−1,t−1(θ0, Yij ,t) are i.i.d. uniform variables, so that by Lemma 6,

Zt,θ0 ∼ Uniform(0, 1),
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where Zt,θ0 = Xt,θ

∑n−1
i=0

(−1)i

i!
(lnXt,θ)

i . Clearly, Qt,θ0 = Φ−1(Zt,θ0) ∼ N(0, 1).

Because {X1,θ0 , ..., XT,θ0} are independent (Lemma 2), Zt,θ0s and Qt,θ0s are inde-

pendent as measurable transformations of independent variables. Therefore, part

a) of the Lemma follows.

The random variables Qt,θ are continuous in θ for all t. Then, Condition 1(3),

the Continuous Mapping Theorem, and part a) together yield part b).

Lemma 2 c) shows that Xt+s,θ0 =
n∏
j=1

Fij ,j−1,t+s−1(θ0, Yij ,t) and {Y1, ...,Yt} are

independent for s ≥ 1. Hence, Qt,θ0 and {Y1, ...,Yt} are independent for s ≥ 1.

A.2 Conditions for Theorem 5

Condition 7 below is a slightly modified version of conditions presented in Sweeting

(1980) and Basawa and Scott (1983), and guarantees that the asymptotic distrib-

ution of the MLE is mixed normal. We use ‖·‖ to signify the Euclidean norm.

Condition 7 Let the following assumptions hold.

(1) Θ ⊂ Rk is an open set.

(2) The model is correctly specified, i.e., f(θ0,y) ∈ P .

(3) For every (θ,x) ∈ Θ×D, where D ⊂ Rn, and every t = 1, ..., T, ft−1(θ,x) > 0

and the second partial derivatives ∂2

∂θi∂θj
ft−1(θ,x), i, j = 1, ..., k, exist and are

continuous.

(4) There exist nonrandom nonsingular k × k diagonal matrices ξT such that

ξ−1
T → 0 and, for all c > 0,

sup
θ∈MT,c

∥∥ξ−1
T [BT (θ)−BT (θ0)] ξ−1

T

∥∥ P→ 0,
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where MT,c = {θ ∈ Θ : ‖ξT (θ − θ0)‖ ≤ c} and

BT (θ) = − ∂2

∂θ∂θ′ lT (θ,Y) = −
[∑T

t=1
∂2lt(θ,Yt)
∂θi∂θj

]k
i,j=1

.

(5) Let ST (θ) = ∂
∂θ
lT (θ,Y) =

∑T
t=1

∂
∂θ
lt(θ,Yt) be the score function andWT (θ0) ≡

ξ−1
T BT (θ0)ξ−1

T a scaled Hessian matrix. There exists a (possibly) random ma-

trix I(θ0) such that

[
WT (θ0)

[
ξ−1
T ST (θ0)

]′]′ W→ [
I(θ0)

[
I(θ0)1/2Z

]′]′
,

where Pθ0(I(θ0) > 0) = 1, and Z ∼ Nk(0, Ik) is independent of I(θ0).

Condition 7(3) imposes fairly standard regularity conditions on the conditional

density functions. Combined with Condition 7(1), it implies the applicability of

the Mean-Value Theorem for the score function in any convex set C ⊂ Θ. The

correct model specification is necessary for Proposition 8 below and for testing

purposes. Condition 7(4) is technical and gives a uniform convergence in proba-

bility of the Hessian of the log-likelihood on special compact sets that contain the

true parameter value θ0. Using the general weight matrices ξT in the condition

and allowing the matrix I(θ0), the limit of the scaled HessianWT (θ0) in Condition

7(5), to be random makes the framework applicable also in the non-ergodic case.

Condition 7(5) is a high level assumption needed to obtain asymptotic mixed nor-

mality of the MLE. For this, Condition 7(1) is also pertinent because it guarantees

that the MLE is an inner point. In standard cases one typically verifies Condition

7(4) using an appropriate uniform law of large numbers and Condition 7(5) using

a martingale central limit theorem. In these cases the MLE is asymptotically nor-

mally distributed with a constant covariance matrix I(θ0). In co-integrated VAR
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models, the most typical multivariate non-ergodic examples in econometrics, one

uses a functional central limit theorem instead of its conventional counterpart.

Proposition 8 Under Condition 7, there exists a sequence of local maximizers θ̂T

such that
{
ξT (θ̂T − θ0)

}
T∈N

is bounded in probability and

ξ−1
T ST (θ0)−WT (θ0)ξT (θ̂T−θ0)

P→ 0.

The proof is given in Sweeting (1980). Proposition 8 yields the asymptotic

mixed normality of the MLE mentioned in Section 2.4.

Condition 9 below is necessary for the general framework of obtaining tests.

Therefore, it contains functions of quantile residuals along with quantities derived

from the log-likelihood function.

Condition 9 Let the vector Ut,θ0 and the function g be as in Condition 4 and let

the following assumptions hold.

(1) For all c > 0

sup
θ∈MT,c

∥∥∥∥∥ 1

T

T∑
t=1

∂

∂θ′
g(Ut,θ)−G

∥∥∥∥∥ P→ 0, sup
θ∈MT,c

∥∥∥∥∥ 1

T

T∑
t=1

g(Ut,θ)g(Ut,θ)
′ −H

∥∥∥∥∥ P→ 0,

and

sup
θ∈MT,c

∥∥∥∥ 1√
T

∑T

t=1
g(Ut,θ)

[
∂

∂θ
lt(θ,Yt)

]′
ξ−1
T −Ψ

∥∥∥∥ P→ 0,

where G =E( ∂
∂θ′ g(Ut,θ0)) and H = E(g(Ut,θ0)g(Ut,θ0)

′) exist and are finite

and Ψ is a (possibly) random matrix. Moreover, the matrix H is positive

definite.
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(2) There exists a nonrandom k × k matrix J such that
∥∥∥√Tξ−1

T − J
∥∥∥→ 0, and

[
WT (θ0) :

[
ξ−1
T ST (θ0)

]′ 1√
T

T∑
t=1

g(Ut,θ0)
′
]′

W→
[
I(θ0) :

[
Σ1/2Z

]′]′ ,

where Z ∼ Nk+w(0, Ik+w) is independent of Σ =

I(θ0) Ψ′

Ψ H

 , a positive
definite matrix with (possibly random) elements defined above in (1) and

Condition 7(5).

(3) The cumulative distribution function Ft−1 : Θ× Rn → (0, 1) is continuously

differentiable in (θ,x) ∈ Θ× Rn for all t = 1, ..., T.

Condition 9(1) imposes uniform convergence in probability on special compact

sets similar to that in Condition 7(4). Together these two conditions define the

matrix Σ in Condition 9(2). One can verify the joint weak convergence in Con-

dition 9(2) by using an appropriate (functional) central limit theorem. Condition

9(2) contains Condition 7(5) as a special case. Condition 9(3) complements Con-

dition 7(3) and guarantees the existence of derivatives of quantile residuals.

Proof of Theorem 5. We can assumed that θ̂T 6= ∞, because lim
T→∞

P(θ̂T 6=

∞) = 1 by Proposition 8. Here P = Pθ0 is the probability measure induced by

the true parameter value θ0. Again by Proposition 8, for every ε > 0 exists c0

and T0 such that P(θ̂T∈MT,c0) > 1 − ε for all T > T0. By the first uniform

convergence in Condition 9(1), 1
T

T∑
t=1

∂
∂θ′ g(Ut,θ̃T

)
P→ G for all θ̃T∈MT,c and c > 0,

thus, 1
T

T∑
t=1

∂
∂θ′ g(Ut,θ̂T

)
P→ G.
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The Mean-Value Theorem and Conditions 4 and 9(3) together imply that

1√
T

T∑
t=1

g(Ut,θ̂T
) =

1√
T

T∑
t=1

∂

∂θ′
g(Ut,θ̃)(θ̂T − θ0) +

1√
T

T∑
t=1

g(Ut,θ0), (18)

where ∂
∂θ′ g(Ut,θ̃) =

[
∂
∂θ
g1(U

t,θ̃
(1)) · · · ∂

∂θ
gn(U

t,θ̃
(n))

]′
is a (n× k) Jacobian-matrix

with U
t,θ̃

(j) =

[
R′
t,θ̃

(j) · · · R′
t−m+1,θ̃

(j)

]′
(or U

t,θ̃
(j) =

[
Q
t,θ̃

(j) · · · Q
t−m+1,θ̃

(j)

]′
depending on the choice in Condition 4), θ̃ = (θ̃

(1)
, . . . , θ̃

(n)
), and

∥∥∥θ̃(j) − θ0

∥∥∥ <∥∥∥θ̂T − θ0

∥∥∥ for each j = 1, ..., n. Proposition 8 and Condition 7(5) give

√
T (θ̂T−θ0) =

√
Tξ−1

T WT (θ0)−1ξ−1
T ST (θ0) + oP (1), (19)

because, by Condition 9(2),
√
TξT

−1WT (θ0)−1 · oP (1) = oP (1).

Because (see Condition 9(1)) 1
T

T∑
t=1

∂
∂θ′ g(Ut,θ̃) · oP (1) = oP (1), equations (18) and

(19) yield

1√
T

T∑
t=1

g(Ut,θ̂T
)

=

[
1
T

T∑
t=1

∂
∂θ′ g(Ut,θ̃)

√
Tξ−1

T WT (θ0)−1 : Iw

] ξ−1
T ST (θ0)

1√
T

T∑
t=1

g(Ut,θ0)

+ oP (1).

Conditions 9(1), 9(2), and the Continuous Mapping Theorem ensure that

[
1√
T

T∑
t=1

∂
∂θ′ g(Ut,θ̃)ξ

−1
T WT (θ0)−1 : Iw

]
W→
[
GJI(θ0)−1 : Iw

]
. (20)
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Finally, using (20), Condition 9(2), and the Continuous Mapping Theorem

1√
T

T∑
t=1

g(Ut,θ̂T
)
W→
[
GJI(θ0)−1 : Iw

]
·Σ1/2Z,

where Z ∼ Nk+w(0, Ik+w). Furthermore, setting

Ω =

[
GJI(θ0)−1 : Iw

]
Σ

I(θ0)−1J′G′

Iw


= GJI(θ0)−1J′G′ + ΨI(θ0)−1J′G′ + GJI(θ0)−1Ψ′ + H

we can write [
GJI(θ0)−1 : Iw

]
Σ1/2Z =Ω1/2U ,

where U ∼ Nw(0, Iw). Independence of U and Ω follows from that of Z and[
GJI(θ0)−1 : Iw

]
Σ1/2.

By Condition 7(4) and Proposition 8,
∥∥∥WT (θ̂T )−WT (θ0)

∥∥∥ P→ 0. BecauseWT (θ0)
W→

I(θ0), by Condition 7(5), then WT (θ̂T )
W→ I(θ0). The Continuous Mapping The-

orem yields WT (θ̂T )−1 W→ I(θ0)−1. Finally, Condition 9(1) together with the Con-

tinuous Mapping Theorem yield Ω̂T
W→Ω.

The joint convergence follows using
∥∥∥WT (θ̂T )−WT (θ0)

∥∥∥ P→ 0 and Conditions 9(1)

and 9(2).

A.3 Derivatives

Lemma 10

∂

∂θ
Rjt,θ = [φ (Rjt,θ)]

−1 ∂

∂θ
(Fij ,j−1,t−1(θ, Yij ,t)),
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and
∂

∂θ
Qt,θ = [φ (Qt,θ)]

−1 ∂

∂θ
Zt,θ,

where ∂
∂θ
Zt,θ = (−1)n−1

(n−1)!
(logXt,θ)

n−1· ∂
∂θ
Xt,θ and ∂

∂θ
Xt,θ = ∂

∂θ

(
n∏
j=1

Fij ,j−1,t−1(θ, Yij ,t)

)
.

Here φ is the density of the standard normal distribution.

Proof. Let rjt,θ = Φ−1(Fij ,j−1,t−1(θ, yij ,t)). The fact that φ(x) > 0 for all

x ∈ R ensures that d
dy

Φ−1(y) = 1
( d
dx

Φ)(x)
= 1

φ(x)
, where x = Φ−1(y), exists for each

y ∈ (0, 1). This and Condition 9(3) give

∂

∂θs
rjt,θ =

∂

∂θs
Φ−1(Fij ,j−1,t−1(θ, yij ,t))

=
[(

Φ−1
)′

(Fij ,j−1,t−1(θ, yij ,t))
] ∂

∂θs
(Fij ,j−1,t−1(θ, yij ,t))

=
[
Φ′
[
Φ−1(Fij ,j−1,t−1(θ, yij ,t))

]]−1 ∂

∂θs
(Fij ,j−1,t−1(θ, yij ,t))

= [φ (rjt,θ)]
−1 · ∂

∂θs
(Fij ,j−1,t−1(θ, yij ,t))

for all s = 1, ..., k. Since ∂
∂θs
rjt,θ is continuous, ∂

∂θs
Rjt,θ is a well defined random

variable.

Similarly, Condition 9(3) implies ∂
∂θ
qt,θ = [φ (qt,θ)]

−1 ∂
∂θ
zt,θ. Because

d

dx
fn(x) =

d

dx

(
x
∑n−1

i=0

(−1)i

i!
(log x)i

)
=

(−1)n−1

(n− 1)!
(log x)n−1,

then ∂
∂θ
zt,θ = (−1)n−1

(n−1)!
(log xt,θ)

n−1· ∂
∂θ
xt,θ, and ∂

∂θ
xt,θ = ∂

∂θ

(
n∏
j=1

Fij ,j−1,t−1(θ, yij ,t)

)
.

Because ∂
∂θ
qt,θ is continuous, ∂

∂θ
Qt,θ is a well defined random variable.

Remark 11 The random variables

(1) ∂
∂θ′Ri,t−s,θ0 and Rjt,θ0 are independent for all i, j ∈ {1, ..., n} and s ≥ 1,
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and

(2) ∂
∂θ′Qt−s,θ0 and Qt,θ0 are independent for all s ≥ 1.

Proof. According to Lemma 10

∂

∂θ
Ri,t−s,θ0 = [φ (Ri,t−s,θ0)]

−1 ∂

∂θ
(Fmi,i−1,t−s−1(θ0, Ymi,t−s))

is a measurable function of the random variables {Y0,Y1, ...,Yt−s}. Lemma 2 c)

shows the independence of Rjt,θ0 and {Y0,Y1, ...,Yt−s} for all s ≥ 1, which implies

result (1). Likewise, Lemma 3 c) yields the independence of Qt,θ0 and
∂
∂θ′Qt−s,θ0

for all s ≥ 1.

Using Remark 11(1), we see that a typical row of the matrixG =E( ∂
∂θ′ g(Ut,θ0))

in the autocorrelation test with Ut,θ =

[
R′t,θ · · · R′t−K1,θ

]′
is

E(
∂

∂θ′
(Ri,t−s,θ0Rjt,θ0)) = E(Ri,t−s,θ0

∂

∂θ′
Rjt,θ0) + E(Rjt,θ0

∂

∂θ′
Ri,t−s,θ0)

= E(Ri,t−s,θ0
∂

∂θ′
Rjt,θ0),

where ∂
∂θ′Rjt,θ0 is the vector of derivatives given in Lemma 10, i, j ∈ {1, ..., n} ,

and s = 1, ..., K1.

If Ut,θ =

[
Qt,θ · · · Qt−K1,θ

]′
in the autocorrelation test, then using Remark

11(2) we see that the sth row of the matrix G =E( ∂
∂θ′ g(Ut,θ0)) is

E(
∂

∂θ′
(Qt−s,θ0Qt,θ0)) = E(Qt−s,θ0

∂

∂θ′
Qt,θ0) + E(Qt,θ0

∂

∂θ′
Qt−s,θ0)

= E(Qt−s,θ0
∂

∂θ′
Qt,θ0),

where ∂
∂θ
Qt,θ is given in Lemma 10.
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Remark 12 The random variables

(1) R2
it,θ0

and Rj,t−s,θ0
∂
∂θ′Rj,t−s,θ0 are independent for all s ≥ 1,

and

(2) Q2
t,θ0

and Qt−s,θ0
∂
∂θ′Qt−s,θ0 are independent for all s ≥ 1.

Proof. R2
it,θ0

is a measurable function of Rit,θ0 , and
∂
∂θ

(Fmj ,j−1,t−s−1(θ0, Ymj ,t−s)),

[φ (Rj,t−s,θ0)]
−1 , and Rj,t−s,θ0 are measurable functions of {Y0, Y1, ..., Yt−s} . The

independence follows using Lemma 2 c). Similarly, Lemma 3 c) yields the inde-

pendence of Q2
t,θ0

and Qt−s,θ0
∂
∂θ′Qt−s,θ0 for all s ≥ 1.

Using Remark 12(1), a typical row of the matrix G =E( ∂
∂θ′ g(Ut,θ0)) in the

conditional heteroscedasticity test based on Ut,θ =

[
R′t,θ · · · R′t−K2,θ

]′
is

E
[
∂

∂θ′
(
R2
i,t−s,θ0 − 1

) (
R2
jt,θ0
− 1
)]

= 2E
[(
R2
i,t−s,θ0 − 1

)
Rjt,θ0

∂

∂θ′
Rjt,θ0 +

(
R2
jt,θ0
− 1
)
Ri,t−s,θ0

∂

∂θ′
Ri,t−s,θ0

]
= 2E

[(
R2
i,t−s,θ0 − 1

)
Rjt,θ0

∂

∂θ′
Rjt,θ0

]
,

where ∂
∂θ′Rjt,θ0 is the vector of derivatives given in Lemma 10, i, j ∈ {1, ..., n} ,

and s = 1, ..., K2.

If Ut,θ =

[
Qt,θ · · · Qt−K2,θ

]′
in the conditional heteroscedasticity test, then

Remark 12(2) yields

E(
∂

∂θ′
(
Q2
t−s,θ0 − 1

) (
Q2
t,θ0
− 1
)
)

= 2E(
(
Q2
t−s,θ0 − 1

)
Qt,θ0

∂

∂θ′
Qt,θ0) + E(

(
Q2
t,θ0
− 1
)
Qt−s,θ0

∂

∂θ′
Qt−s,θ0)

= 2E(
(
Q2
t−s,θ0 − 1

)
Qt,θ0

∂

∂θ′
Qt,θ0),
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as the sth row of matrix G =E( ∂
∂θ′ g(Ut,θ0)) and

∂
∂θ
Qt,θ is given in Lemma 10.

In the multinormality test with Ut,θ = Rt,θ, we have

G =E(
∂

∂θ′
g(Ut,θ0)) =

[
E( ∂

∂θ
g1(R1t,θ0)) · · · E( ∂

∂θ
gn(Rnt,θ0))

]′
,

where

E(
∂

∂θ
gj(Rjt,θ0)) = E

[
2Rjt,θ0

∂
∂θ
Rjt,θ0 3R2

jt,θ0
∂
∂θ
Rjt,θ0 4R3

jt,θ0
∂
∂θ
Rjt,θ0

]

and ∂
∂θ
Rjt,θ0 is given in Lemma 10. If Ut,θ = Qt,θ , then

G =E(
∂

∂θ′
g(Qt,θ0)) = E

[
2Qt,θ0

∂
∂θ′Qt,θ0 3Q2

t,θ0
∂
∂θ′Qt,θ0 4Q3

t,θ0
∂
∂θ′Qt,θ0

]

with ∂
∂θ
Qt,θ given in Lemma 10.

B Appendix: LM interpretations

B.1 Autocorrelation test

We obtain the LM interpretation of the multivariate autocorrelation test by ap-

plying an auxiliary vector autoregressive model. Hosking (1981) used a similar

approach and Pearson’s residuals.

Consider an auxiliary VAR(p) model for quantile residualsRt,θ =
p∑
s=1

ΓsRt−s,θ+

εt, where εt ∼ n.i.d.(0, In), Γs =
[
γuv,s

]
, u, v = 1, ...n, and Rt−s,θ =[

R1,t−s,θ · · · Rn,t−s,θ

]′
, for s = 1, ..., p, and t = 1, ..., T, with Rt,θ = 0 for

t ≤ 0. The Jacobian is triangular, because ∂rmt,θ
∂yij

= 0 for all m < j. Therefore,

47



the Jacobian determinant is

∣∣∣∣∣
n∏

m=1

∂rmt,θ
∂yim

∣∣∣∣∣ =

n∏
m=1

[φ (rmt,θ)]
−1 fim,m−1,t−1(θ,yim,t) =

[φ (Rt,θ)]
−1 ft−1(θ,yt). Thus, the joint density function of the observations is

f(θ,Γ1, ...,Γp,y) =

T∏
t=1

φ

(
Rt,θ −

p∑
s=1

ΓsRt−s,θ

)
[φ (Rt,θ)]

−1 ft−1(θ,yt),

and the log-likelihood function

l̃(θ,Γ1, ...,Γp,y) = −1

2

T∑
t=1

(Rt,θ −
p∑
s=1

ΓsRt−s,θ)
′(Rt,θ −

p∑
s=1

ΓsRt−s,θ)

+
1

2

T∑
t=1

n∑
i=1

R2
it,θ +

T∑
t=1

log ft−1(θ,yt).

Thus, for each u, v = 1, ..., n, s = 1, ..., p,

∂l̃(θ,Γ1, ...,Γp,y)

∂γuv,s
=

T∑
t=1

Rut,θRv,t−s,θ −Rv,t−s,θ

p∑
s=1

n∑
l=1

γul,sRl,t−s,θ.

The quantile residuals are independent, when Γs = 0 for all s = 1, ..., p, and the

summands in ∂l̃(θ,0,...,0,y)
∂γuv,s

=
T∑
t=1

Rut,θRv,t−s,θ are equal to the function g(rt,θ) of our

autocorrelation test. Thus, ∂l̃(θ,0,...,0,y)
∂θ

is equal to the score in the main text, and

the score s̃(θ,0) =

[
∂l̃(θ,0,y)
∂θ′

∂l̃(θ,0,y)
∂ρ′

]′
contains also the function g(rt,θ). The LM

test based on ∂l̃(θ,0,y)
∂ρ

is, therefore, identical to our autocorrelation test.

Denote γ =vec

[
Γ1 · · · Γp

]
. The well-known regularity of the score function

yields

E

∂l̃(θ,γ0,y)
∂θ

∂l̃(θ,γ0,y)
∂θ′

∂l̃(θ,γ0,y)
∂θ

∂l̃(θ,γ0,y)
∂γ′

∂l̃(θ,γ0,y)
∂γ

∂l̃(θ,γ0,y)
∂θ′

∂l̃(θ,γ0,y)
∂γ

∂l̃(θ,γ0,y)
∂γ′

 = −E

∂2 l̃(θ0,γ0,y)
∂θ∂θ′

∂2 l̃(θ0,γ0,y)
∂θ∂γ′

∂2 l̃(θ0,γ0,y)
∂γ∂θ′

∂2 l̃(θ0,γ0,y)
∂γ∂γ′

 .

48



Because E
[
∂l̃(θ0,γ0,y)

∂θ
∂l̃(θ0,γ0,y)

∂γ′

]
= Ψ′ and E

[
∂2 l̃(θ0,γ0,y)

∂θ∂γ′

]
= G′, we have Ψ = −G.

In finite samples the estimates of the corresponding expectations are naturally

different, however. Thus, we estimated both statistics separately from the data.

B.2 Conditional heteroscedasticity test

We base the LM interpretation of the conditional heteroscedasticity test on an

multivariate ARCH model.

Consider an auxiliary multivariate ARCH(q) model for quantile residuals

Rt,θ = H
1/2
t εt,

where εt ∼ n.i.d.(0, 1), Ht = diag

[
1 +

q∑
s=1

ρ1t,s · · · 1 +

q∑
s=1

ρnt,s

]
, ρit,s =

n∑
j=1

αij,s
(
R2
j,t−s,θ − 1

)
for i = 1, ..., n, s = 1, ..., q, and t = 1, ..., T, with Rt,θ= 0

for t ≤ 0. Denote with a the n2q -vector of parameters αij,s, i, j = 1, ..., n and

s = 1, ..., q.

The Jacobian of the transformation is triangular, because ∂rlt,θ
∂yij

= 0 for all l < j.

Therefore, the Jacobian determinant is

∣∣∣∣∣
n∏
l=1

∂rlt,θ
∂yil

∣∣∣∣∣ =
n∏
l=1

[φ (rlt,θ)]
−1 fil,l−1,t−1(θ,yil,t) =

[φ (Rt,θ)]
−1 ft−1(θ,yt). Thus, the joint density function of the observations

f(θ, a,y) =
T∏
t=1

H
−1/2
t · φ

(
H
−1/2
t rt,θ

)
[φ (rt,θ)]

−1 ft−1(θ,yt),
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and the log-likelihood function

l̃(θ, a,y) = −1

2

T∑
t=1

n∑
i=1

log(1 +

q∑
s=1

ρit,s)−
1

2

T∑
t=1

n∑
i=1

r2
it,θ

1 +
∑q

s=1 ρit,s

+
1

2

T∑
t=1

n∑
i=1

r2
it,θ +

T∑
t=1

log ft−1(θ,yt).

Thus, for each i, j = 1, ..., n and s = 1, ..., q,

∂l̃(θ, a,y)

∂αij,s
=

1

2

T∑
t=1

[
r2
j,t−s,θ − 1

1 +
∑q

s=1 ρit,s

(
r2
it,θ

1 +
∑q

s=1 ρit,s
− 1

)]
.

Quantile residuals are homoscedastic when a = 0, and the summands in ∂l̃(θ,0,y)
∂αij,s

=

1
2

T∑
t=1

(
r2
j,t−s,θ − 1

) (
r2
it,θ − 1

)
are equal to the components of the function g(rt,θ) of

our conditional heteroscedasticity test. Under the null hypothesis, ∂l̃(θ,0,y)
∂θ

is equal

to the score in the main text, and the score function s̃(θ,0) =

[
∂l̃(θ,0,y)
∂θ′

∂l̃(θ,0,y)
∂a′

]′
contains also the function g(rt,θ). Thus, the LM test based on ∂l̃(θ,0,y)

∂a
is identical

to our conditional heteroscedasticity test.

B.3 Normality test

We obtain the LM interpretation of the normality test as in Jarque and Bera

(1987) and Kalliovirta (2006). Thus, consider the Pearson family of univariate

distributions characterized by the differential equation d log(f(u))
du

= − u
b0+b1u+b2u2

,

−∞ < u < ∞, where f(u) is the density of the random variable U, and β =

(b0, b1, b2) is a parameter vector. When β = (1, 0, 0) ≡ β0, f(u) is the density of

a standard normal distribution. Denote q(t) = −
∫

t
b0+b1t+b2t2

dt, so that log f(t) =

q(t)+C, where C is such that
∞∫
−∞

f(u)du = 1. Then the above differential equation
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has a solution f(u) = exp{q(u)}/
∞∫
−∞

exp{q(t)}dt.

For simplicity, we now assume that the components of multivariate quantile

residuals Rjt,θ = Φ−1(Fij ,j−1,t−1(θ, Yij ,t)) are independent and have densities fj(u)

with parameters βj = [bj0, bj1, bj2]′ for each j = 1, ..., n. The same results follow,

if we relax this assumption and use the more general definition for the Pearson

family given in Bera and John (1983).

The Jacobian is triangular, because ∂rlt,θ
∂yij

= 0 for all l < j. Thus, the Jacobian

determinant is

∣∣∣∣∣
n∏
l=1

∂rlt,θ
∂yil

∣∣∣∣∣ =
n∏
l=1

[φ (rlt,θ)]
−1 fil,l−1,t−1(θ,yil,t) = [φ (Rt,θ)]

−1 ft−1(θ,yt).

Therefore, the joint density function of the observations is f(θ,β1, ...,βn,y) =
T∏
t=1

n∏
j=1

fj (rjt,θ) [φ (Rt,θ)]
−1 ft−1(θ,yt), and the log-likelihood function

l̃(θ,β1, ...,βn,y) = −
T∑
t=1

n∑
j=1

∫
rjt,θ

bj0 + bj1rjt,θ + bj2r2
jt,θ

drjt,θ

−T
n∑
j=1

log

∞∫
−∞

exp{−
∫

u

bj0 + bj1u+ bj2u2
du}du+

1

2

T∑
t=1

n∑
i=1

R2
it,θ +

T∑
t=1

log ft−1(θ,Yt).

Thus, under the null hypothesis (i.e. βj = β0 for all j = 1, ..., n)

∂l̃(θ,β0, ...,β0,y)

∂βj
= −

T∑
t=1

[
1
2

(
r2
jt,θ − 1

)
1
3
r3
jt,θ

1
4

(
r4
jt,θ − 3

)]′

for each j = 1, ..., n. The summands are, apart from constants, equal to the function

g(rt.θ) of our normality test. Under the null hypothesis,
∂l̃(θ,β0,...,β0,y)

∂θ
is equal to

the score in the main text, and the score

s̃(θ,β0, ...,β0) =

[
∂l̃(θ,β0,...,β0,y)

∂θ′
∂l̃(θ,β0,...,β0,y)

∂(β′1,...,β
′
n)′

]′
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contains also function g(rt.θ). Thus, the LM test based on the component
∂l̃(θ,β0,...,β0,y)

∂(β′1,...,β
′
n)′

is equal to our normality test.

C Appendix: Factorization of the joint density

We show that for the family of mixtures of multinormal distributions the marginal

and conditional distributions belong to the same family of distributions.

Denote with X (n× 1) a random vector that follows a mixture of two10 multi-

normal distributions. The density of X is

fX (x) = p (2π)−n/2 det(Σ)−1/2 exp

{
−1

2
(x− µ)′Σ−1 (x− µ)

}
+ (1− p) (2π)−n/2 det(Ω)−1/2 exp

{
−1

2
(x− ν)′Ω−1 (x− ν)

}
= p ·MNn (µ,Σ) + (1− p) ·MNn (ν,Ω) ,

where MNn (µ,Σ) and MNn (ν,Ω) denote the densities of multinormal distribu-

tion with expectations µ and ν, and covariance matrices Σ and Ω, respectively.

Make a partition on X =

[
X(1)′ X(2)′

]′
and conformable partitions on the expec-

tations µ =

[
µ′1 µ′2

]′
, ν =

[
ν ′1 ν ′2

]′
and covariance matrices

Σ =

 Σ11 Σ12

Σ21 Σ22

 and Ω =

 Ω11 Ω12

Ω21 Ω22

 .
If the dimensions of the random vectorsX(1) andX(2) are k and n−k, respectively,
10The following applies also to mixtures of multinormal distributions with three or even more

components.
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then the marginal distribution ofX(2) is a mixture of two normal distributions with

density

fX(2)

(
x(2)
)

= p (2π)−(n−k)/2 det(Σ22)−1/2 exp

{
−1

2

(
x(2)−µ2

)′
Σ−1

22

(
x(2)−µ2

)}
+ (1− p) (2π)−(n−k)/2 det(Ω22)−1/2 exp

{
−1

2

(
x(2)−ν2

)′
Ω−1

22

(
x(2)−ν2

)}
= p ·MNn−k (µ2,Σ22) + (1− p) ·MNn−k (ν2,Ω22) .

This can be seen by integrating the joint density with respect to x(1) and using

well-known properties of the normal distribution.

In order to obtain the conditional distribution of X(1) given X(2) = x(2) we

define Σ11·2 = Σ11−Σ12Σ
−1
22 Σ21, the Schur complement of Σ22. From the identity

 Ik −Σ12Σ
−1
22

0 In−k


 Σ11 Σ12

Σ21 Σ22


 Ik 0

−Σ−1
22 Σ21 In−k

 =

 Σ11·2 0

0 Σ22

 ,
it follows that

Σ−1 =

 Ik 0

−Σ−1
22 Σ21 In−k


 Σ−1

11·2 0

0 Σ−1
22


 Ik −Σ12Σ

−1
22

0 In−k

 .
Thus, det (Σ) = det (Σ11·2) det (Σ22) . This and the notation

x(1) − µ1 −Σ12Σ
−1
22

(
x(2) − µ2

)
= x(1) − a

(
x(2)
)
together give

(x− µ)′Σ−1 (x− µ) =
(
x(1) − a

(
x(2)
))′

Σ−1
11·2
(
x(1) − a

(
x(2)
))

+
(
x(2) − µ2

)′
Σ−1

22

(
x(2) − µ2

)
.
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The same holds, when we replace Σ and
(
x(1) − a

(
x(2)
))
with Ω and x(1) −

b
(
x(2)
)

= x(1)−ν1−Ω12Ω
−1
22

(
x(2) − ν2

)
. Therefore, we can write the joint density

function of X as

fX (x) = p ·MNk

(
x(1) − a

(
x(2)
)
,Σ11·2

)
·MNn−k (µ2,Σ22)

+ (1− p) ·MNk

(
x(1) − b

(
x(2)
)
,Ω11·2

)
·MNn−k (ν2,Ω22) .

The conditional distribution of X(1) given X(2) = x(2) is

fX(1)|X(2)(x(1)|X(2) = x(2)) =
fX (x)

fX(2) (x(2))
= p

(
x(2)
)
·MNk

(
x(1) − a

(
x(2)
)
,Σ11·2

)
+
(
1− p

(
x(2)
))
·MNk

(
x(1) − b

(
x(2)
)
,Ω11·2

)
,

where

p
(
x(2)
)

=
p ·MNn−k (µ2,Σ22)

p ·MNn−k (µ2,Σ22) + (1− p) ·MNn−k (ν2,Ω22)

is a function of x(2) and the parameters p,µ2,ν2,Σ22, and Ω22.

Thus, one can solve the quantile residuals for each observation iteratively by

solving the parameters of one marginal and one conditional distribution at a

time. Each iteration involves the computation of the new expectation vectors

a
(
x(2)
)
and b

(
x(2)
)
, covariance matrices Σ11·2 and Ω11·2, and the mixing pro-

portion p
(
x(2)
)
.These values form the set of parameters for the new conditional

distribution. At the same time we solve one marginal distribution, which we then

integrate to solve a desired component of the multivariate quantile residual vector

at a fixed time point. One can use this procedure for the models in our empirical

example whatever the chosen order of conditioning in the multivariate quantile
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residuals.

In general, one can always compute multivariate quantile residuals with numer-

ical integration. This task becomes very burdensome as the dimension of the time

series grows. Therefore, any theory that yields analytical results on the solution

of the marginal and conditional distributions is useful. Results, similar to those

presented here, can be obtained within the families of elliptical and spherical dis-

tributions. See Fang et al. (1990) and the references therein for general treatments

on these families.
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Table 1: Estimation results of Model 3 based on equation (15).

Parameter

α1 0.011 α2 0.311

(0.007) (0.083)

β1 0.986 β2 0.616

(0.007) (0.082)

B 0.025 3.271 0.436 -0.090

(0.205) (0.210) (0.353) (0.286)

-9.322 -1.329 1.047 -1.602

(3.809) (0.405) (2.268) (0.655)

9.294 -1.867 -0.102 0.437

(3.797) (0.423) (2.149) (0.619)

-0.072 0.010 -0.776 1.509

(0.105) (0.056) (0.574) (0.317)

Φ 0.266 0.050 0.307 0.471

(0.059) (0.008) (0.057) (0.102)

p 0.130

(0.021)

NOTE: The estimated standard errors are in the parentheses. They are computed

using the cross-product of the first derivatives of the log-likelihood function.
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Table 2: Estimation results of Model 4 based on equation (15).

Parameter

α11 0.020 α21 0.273

(0.012) (0.061)

β11 0.979 β21 0.644

(0.014) (0.055)

α22 0.168

(0.022)

β22 0.824

(0.022)

B 0.190 2.738 0.719 0.053

(0.123) (0.308) (0.185) (0.251)

-8.914 -1.120 1.196 -1.827

(2.915) (0.252) (0.850) (0.800)

8.748 -1.604 -0.504 0.553

(2.856) (0.293) (0.692) (0.718)

-0.092 0.007 -0.806 1.490

(0.061) (0.035) (0.373) (0.220)

Φ 0.111 0.139 0.201 0.388

(0.037) (0.037) (0.047) (0.095)

p 0.059

(0.012)

NOTE: The estimated standard errors are in the parentheses. They are computed

using the cross-product of the first derivatives of the log-likelihood function.
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Table 3: P-values of test statistics in percentages and values of the information

criteria computed for Models 1-4.

Model AJ3 HJ
3 NJ A3 H3 N AIC BIC

1 10 0 0 3.4·10−4 0 0 2789 2882

2 58 0.2 6.2·10−3 7.9·10−3 0 0 2495 2602

3 56 0.3 8.9·10−4 5.6·10−3 0 0 2483 2599

4 52 1.1 1·10−2 5.3·10−4 0 0 2328 2453

NOTE: We computed the autocorrelation test based on three lags (A3), the condi-

tional heteroscedasticity test based on three lags (H3), and the normality test (N)

with the simulated covariance matrix estimate Ω̃T . The superscript J indicates

tests based on joint quantile residuals. P-value 0 means a value < 1·10−5.
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Table 4: Rejection frequencies of tests with Model S.1.

AJ3 HJ
3 NJ A3 H3 N

Model S.1 simulated

T

250

500

750

1000

5 1

4.7 1.0

5.5 1.0

5.5 0.8

5.6 1.0

5 1

5.6 1.7

4.5 1.4

5.9 1.3

5.4 1.6

5 1

4.6 1.5

5.5 1.8

5.5 0.8

5.6 1.0

5 1

4.8 1.0

6.4 1.0

5.6 1.6

5.2 1.1

5 1

7.6 3.4

6.8 2.3

6.4 1.9

5.8 1.6

5 1

4.7 1.5

5.2 2.1

5.8 1.8

5.9 1.7

Model S.2 simulated

250

500

750

1000

4.9 1.0

4.8 1.1

3.9 0.5

4.2 0.8

4.3 2.1

5.4 1.7

5.0 1.5

5.8 1.8

6.4 2.4

7.2 2.6

8.7 2.3

9.5 2.9

4.6 0.7

4.9 0.7

5.8 1.2

5.7 0.9

9.1 3.3

8.8 3.6

9.3 2.8

9.4 3.6

10.2 4.9

13.8 6.9

16.4 7.4

19.8 9.5

Model S.5 simulated

250

500

750

1000

5.9 1.7

6.2 2.0

7.1 1.9

7.2 1.9

7.7 3.6

10.8 5.1

11.1 5.4

12.6 6.0

6.4 3.3

9.3 4.2

10.5 4.6

11.0 5.0

7.4 2.1

7.2 1.9

7.7 1.8

8.5 2.4

47.5 35.6

73.7 61.0

89.9 81.1

95.4 90.7

16.2 9.7

24.3 16.5

29.7 19.1

36.2 25.7

NOTE: For each sample size we provide the percentage of rejections at 5% and 1%

levels. Results are based on 2000 replications, and we computed the test statistics

using the simulated covariance matrix estimate Ω̃T . We estimated Model S.1 with

OLS, thus, the normality test statistics NJ and N lack the term r2
t,θ − 1. The

parameter values are: 1) Model S.1 µ = (0, 0) and Σ =

[
1 0.8

0.8 3

]
; 2) Model S.2

µ1= (0, 0), µ2 = (1, 1), Σ1=

[
1 0.8

0.8 3

]
, Σ2=

[
1 0.5

0.5 4

]
, and c = Φ−1(0.15); and

3) Model S.5 α = 0.25 and (W′)−1 =

[
0.49 −1.32

2.27 0.5

]
.
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Table 5: Rejection frequencies of tests with Model S.3.

AJ3 HJ
3 NJ A3 H3 N

Model S.3 simulated

T

250

500

750

1000

5 1

3.9 0.8

4.1 1.2

4.9 1.3

4.4 1.0

5 1

4.6 1.4

5.1 1.2

5.8 2.0

5.3 1.5

5 1

3.8 1.3

4.1 1.4

4.8 1.5

5.0 1.0

5 1

6.5 1.8

4.9 1.2

5.3 1.2

5.8 1.4

5 1

7.3 2.6

6.2 2.2

7.7 2.2

7.0 1.8

5 1

5.5 2.1

5.6 2.3

5.4 1.9

5.7 1.6

Model S.4 simulated

250

500

750

1000

7.3 1.7

7.8 2.3

9.1 2.4

9.4 2.9

25.3 15.1

46.3 29.3

60.7 44.0

74.0 58.2

5.1 1.9

7.2 2.3

8.0 2.9

7.9 2.6

49.6 39.4

31.5 22.8

25.1 16.9

19.5 11.8

46.0 32.9

77.9 64.5

92.3 84.7

98.2 94.8

6.9 3.1

10.4 4.3

10.3 4.9

11.4 5.5

NOTE: For each sample size we provide the percentage of rejections at 5% and 1%

levels. Results are based on 2000 replications, and we computed the test statistics

using the simulated covariance matrix estimate Ω̃T . We estimated Model S.3 with

OLS, thus, the normality test statistics NJ and N lack the term r2
t,θ−1. The para-

meter values are: 1) Model S.3 µ = (0, 0), A =

0.9 0.2

0 0.6

 , and Σ =

 1 0.5

0.5 1

 ;

and 2) Model S.4 µ = (0, 0), A1= 0, A2=

0.9 0

0 0.6

 , Σ =

 1 0.5

0.5 1

 , and c =

Φ−1(0.35).
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Table 6: Rejection frequencies of tests with Model S.5.

AJ3 HJ
3 NJ A3 H3 N

Model S.5 simulated

T

250

500

750

1000

5 1

5.3 1.3

5.7 1.5

4.6 1.3

5.3 0.9

5 1

5.3 2.0

6.6 2.2

6.1 1.7

5.4 1.4

5 1

4.8 1.7

5.6 1.6

4.9 1.6

5.1 1.5

5 1

6.3 1.9

5.6 1.4

5.6 1.1

5.0 1.4

5 1

9.9 4.9

11.0 3.7

8.8 3.0

9.8 3.2

5 1

6.7 2.3

6.3 2.2

5.6 1.2

5.8 1.2

NOTE: For each sample size we provide the percentage of rejections at 5% and 1%

levels. Results are based on 2000 replications, and we computed the test statistics

using the simulated covariance matrix estimate Ω̃T . In Model S.5 the parameter

values are α = 0.25 and (W′)−1 =

0.49 −1.32

2.27 0.5

 .
We imposed some restrictions on parameters to guarantee successful estimation.

We used the actual parameter values as starting values for the estimation algo-

rithm, because the optimization of the likelihood function of Model S.5 was diffi cult

in smaller samples.
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Table 7: Size properties of different tests with Model S.2.

BJp N q N NJ BC

T

500

1000

5 1

100 100

100 100

5 1

0 0

0 0

5 1

6.7 2.6

6.7 2.1

5 1

5.7 2.3

6.3 2.0

5 1

19.7 9.5

10.1 5.2

NOTE: For each sample size we provide the percentage of rejections at 5% and

1% levels based on 2000 replications. The test statistics BJp is the normality test

of Bera and John (1983), a multivariate version of the test considered in Jarque

and Bera (1987). This test employs Pearson’s residuals and ignores the effect of

parameter estimation. The effect of parameter estimation is also ignored in the

normality test N q that employs quantile residuals and is computed with Ω equal

to H defined in (12). We computed our normality tests, N (based on multivariate

quantile residuals) and NJ (based on joint quantile residuals), using the simulated

covariance matrix estimate Ω̃T . The test statistic BC is the pooled test statis-

tic of Bai and Chen (2008). In Model S.2, the parameter values are µ1= (0, 0),

µ2 = (12, 12), Σ1=

 1 0.8

0.8 3

 , Σ2=

 1 0.5

0.5 4

 , and c = Φ−1(0.15).

We imposed some restrictions on parameters to guarantee successful estimation.

We used the actual parameter values as starting values for the estimation algo-

rithm, because the optimization of the likelihood function of Model S.2 was diffi cult

in smaller samples.
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Figure 1: Autocovariance functions of joint and multivariate quantile residuals

and squared joint and multivariate quantile residuals of Model 4 divided by their

approximate standard errors. The standard errors base on the simulated covariance

matrix estimate T−1Ω̃T . Approximate 99% critical bounds are denoted with plus

signs for each lag.
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Figure 2: Residual series for two factor model under normality (Model 1).
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Figure 3: Quantile residual series for two factor mixture normal model (Model 4)
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