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Abstract

We use GARCH and regime switching models to compare the reliability

of recently proposed misspecification tests. Our simulations indicate that

simple moment based LM type tests are more reliable than other moment

based tests or tests that employ the empirical distribution function or non-

parametric methods.
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1 Introduction

The misspecification tests of Bai (2003), Duan (2003), Hong and Li (2005) and

Kalliovirta (2006) are applicable to a wide class of models including linear and non-

linear time series models, and these tests properly take into account the uncertainty

caused by parameter estimation. Because the tests employ different methodologies,

they may perform differently in finite samples. We study their performance by

simulating GARCH and regime-switching models.

2 Compared tests

All the tests considered here use quantile residuals. These residuals, unlike tra-

ditional residuals, are reliable in non-linear models also (Kalliovirta 2006). They

exist for any fully specified parametric model with continuous CDF F (θ0,Y). Here

θ0 is the true parameter value that generates the observed T × 1 vector Y. The

definition of uniformly distributed quantile residual for each t is Ut = Ft−1(θ0, Yt),

where Ft−1 is the conditional CDF implied by the model. Similarly, the normally

distributed quantile residual is Rt = Φ−1(Ut), where Φ−1(·) is the inversed CDF of

the standard normal distribution. If the estimated model is correctly specified and

θ̂T is a consistent estimator for θ0, then vector of Ût = Ft−1(θ̂T , Yt)s (or equiva-

lently, R̂ts) are asymptotically i.i.d. This implies that the hypothesis of a correct

specification and properties of quantile residuals are conveniently connected, which

makes quantile residuals useful in model evaluation.

Bai (2003) generalizes the Kolmogorov-Smirnov test by applying the Khmal-

adze’s martingale transformation to remove the effect of parameter estimation in
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the empirical process based on Ûts. Duan (2003) considers four different tests

based on moments of modified R̂ts and removes the effect of parameter estimation

by including first order approximations in the test statistics. A Cramér-von Mises

type test statistics of Hong and Li (2005) use nonparametric estimates of the den-

sity function of Ûts. Kalliovirta (2006) uses first order approximations to correct

the effect of parameter estimation in three LM type tests based on moments of

R̂ts.

Henceforth, we denote the test of Bai (2003) with KS, the tests of Duan (2003)

with Di, i = 1, 2, 3, 4, the tests of Hong and Li (2005) with HLi, i = 1, ..., 20, and

the tests of Kalliovirta (2006) with N, A, and H1. In addition, the results of Bai

(2003) allow us to introduce alternative test statistics based on the transformed

empirical process ŴT (r), 2 r ∈ [0, 1], of Ûts. Thus, we consider also the follow-

ing statistics: Anderson-Darling type test ADc,d = supc≤r≤d

∣∣∣ŴT (r)
∣∣∣ for some

c < d ∈ (0, 1); Cramér-von Mises type test CM1 =
∫ 1
0

∣∣∣ŴT (r)
∣∣∣ dr and CM2 =∫ 1

0

∣∣∣ŴT (r)
∣∣∣2 dr; and Pearson’s goodness-of-fit type test Sl =

l∑
i=1

[
ŴT (ri)− ŴT (ri−1)

]2
/ (ri − ri−1) with 0 < r1 < · · · < rl−1 < 1.3 Furthermore, we compute the stan-

dard, (non-transformed) empirical process based, Pearson’s goodness-of-fit test Pl.

1The abbreviations indicate the type of possible misspecifications: N for non-normality, A
for autocorrelation, and H for heteroscedasticity.

2For details on ŴT (r), see Bai (2003), page 533.
3Bai (2003) shows that ŴT (r) converges weakly to a standard Brownian motion. Thus, S

d→ χ2l . The critical values of the other statistics need to be simulated. For example, 5% level
critical values, computed using 105 replications with sample of 105 observations, are 2.24 for KS,
2.00 for AD0.2,0.8, 1.14 for CM1, and 1.67 for CM2 tests.

3



3 Models

Assume that εt ∼ n.i.d.(0, 1) are independent of ηt ∼ n.i.d.(0, 1), and IA is the

indicator function of a set A. We generate data using models:

1) N(0,1), Yt = εt;

2) GARCH(1,1), Yt = 0.52 + σtεt with σt = 0.04 + 0.05y2t−1 + 0.82σ2t−1;

3) MAR(3,1,0),

Yt = (0.50 + 0.30Yt−1)Iηt<0 + (1.75 + 0.60Yt−1)I0<ηt≤1 + (3.0 + 0.85Yt−1)Iηt>1 + εt;

and

4) MAR(3,1,0)-GARCH(1,1),

Yt = 0.24Iηt<−0.5 + 1.57I−0.5<ηt≤0.75 + 3.14Iηt>0.75 + 0.83Yt−1 + σtεt

with σt = 0.06 + 0.16y2t−1 + 0.82σ2t−1.

Distribution of Yt generated by a MAR model can be positively or negatively

skewed, peaked or flat, and multi-modal. For more details, see Kalliovirta (2006).

In power comparisons, we also estimate submodels of MAR(3,1,0):

a) MAR(3,0,0), Yt = µ1Iηt<c1 + µ2Ic1<ηt≤c2 + µ3Iηt>c2 + εt;

b) MAR(2,1,0), Yt = (µ1 + φ1Yt−1)Iηt<c1 + (µ2 + φ2Yt−1)Ic1≤ηt + εt;

and

c) MAR(2,0,0), Yt = µ1Iηt<c1 + µ2Ic1≤ηt + εt.

4 Simulations

Tables 1, 2, and 3 report size and power of the tests at 5% nominal level. Thus,

we make no size corrections in misspecified models. The sample sizes vary from

100 to 3000, and results base on 2000 replications. We obtained the MLEs of the
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Table 1: Size and power at 5% level.

Size Size Power

N(1,0) GARCH(1,1) GARCH(1,1) data

N(µ,σ2) estimated

Sample

KS(a)

AD
(a)
0.2,0.8

CM
(a)
1

CM
(a)
2

S
(a),(b)
l

P
(b)
l

D1

D2

D3

D4

HL1

HL2

N

A
(c)
1

H
(c)
3

500 1000 2000

16.0 9.8 5.1

0.6 0.5 0.1

0.4 0.4 0.1

0.8 0.6 0.2

26.2 22.4 17.9

1.7 2.4 2.1

7.5 7.1 6.4

5.4 6.1 6.0

5.7 6.0 5.2

5.3 5.2 4.8

4.8 5.4 4.9

4.4 4.8 5.6

5.4 5.4 5.4

4.3 4.9 4.6

5.8 5.6 6.0

500 1000

15.1 9.7

0.1 0.4

0.7 0.3

1.3 0.5

25.6 19.4

2.6 2.3

0 0

2.7 2.4

5.3 4.9

3.6 3.3

3.7 3.2

4.0 4.4

6.0 4.8

4.8 4.5

5.7 5.9

500 1000 2000 3000

17.9 13.8 10.8 8.7

0.6 0.3 0.2 0.2

0.5 0.2 0.2 0

0.1 0.7 0.4 0.1

30.0 26.9 24.7 20.8

2.0 1.9 2.7 2.1

0 0 1.4 4.3

9.7 9.2 11.1 13.3

5.3 4.8 6.5 6.4

6.7 10.3 21.8 36.4

5.4 6.1 9.6 12.8

5.5 6.7 8.9 10.1

8.1 9.6 11.2 14.4

7.2 6.5 6.2 7.3

37.4 61.7 86.3 94.1

NOTES: (a) We use function ġ(r,θ̂T ) = (1,−Φ−1(r,θ̂T ), 1− Φ−2(r,θ̂T ))′, given

in Bai(2003), to compute the Khmaladze’s martingale transformation.

(b) Bandwidth 3.49ŝtd(Ût)/T
1/3 decides the number of classes l (Scott 1979).

(c) The subscript signifies the number of lags employed in the test statistics.
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Table 2: MAR(3,1,0) data, size and power at 5% level.

Size Power

MAR(3,1,0) MAR(2,1,0) MAR(3,0,0) MAR(2,0,0) N(µ,σ2)

Sample

KS(d)

AD
(d)
0.2,0.8

S
(b),(d)
l

P
(b)
l

D1

D2

D3

D4

HL1

HL2

N

A
(c)
1

H
(c)
1

500 1000

66.0 54.5

17.6 10.7

76.9 67.0

0.4 0.3

0 0

2.0 2.6

5.0 5.1

5.1 4.5

0.3 0.5

0.9 0.9

4.2 3.8

5.3 5.4

4.5 5.8

500 1000

51.6 40.2

7.5 4.7

77.8 82.5

4.9 16.5

0 0

3.1 3.8

4.8 4.6

6.0 4.6

12.3 40.3

10.3 28.1

61.4 94.6

15.6 20.7

3.7 4.3

250 500

30.9 39.2

17.9 30.4

30.4 33.6

0.7 0.7

0.1 0

4.6 5.9

16.4 23.7

4.4 6.0

99.1 100

23.6 59.4

5.0 12.3

100 100

80.8 98.2

100 250

46.2 69.4

26.0 56.3

49.6 66.6

1.0 3.1

0.4 0.5

7.5 20.7

16.5 32.9

4.5 6.7

63.3 99.4

10.4 37.8

6.6 32.7

99.6 100

34.6 83.0

100 250

66.1 75.2

2.1 2.5

84.1 97.0

11.2 50.9

2.2 1.3

26.4 41.9

28.8 81.0

3.9 9.2

86.6 100

45.9 91.4

64.9 99.0

99.4 100

58.5 91.8

NOTES: (b) and (c) See Table 1.

(d) We use an estimated function
·
ḡT (r, θ̂T ) in the Khmaladze’s martingale transforma-

tion.

parameters using cml package in GAUSS.

The behaviour of the tests classifies them roughly into three groups. One group

is formed by the tests KS, AD, CM1, CM2, Sl, and Pl. These tests are unreliable

in size and exhibit no (against GARCH in Table 1) or occational power (Tables 2
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Table 3: MAR(3,1,0)-GARCH(1,1) data, size and power at 5% level.

Size of Power Power

MAR(3,1,0)-GARCH(1,1) MAR(3,1,0) GARCH(1,1)

Sample

KS(d)

AD
(d)
0.2,0.8

S
(b),(d)
l

P
(b)
l

D1

D2

D3

D4

HL1

HL2

N

A
(c)
1

H
(c)
1

500 1000 2000

11.0 6.3 3.3

0.7 0.5 0.1

17.9 13.5 7.8

1.0 1.4 1.2

0 0 0

1.0 1.8 1.2

4.9 4.6 4.5

4.0 4.7 4.5

1.6 2.7 3.9

2.4 2.8 2.6

3.2 2.9 3.6

4.9 5.0 5.1

4.1 5.5 5.6

500 1000 2000

43.0 29.3 20.9

7.7 4.2 4.7

58.5 55.1 53.8

2.7 5.7 14.9

0 0.1 0.5

9.0 15.6 19.2

5.1 6.9 5.7

28.8 50.1 77.8

34.1 75.8 97.6

30.8 71.7 96.5

13.6 31.5 57.9

11.5 11.2 13.1

94.3 100 100

100 250 500

33.5 25.1 26.6

15.7 12.7 17.9

44.1 50.4 72.1

20.2 40.7 72.5

3.8 0.5 0.1

10.5 22.2 43.6

76.7 95.9 98.2

10.0 23.8 46.8

99.9 100 100

91.4 100 100

10.2 27.5 42.4

100 100 100

3.8 11.7 22.6

NOTES: See Tables 1 and 2.

and 3)4. This power is, however, exaggerated in KS and Sl by their oversizeness.

Overall, a comparison to Pl shows that the Khmaladze’s martingale transformation

provides no improvement.

The tests of Duan (2003) comprise another group that has adequate size in

a linear model (Table 1), but are undersized, especially D1, in nonlinear models.

Further, these tests are rather powerless, especially D1 and D2. In the largest

4Behavior of AD, CM1, and CM2 is identical. Thus, we only report AD in Tables 2 and 3.
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samples D3 and D4 detect the misspecifications in dependence structure of the

mean and variance. In contrast, the misspecification in the number of regimes

(Table 2) remains undetected.

Finally, the tests HL1, HL2, N, A, and H comprise the last group, in which

both size and power properties are adequate. Although sizes are unadjusted, we

can conclude that H3 has superior power to HL15 in detecting GARCH (Table

1). In practice one can only use nominal levels. Therefore, one should prefer tests

that are reliable in size and exhibit best power at nominal levels. In this sense,

we may conclude that the tests of Kalliovirta (2006) outperform. In addition,

these tests are able to give hints where misspecification lies. For example, H3

indicates heteroscedasticity in Tables 1 and 3, N wrong distribution in Table 2,

and A autocorrelation in Tables 2 and 3. In comparison, the test HL1 detects

misspecification in autocorrelation structure, but less so if misspecification is in

conditional heteroscedasticity or in distribution. Furhermore, HL1 implies no hints

why a model is rejected.

5 Conclusions

In our simulations, the tests based on Khmaladze’s martingale transformation,

including the test of Bai (2003), are unreliable. The moment based tests of Duan

(2003) exhibit undersizeness and insuffi cient power. The non-parametric tests of

Hong and Li (2005) are sometimes undersized and lack power against GARCH,

for example. The LM type tests of Kalliovirta (2006) have accurate size and best

power at nominal levels against the misspecifications considered.

5We computed all HLi, i = 1, ..., 20.They were identical in size and HL1 always had the best
power among them.
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