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Abstract

We use GARCH and regime switching models to compare the reliability
of recently proposed misspecification tests. Our simulations indicate that
simple moment based LM type tests are more reliable than other moment
based tests or tests that employ the empirical distribution function or non-

parametric methods.
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1 Introduction

The misspecification tests of Bai (2003), Duan (2003), Hong and Li (2005) and
Kalliovirta (2006) are applicable to a wide class of models including linear and non-
linear time series models, and these tests properly take into account the uncertainty
caused by parameter estimation. Because the tests employ different methodologies,
they may perform differently in finite samples. We study their performance by

simulating GARCH and regime-switching models.

2 Compared tests

All the tests considered here use quantile residuals. These residuals, unlike tra-
ditional residuals, are reliable in non-linear models also (Kalliovirta 2006). They
exist for any fully specified parametric model with continuous CDF F'(68y,Y ). Here
0, is the true parameter value that generates the observed 7' x 1 vector Y. The
definition of uniformly distributed quantile residual for each ¢ is U; = F;_1(0y, Y;),
where F;_; is the conditional CDF implied by the model. Similarly, the normally
distributed quantile residual is R, = ®~!(U;), where ®~1(-) is the inversed CDF of
the standard normal distribution. If the estimated model is correctly specified and
§T is a consistent estimator for 8, then vector of U, = Ft_l(aT, Y;)s (or equiva-
lently, Rts) are asymptotically i.i.d. This implies that the hypothesis of a correct
specification and properties of quantile residuals are conveniently connected, which
makes quantile residuals useful in model evaluation.

Bai (2003) generalizes the Kolmogorov-Smirnov test by applying the Khmal-

adze’s martingale transformation to remove the effect of parameter estimation in



the empirical process based on Uss. Duan (2003) considers four different tests
based on moments of modified ;s and removes the effect of parameter estimation
by including first order approximations in the test statistics. A Cramér-von Mises
type test statistics of Hong and Li (2005) use nonparametric estimates of the den-
sity function of Uss. Kalliovirta (2006) uses first order approximations to correct
the effect of parameter estimation in three LM type tests based on moments of
Ris.

Henceforth, we denote the test of Bai (2003) with KS, the tests of Duan (2003)
with D;, i = 1,2, 3,4, the tests of Hong and Li (2005) with HL;, i = 1,...,20, and
the tests of Kalliovirta (2006) with N, A, and H'. In addition, the results of Bai
(2003) allow us to introduce alternative test statistics based on the transformed
empirical process Wr(r),2 r € [0,1], of Ujs. Thus, we consider also the follow-

ing statistics: Anderson-Darling type test AD.q = Sup.c,<4

Wr(r) ‘ for some

¢ < d € (0,1); Cramér-von Mises type test CM; = fol ’WT(T) dr and CM, =

n 2 l R R 2
fol Wr(r)| dr;and Pearson’s goodness-of-fit type test S; = [WT(ri) - WT(ri_l)}
i=1
J(ri—mriq) with 0 <7 < -+ <1y < 1.3 Furthermore, we compute the stan-

dard, (non-transformed) empirical process based, Pearson’s goodness-of-fit test F).

!The abbreviations indicate the type of possible misspecifications: N for non-normality, A
for autocorrelation, and H for heteroscedasticity.
2For details on Wr(r), see Bai (2003), page 533.

3Bai (2003) shows that Wy (r) converges weakly to a standard Brownian motion. Thus, S
4, X12~ The critical values of the other statistics need to be simulated. For example, 5% level

critical values, computed using 10° replications with sample of 10° observations, are 2.24 for K S,
2.00 for ADg 2,08, 1.14 for CM;, and 1.67 for CM; tests.



3 Models

Assume that &; ~ n.i.d.(0,1) are independent of 7, ~ n.i.d.(0,1), and l4 is the

indicator function of a set A. We generate data using models:

1) N(0,1), V; = ey

2) GARCH(1,1), Y; = 0.52 + 0:&; with o; = 0.04 + 0.05y2 ;| + 0.8202% |;

3) MAR(3,1,0),

Y; = (0.50 4 0.30Y; 1)1, <0 + (1.75 4+ 0.60Y;_1)lo<n, <1 + (3.0 + 0.85Y; 1)), o1 + €4

and

4) MAR(3,1,0)-GARCH(1,1),

Y; =0.241,, o5 + 1.5 _g.5<p,<0.75 + 3.14l,),~0.75 + 0.83Y;_1 + 0454

with o; = 0.06 + 0.16y2_, + 0.8202 .

Distribution of Y; generated by a MAR model can be positively or negatively

skewed, peaked or flat, and multi-modal. For more details, see Kalliovirta (2006).
In power comparisons, we also estimate submodels of MAR(3,1,0):

a) MAR(3,0,0), Y = piyly,<c; + foley<n,<co + tsly,>co + €4

b) MAR(2,1,0), Yi = (kg + ¢1Yi-1)lp,<er + (12 + 02Yi1)ley <, + €45

and

¢) MAR(2,0,0), Y = pyly,<e; + toley <y, + &t

4 Simulations

Tables 1, 2, and 3 report size and power of the tests at 5% nominal level. Thus,
we make no size corrections in misspecified models. The sample sizes vary from

100 to 3000, and results base on 2000 replications. We obtained the MLEs of the



Table 1: Size and power at 5% level.

Size Size Power

N(1,0) GARCH(1,1) GARCH(1,1) data

N(p,02) estimated

Sample 500 1000 2000 500 1000 500 1000 2000 3000
KS@ 16.0 98 5.1 151 9.7 179 13.8 108 8.7
AD{9os 0.6 05 0.1 01 04 06 03 02 02

oM™ 04 04 0.1 0.7 03 05 02 02 0
oM 08 06 02 13 05 01 07 04 0.1
S0 262 224 179 256 194 300 269 247 20.8
pY 1.7 24 21 26 23 20 19 27 21
Dy 75 71 64 0 0 0 0 14 43
D, 54 61 6.0 27 24 97 92 111 133
Ds 57 6.0 5.2 53 49 53 48 65 64
D, 53 52 48 36 33 67 103 218 364
HL, 48 54 49 37 32 54 61 96 128
HL, 44 48 5.6 40 44 55 67 89 101
N 54 54 54 60 48 81 96 11.2 144
Al 43 49 46 48 45 72 65 62 7.3
J208 58 56 6.0 57 59 374 617 863 941

NOTES: (a) We use function g'(r,/O\T) = (1, —@71(7“,/91[), 1-— <I>72(T,/0\T))I, given
in Bai(2003), to compute the Khmaladze’s martingale transformation.
(b) Bandwidth 3.49;75\d([7t)/T1/3 decides the number of classes [ (Scott 1979).

(c) The subscript signifies the number of lags employed in the test statistics.



Table 2: MAR(3,1,0) data, size and power at 5% level.

Size Power
MAR(3,1,0)  MAR(2,1,0) MAR(3,0,0) MAR(2,0,0) N(u,0?)
Sample 500 1000 500 1000 250 500 100 250 100 250
KS@ 66.0 545 516 40.2 309 392 462 694  66.1 75.2
AD{,s 176 107 75 47 179 304 260 563 21 25
SOD 769 67.0 778 825 304 336 496 666 841 97.0
pY 04 03 49 165 07 0.7 1.0 31  11.2 50.9
Dy 0 0 0 0 01 0 04 05 22 1.3
D, 20 26 31 38 46 5.9 75 207 264 419
Ds 50 51 48 46 164 237 165 329 288 810
Dy 51 45 60 4.6 44 6.0 45 67 39 92
HL, 03 05 123 403 991 100 633 994 866 100
HL, 09 09 103 281 236 594 104 37.8 459 914
N 42 38 614 946 50 123 6.6 327 649 99.0
Al 53 54 156 207 100 100 996 100 994 100
H 45 58 37 43 808 982 346 830 585 918

NOTES: (b) and (c) See Table 1.

d) We use an estimated function g T 9T in the Khmaladze’s martingale transforma-
gT ) g

tion.

parameters using cml package in GAUSS.

The behaviour of the tests classifies them roughly into three groups. One group

is formed by the tests KS, AD, C'M;, C'M,, S;, and P,. These tests are unreliable

in size and exhibit no (against GARCH in Table 1) or occational power (Tables 2



Table 3: MAR(3,1,0)-GARCH(1,1) data, size and power at 5% level.

Size of Power Power
MAR(3,1,0)-GARCH(1,1) MAR(3,1,0) GARCH(1,1)
Sample 500 1000 2000 500 1000 2000 100 250 500
KS@ 11.0 63 3.3 43.0 293 209 335 251 26.6
AD{Dos 07 05 0.1 7742 47 157 127 179
SOH@ 179 135 7.8 585 551 53.8 441 504 721
pY 1.0 14 1.2 27 57 149 202 40.7 725
D, o 0 0 0 01 05 38 05 0.1
D, 1.0 1.8 1.2 9.0 156 192 105 22.2 436
Ds 49 46 45 51 69 57 767 959 98.2
Dy 4.0 47 45 28.8 50.1 77.8  10.0 23.8 46.8
HL, 1.6 27 3.9 341 758 97.6 99.9 100 100
HL, 24 28 26 30.8 71.7 96.5 914 100 100
N 32 29 36 136 315 57.9 102 275 424
Al 49 50 5.1 115 11.2 131 100 100 100
HY 41 55 56 94.3 100 100 3.8 117 226

NOTES: See Tables 1 and 2.

and 3)*. This power is, however, exaggerated in K.S and S; by their oversizeness.
Overall, a comparison to P, shows that the Khmaladze’s martingale transformation
provides no improvement.

The tests of Duan (2003) comprise another group that has adequate size in
a linear model (Table 1), but are undersized, especially Dy, in nonlinear models.

Further, these tests are rather powerless, especially D; and D,. In the largest

4Behavior of AD, CM;, and C' M, is identical. Thus, we only report AD in Tables 2 and 3.

7



samples D3 and D, detect the misspecifications in dependence structure of the
mean and variance. In contrast, the misspecification in the number of regimes
(Table 2) remains undetected.

Finally, the tests HL,, HL,, N, A, and H comprise the last group, in which
both size and power properties are adequate. Although sizes are unadjusted, we
can conclude that Hs has superior power to HL;® in detecting GARCH (Table
1). In practice one can only use nominal levels. Therefore, one should prefer tests
that are reliable in size and exhibit best power at nominal levels. In this sense,
we may conclude that the tests of Kalliovirta (2006) outperform. In addition,
these tests are able to give hints where misspecification lies. For example, Hj
indicates heteroscedasticity in Tables 1 and 3, N wrong distribution in Table 2,
and A autocorrelation in Tables 2 and 3. In comparison, the test HL; detects
misspecification in autocorrelation structure, but less so if misspecification is in
conditional heteroscedasticity or in distribution. Furhermore, H L; implies no hints

why a model is rejected.

5 Conclusions

In our simulations, the tests based on Khmaladze’s martingale transformation,
including the test of Bai (2003), are unreliable. The moment based tests of Duan
(2003) exhibit undersizeness and insufficient power. The non-parametric tests of
Hong and Li (2005) are sometimes undersized and lack power against GARCH,
for example. The LM type tests of Kalliovirta (2006) have accurate size and best

power at nominal levels against the misspecifications considered.

®We computed all HL;, i = 1, ...,20.They were identical in size and H L; always had the best
power among them.
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