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ARTICLE INFO ABSTRACT

Keywords: Leaf mass per area (LMA) and leaf equivalent water thickness (EWT) are key leaf functional traits providing
Biophysical properties information for many applications including ecosystem functioning modeling and fire risk management. In this
Leaf spectroscopy paper, we investigate two common conclusions generally made for LMA and EWT estimation based on leaf
EWT

optical properties in the near-infrared (NIR) and shortwave infrared (SWIR) domains: (1) physically-based ap-
proaches estimate EWT accurately and LMA poorly, while (2) statistically-based and machine learning (ML)
methods provide accurate estimates of both LMA and EWT.

Using six experimental datasets including broadleaf species samples of > 150 species collected over tropical,
temperate and boreal ecosystems, we compared the performances of a physically-based method (PROSPECT
model inversion) and a ML algorithm (support vector machine regression, SVM) to infer EWT and LMA based on
leaf reflectance and transmittance. We assessed several merit functions to invert PROSPECT based on iterative
optimization and investigated the spectral domain to be used for optimal estimation of LMA and EWT. We also
tested several strategies to select the training samples used by the SVM, in order to investigate the generalization
ability of the derived regression models.

We evidenced that using spectral information from 1700 to 2400 nm leads to strong improvement in the
estimation of EWT and LMA when performing a PROSPECT inversion, decreasing the LMA and EWT estimation
errors by 55% and 33%, respectively.

The comparison of various sampling strategies for the training set used with SVM suggests that regression
models show limited generalization ability, particularly when the regression model is applied on data fully
independent from the training set. Finally, our results demonstrate that, when using an appropriate spectral
domain, the PROSPECT inversion outperforms SVM trained with experimental data for the estimation of EWT

LMA

Radiative transfer model
Support vector machine
Vegetation
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and LMA. Thus we recommend that estimation of LMA and EWT based on leaf optical properties should be
physically-based using inversion of reflectance and transmittance measurements on the 1700 to 2400 nm

spectral range.

1. Introduction

Global climate change and biodiversity loss strongly impact species
and ecosystem functions, which directly influences processes at land-
scape and regional scales, and disrupts global biogeochemical cycles
(Chapin, 2003). These ecosystem functions are tightly connected with
species composition and can be partly described and explained using
plant traits (Diaz and Cabido, 2001; Eviner and Chapin III, 2003). By
definition, plant traits correspond to morphological, physiological or
phenological features measurable at the individual level, and functional
traits are defined as these features impacting individual fitness via their
effects on growth, reproduction and/or survival, the three components
of individual performance (Violle et al., 2007). Therefore, our under-
standing of the interactions between climate, human activity and eco-
system functioning strongly depends on our capacity to monitor critical
functional traits across space and time (Asner and Martin, 2016).

Leaf mass per area (LMA) is defined as the ratio of leaf dry mass
(DW) to leaf area (A):

— bw -2
LMA = a (mg-cm™2) O
It is a plant functional trait widely used as an indicator of plant
functioning and ecosystem processes. In the leaf economic spectrum
theory, the biophysical constraints explain the high coordination be-
tween organs properties and available resources: for instance, plants
that have high trunk water conductivity generally have high stomatal
conductance, low LMA and high photosynthetic capacities, developed
root system and nutrient uptake, high turnover rate of resource acqui-
sition organs, high growth rates. LMA is therefore a very significant
trait because it correlates with key plant functional properties (de la
Riva et al., 2016; Oren et al., 1986; Reich et al., 1997), therefore cap-
turing a great proportion of the functional variation in the ecosystem.
LMA is important for the description of plant strategies and photo-
synthetic capacity over various vegetation types and climates (Asner
et al., 2011; Gratani and Varone, 2006; Osnas et al., 2013; Puglielli
et al., 2015; Reich et al., 1997, 1998; Weng et al., 2017). It is also a
predictor of relative growth rate (Anttinez et al., 2001; Rees et al.,
2010) and is usually correlated with mass-based maximum photo-
synthetic rate (Wright et al., 2004). At broader scales, it is also iden-
tified as a critical plant trait for the global monitoring of functional
diversity, and for the determination of species fitness in their en-
vironment, affecting various ecosystem processes (Poorter et al., 2009;
Schimel et al., 2015). Measurement of LMA is also relevant for many
other applications, such as fire risk assessment (Cornelissen et al.,
2017). Finally, LMA allows the conversion of traits expressed on an area
basis into mass basis and vice versa. This is important since physical
models usually express leaf constituent content per surface unit,
whereas ecologists and plant physiologists may use constituent content
per surface unit or per mass unit (Osnas et al., 2013; Wright et al.,
2004).
The second important functional trait discussed in this study is the
equivalent water thickness (EWT), defined as:

FW — DW

EWT = (mg-cm™?)

()
with FW the leaf fresh mass. EWT is the area-weighted moisture con-
tent. It is related to a range of physiological and ecosystem processes,
including leaf-level tolerance to dehydration, and ecological strategy.
Indeed, species with large EWT tend to have lower construction costs,
and are predominantly fast-growing and pioneer species (Wright et al.,

2004).

The ability to accurately estimate both EWT and LMA is also critical
for applications such as fire danger assessment: fuel moisture content
(FMC, Chuvieco et al., 2002), also referred to as gravimetric water
content (GWC, Datt, 1999), is a critical variable affecting fire interac-
tions with fuel (Yebra et al., 2013). The accurate estimation of FMC is
usually limited by the uncertainty associated to the estimation of LMA
(Riano et al., 2005). Destructive measurements of LMA and EWT are
time-consuming and logistically complex in remote environments. Al-
ternative methods based on leaf spectroscopy have showed good per-
formances for the estimation of various constituents (Asner et al., 2011,
2009; Ceccato et al., 2001; Colombo et al., 2008; Feilhauer et al., 2015;
Féret et al., 2017; Fourty and Baret, 1998). Two main types of methods
have been developed for the estimation of vegetation properties from
their optical properties (including leaf chemistry but also canopy bio-
physical properties): physically-based methods and data-driven methods,
also referred to as “radiometric data-driven approaches” and “biophy-
sical variable driven approaches” respectively, by Baret and Buis
(2008). In this study, we will only use the terms physically-based
methods and data-driven methods in order to avoid confusion.

Physically-based methods are based on radiative transfer models
(RTM) providing a mechanistic link between leaf traits and their optical
properties. They aim at minimizing the residuals between measured
and modeled radiometric data (hence the term “radiometric data-
driven approach” by Baret and Buis, 2008). The PROSPECT model
(Jacquemoud and Baret, 1990; Féret et al., 2017) is the most wide-
spread model, due to its relative simplicity and computational effi-
ciency combined with excellent modeling performances for a broad
range of leaf types. Several retrieval algorithms have been developed to
estimate leaf chemistry from their optical properties, taking advantage
of physical modeling. These include look-up-table (LUT) methods (Ali
et al., 2016) and iterative optimization based on minimization algo-
rithms (Jacquemoud et al., 1996). Physically-based methods do not
require calibration data, but they are computationally demanding.

Data-driven methods use a calibration dataset of measured leaf op-
tical properties and traits in order to adjust regression models for the
estimation of leaf chemistry (Verrelst et al., 2016). These include re-
gression models derived from spectral indices, one of the most classic
approaches (Gitelson et al., 2006; Main et al., 2011). More complex
multivariate methods such as partial least square regression (Asner
etal., 2011), and machine learning algorithms (ML) are also extensively
used in the domain of remote sensing. These include support vector
machine (SVM, Cortes and Vapnik, 1995; Drucker et al., 1996), random
forest (Breiman, 2001), and artificial neural networks (Hornik et al.,
1989). ML algorithms have been extensively used for remote sensing
applications during the past decades, most of them at the canopy level
when it comes to the estimation of biochemical constituents (Brown
et al., 2000; Gualtieri, 2009; Lardeux et al., 2009; le Maire et al., 2011;
Schmitter et al., 2017; Stumpf and Kerle, 2011; Zhang et al., 2017), and
a limited number of studies focusing on the leaf/needle scale (Conejo
et al., 2015; Dawson et al., 1998; le Maire et al., 2004). ML algorithms
usually show good performances in terms of prediction ability and high
computational efficiency. The capacity of data-driven approaches to
accurately predict leaf chemistry from their optical properties is in-
herently dependent on the dataset used to train the algorithm and re-
gression model. The experiments performed in this study aim at
quantifying this assertion over an extensive experimental dataset. This
implies that correct implementation of data-driven methods using ex-
perimental data for training requires substantial efforts for the mea-
surement of leaf optical properties and chemical constituents with
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destructive methods, whereas physical modeling only requires leaf
optical properties.

Note that a third type of approach, namely, hybrid methods, could
also be mentioned here (Verrelst et al., 2015). Such methods use data-
driven algorithms trained with spectral properties simulated with
physical models. These methods are particularly developed at the ca-
nopy scale, and combine the advantages of physically-based and data-
driven methods: they do not require destructive measurements to build
an experimental training dataset, and they are computationally effi-
cient.

LMA and EWT both influence leaf optical properties in the near-
infrared (NIR) and shortwave infrared (SWIR) domains (Bowyer and
Danson, 2004). However, physically-based methods have often been
reported to perform poorly for the estimation of LMA (Colombo et al.,
2008; le Maire et al., 2008; Riano et al., 2005; Wang et al., 2011).
Several reasons have been mentioned in the literature, including sub-
optimal modeling (Qiu et al., 2018), optical data collection (Merzlyak
et al., 2004) or inversion (Colombo et al., 2008; Qiu et al., 2018; Riano
et al., 2005; Sun et al., 2018; Wang et al., 2011, 2015).

A first reason related to modeling is that the influence of LMA on the
optical properties modeled by PROSPECT is defined by a single specific
absorption coefficient (SAC), although various non-pigment organic
materials (cellulose, hemicellulose, lignin, proteins, starch) influence
leaf optics individually (Jacquemoud et al., 1996). Therefore, this
single SAC assumes that the relative proportion of each of these single
constituents is constant among leaves, which may not be the case.
Another reason may be due to an imperfect modeling of light propa-
gation within the leaf. From that perspective, Qiu et al. (2018) proposed
a refined version of PROSPECT (named PROSPECT-g) including an
anisotropic-scattering factor in order to improve the estimation of LMA,
and developed an iterative inversion procedure specifically dedicated to
this model.

Experimental uncertainty should also be considered when dis-
crepancies between measurements and simulations are observed.
Indeed, accurately measuring leaf optical properties remains challen-
ging despite the high performances of field and lab spectroradiometers,
leading to possible experimental bias which is usually unaccounted for.
As an example, Merzlyak et al. (2004) reported the difficulty to accu-
rately measure leaf optical properties in the NIR domain due to in-
complete collection of the light leaving the highly scattering tissue.
They proposed a correcting factor for transmittance based on the hy-
pothesis that leaf absorption in the NIR domain is negligible. For these
reasons, the relevance of systematically using the full spectral domain
(especially the NIR domain) can be questioned.

Finally, several authors suggested that classical least-squares in-
version based on the use of leaf reflectance and transmittance over the
full spectral domain was suboptimal for physically-based estimation of
LMA, especially due to the lower influence of LMA on leaf optical
properties in the SWIR domain as compared to EWT (Colombo et al.,
2008; Riano et al., 2005). More elaborated inversion procedures have
thus been proposed to improve LMA estimation. Some of them are
based on complex iterative procedures consisting in successively esti-
mating different PROSPECT parameters using unweighted merit func-
tions computed over specific spectral domains (Qiu et al., 2018; Li and
Wang, 2011; Wang et al., 2015). When using the full spectral domain
from 400 to 2500 nm, Sun et al. (2018) showed that LMA estimation
based on PROSPECT inversion and an unweighted merit function was
more accurate when using only reflectance or only transmittance in-
stead of reflectance plus transmittance. When using bidirectional re-
flectance measurements, Li et al. (2018) developed an approach
(PROCWT) coupling PROSPECT with continuous wavelet transform in
order to suppress surface reflectance effects. PROCWT was shown to
perform better than PROSPECT and a simplified version of PROCOSINE
(Jay et al., 2016) for the estimation of LMA.

All of these studies demonstrate the complexity of a direct estima-
tion of LMA from leaf optical properties using physically-based
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methods, and the difficulty to clearly identify the origin of current
limitations. In the case of data-driven methods, the estimation of LMA
has seldom been investigated comprehensively: training and test data
are usually collected following a unique protocol specific to a unique set
of equipment and by the same team of operators. This means that
possible experimental biases due to protocol, equipment and/or op-
erators may be embedded into the resulting regression model, leading
to poor generalization ability when applied to independent datasets
collected under different conditions or with different equipment.

The objective of this study is to assess the relative performances of
physically-based and data-driven approaches for the estimation of LMA
and EWT based on leaf optical properties. Our working questions are (1)
what are the limitations of PROSPECT for LMA and EWT estimation,
and is there any solution to overcome these limitations, and (2) what is
the generalization ability of data-driven approaches when independent
datasets are used for training and validation? We gathered six datasets
in temperate, tropical and boreal ecosystems, with joint measurements
of broadleaf optical properties, LMA and EWT (Section 2). Then, we
designed specific protocols to address questions (1) and (2), and to
perform an objective comparison of their performances (Section 3).
This includes the selection of specific spectral information for PROSP-
ECT inversion, and different strategies for the sampling of the training
dataset for ML algorithms. Section 4 presents the results obtained with
the different approaches, including a comparison of the validation with
the six experimental datasets. Finally, Section 5 discusses the potential
and current limitations of the approaches and section 6 provides a
conclusion.

2. Materials
a. Global description of the datasets

For this study, six datasets were collected over various ecoregions,
ranging from tropical forests, to temperate and boreal ecosystems
(Table 1). LOPEX and ANGERS are publicly available and used in many
publications. HYYTIALA, ITATINGA, NOURAGUES and PARACOU are
unpublished datasets.

- The ANGERS' dataset was collected in 2003 at INRA (Institut na-
tional de la recherche agronomique) in Angers (France). It en-
compasses physical measurements and biochemical analyses col-
lected over 43 species and varieties of woody and herbaceous plants.
ANGERS was used for the calibration of the SAC for chlorophylls,
carotenoids and anthocyanins in the latest versions of PROSPECT
(Féret et al., 2008, 2017).

The Leaf Optical Properties Experiment (LOPEX"?) dataset was
collected in 1993 in Italy during a campaign conducted at the Joint
Research Centre (Ispra, Italy) (Hosgood et al., 1994). It encompasses
physical measurements and biochemical analyses collected over >
50 species of woody and herbaceous plants, and has been widely
used by the remote sensing community (Bowyer and Danson, 2004;
Féret et al., 2008; Mobasheri and Fatemi, 2013; Romero et al.,
2012). The full LOPEX dataset includes dry and fresh samples and
was used for the calibration of the SAC of LMA (Féret et al., 2008),
as well as broadleaf and needleleaf samples. However, only broad-
leaf samples were used in the current study, all fresh leaves except
for one set of five dry maize leaf samples.

The HYYTIALA dataset was collected in July 2017 at the Hyytidla
Forestry Field Station in Southern Finland in the frame of the
Fluorescence Across Space and Time (FAST) campaign. This station
is located in the boreal belt and is dominated by mixed forest of
Scots pine, Norway spruce and silver birch. This dataset

L http://opticleaf.ipgp.fr/index.php?page = database.
2 http://teledetection.ipgp.jussieu.fr/opticleaf/lopex.htm.
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Summary of the main properties of the experimental datasets. Basic statistics for each dataset (minimum and maximum value, mean and standard deviation) are

given for EWT and LMA, as well as their correlation rf(EWT,LMA).

ANGERS LOPEX HYYTIALA ITATINGA NOURAGUES PARACOU
#Samples 308 330 96 415 262 272
#Species/genotypes 43 sp. 46 sp. 10 sp. 4 sp./16 gt.” 38 sp. 28 sp.
EWT (mg~cm’2)
Min-max 4.40-34.00 0.29-52.48 3.68-23.73 2.20-20.20 3.20-38.10 N/A
Mean * SD 11.47 = 4.70 11.13 + 6.97 9.16 + 2.98 14.44 = 2.09 11.73 *= 4.86 N/A
LMA (mg-cm’z)
Min - Max 1.66-33.10 1.71-15.73 2.76-15.77 6.90-14.70 3.10-21.10 5.28-25.56
Mean * SD 5.12 + 3.53 5.29 + 2.47 6.27 + 3.04 10.24 = 1.62 10.81 *= 3.89 12.32 + 4.06
r(EWT,LMA) 0.72 0.28 0.40 0.03 0.51 N/A

# Four species from Eucalyptus genus, corresponding to sixteen genotypes.

encompasses physical measurements and biochemical analyses col-

lected over various native and non-native broadleaf species located

in the field station.
- The ITATINGA dataset was collected in October 2015 as part of the
IPEF-Eucflux project and HYPERTROPIK project (TOSCA, CNES,
France), from experimental Eucalyptus stands planted in November
2009 near the University of Sao Paulo forestry research station at
Itatinga Municipality (Sao Paulo State, southeastern Brazil). ITATI-
NGA includes sixteen genotypes and four species of Eucalyptus,
eventually with hybrids, provided by different forestry companies in
different regions of Brazil. For each genotype, leaves corresponding
to various developmental stages were collected, from juvenile to
mature to senescent, and various locations within the crown (shaded
leaves from the lower part of the crown, leaves from mid crown and
sunlit leaves from the upper part of the crown). This dataset is the
only genus-specific dataset. Hence, in spite of the large variability in
terms of developmental stages, the ranges of LMA and EWT show
significantly lower variability than those observed for the other
datasets (Table 1). See Oliveira et al. (2017) for more details.
The NOURAGUES dataset was collected at the CNRS Nouragues
experimental research station, French Guiana, in September 2015,
in the frame of the HYPERTROPIK project. This site is a lowland
Amazonian forest, protected since 1996 by a Natural Reserve status.
This dataset includes four to ten leaf samples from 38 emerging
tropical tree species, collected from both shaded and sunlit parts of
the crown. The Nouragues station is also a pilot site for remote
sensing studies of tropical ecosystems (Réjou-Méchain et al., 2015).
The PARACOU dataset was collected at the CIRAD-INRA Paracou
experimental research station, French Guiana, in September 2015
(HYPERTROPIK project). This dataset includes four to ten leaf
samples from 28 emerging tropical tree species, collected from both
shaded and sunlit parts of the crown. Paracou is located in coastal
lowland Amazonian forest. Various experiments are ongoing, in-
cluding disturbance experiments, CO2 flux experiments, fertilization
and long-term studies in forest dynamics and biodiversity.
b. Measurements of leaf optical properties

For all the samples, directional-hemispherical reflectance and
transmittance (Schaepman-Strub et al., 2006) of the upper surface of
the leaves were measured with a spectroradiometer and an integrating
sphere in the visible (VIS), NIR and SWIR domains between 400 and
2500 nm. Here, we used the infrared domain ranging from 900 to
2400 nm, due to the low influence of LMA and EWT on leaf optical
properties below 900 nm, and to the low signal-to-noise ratio (SNR)
beyond 2400 nm.

All datasets shared the same protocol for the measurement of leaf
optical properties, and included spectral calibration for stray light in
order to correct the imperfect collimation of the lamp beam as well as
compensation for the optical properties of the coating of the integrating
sphere when measuring leaf reflectance and transmittance (Asner et al.,

2009; Carter and Knapp, 2001). The datasets were collected by different
operators, and using different devices. Despite efforts to share a unique
protocol for the acquisition of leaf optical properties, this diversity of
operators, equipment and conditions of acquisition, is a possible source
of bias that we discuss here.

c. Measurements of LMA and EWT

The measurement of EWT and LMA shared the same protocol among
experimental datasets. Leaf samples were collected in the field, stored
in a cooler and measured in an experimental facility equipped with a
precision scale and a drying oven. Minutes after measuring the leaf
optical properties, disks of fresh leaf material were sampled using a
cork borer, and immediately weighted using the precision scale to ob-
tain FW (Eq. (2)). The disks were then placed in a drying oven at 85 °C
for at least 48 h until constant mass was attained, and immediately
weighted when out of the oven in order to determine DW (Egs. (1) and
(2)) (Cornelissen et al., 2003; Pérez-Harguindeguy et al., 2013). EWT
and LMA were then computed based on Egs. (1) and (2).

Table 1 summarizes basic statistics and information for each da-
taset. LMA and EWT were systematically measured for each sample in
each dataset, except for the PARACOU dataset which only includes LMA
measurements. Similarly to optical properties, various sources of un-
certainty may have affected EWT and LMA measurements, including
errors in the area sampled on leaf material due to imperfect circular
sampling disks, loss in water content between leaf optics measurements
and weighting of fresh mass, or rehydration between drying and
weighting of dry mass. However, care was paid to standardize data
collection, so as to minimize the influence of these possible biases. EWT
and LMA show no correlation for ITATINGA, weak correlation for
LOPEX, moderate correlation for HYYTIALA and NOURAGUES, and
strong correlation for ANGERS. A moderate correlation of 0.44 is
measured when pooling all samples together.

3. Methods
a. PROSPECT model: general presentation

PROSPECT is based on the generalized plate model (Allen et al.,
1969, 1970) and was initially developed by Jacquemoud and Baret
(1990). This model simulates the leaf directional-hemispherical re-
flectance and transmittance (Schaepman-Strub et al., 2006) with a
limited number of input biophysical and biochemical variables, in-
cluding various absorbing compounds and a unique leaf structure
parameter, named N. Many versions have been developed since the first
version, in order to include more absorbing compounds (Féret et al.,
2008, 2017; Jacquemoud et al., 1996) or to adapt to specific conditions
and leaf types, such as needle-shaped leaves (Malenovsky et al., 2006).
In this study, we used the latest version of PROSPECT, named PROS-
PECT-D (Féret et al., 2017). As we focused on leaf optical properties in
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the 900-2400 nm range, the capability of PROSPECT in terms of se-
paration of pigments was not critical as no pigment absorbs in this
spectral domain, but the refractive index differs from the one used on
PROSPECT-5 (Féret et al., 2008). Brown pigments were not retrieved
during the inversion, as including them showed no significant differ-
ence in the results obtained for any of the strategies tested here.

The N parameter corresponds to the number of uniform compact
plates separated by N — 1 air spaces. The value of N represents the
complexity of the leaf internal structure, with low N values corre-
sponding to moderate complexity such as in monocots, and higher N
values corresponding to higher complexity, a characteristic of dicots. To
date, no protocol exists to experimentally estimate N from leaf samples,
other than using leaf optical properties. N influences leaf scattering and
shows negligible impact on leaf absorption: increasing N values in-
crease reflectance and decrease transmittance, and N shows particularly
strong effects in domains with low absorption, such as the NIR domain.
Recently, Qiu et al. (2018) found an extremely strong correlation be-
tween N and the ratio between reflectance and transmittance on si-
mulated data.

PROSPECT can be run in forward or inverse mode. The forward
mode aims at simulating leaf optical properties based on a full set of
biophysical and biochemical properties (leaf chemistry and N). The
inverse mode aims at identifying the optimal set of biophysical and
biochemical properties that minimize a merit function (or goodness-of-
fit criterion) based on a comparison between measured and simulated
leaf optics. A common inversion procedure is based on the numerical
minimization of the sum of weighted square errors over all spectral
bands available. The corresponding merit function M is expressed as
follows when using both reflectance and transmittance:

An
M(N,{Ci}i—1p) = Z [Wei X (R — Ry)? + Wi x (T — Th)?
i=h 3

with N the leaf structure parameter, p the number of chemical con-
stituents accounted for by PROSPECT and retrieved during the inver-
sion, C; the biochemical content per leaf surface unit for constituent i,
A1 and A, the first and last wavebands investigated for inversion, Ry and
T, the experimental reflectance and transmittance measured at wave-
band A, R, and T, the reflectance and transmittance simulated by
PROSPECT with {N,{ C}i-1,} as input variables, Wg, , the weight
applied to the squared difference between experimental and simulated
reflectances, and Wr, , its equivalent for transmittance. Eq. (3) can be
used to estimate the full set of input variables, or a limited subset if
prior information or arbitrary value is set for some variables.

b. Estimation of EWT and LMA through iterative optimization

The large majority of the studies focusing on leaf scale model in-
versions through iterative optimization used Eq. (3) with unweighted
merit function over the full spectral domain available (Wg, » = Wr,
» = 1). This merit function provides accurate estimates of leaf pigments
and EWT (Féret et al., 2017; Jacquemoud et al., 1996; Newnham and
Burt, 2001), but several studies reported poor results for LMA estima-
tion (Féret et al., 2008; Riano et al., 2005). Colombo et al. (2008) used
an alternative weighting, with Wg, 5 = (R\) ™2 and Wy, 5 = (T) 3,
which is otherwise unused in the literature when inverting leaf models,
and not so common when inverting canopy models (Baret and Buis,
2008). In practice, implementing such a merit function requires pre-
caution as high sensor noise (in particular in the SWIR domain) may
result in close-to-zero reflectance and transmittance, leading to ex-
aggerated importance of the corresponding spectral bands. This merit
function then needs to be adapted to exclude these spectral bands.
Colombo et al. (2008) reported fair performances of this merit function
for the estimation of EWT, but poor performances for LMA. However,
the SWIR domain beyond 1600 nm was not measured for their study, in
spite of its importance for the estimation of LMA (Asner et al., 2009,
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2011; le Maire et al., 2008). Therefore a fair comparison between this
merit function and the unweighted merit function including the full
spectral range is required.

As mentioned in the introduction, LMA estimation could also be
improved by focusing on optimal spectral ranges (Li and Wang, 2011;
Qiu et al., 2018; Wang et al., 2015). This amounts to choosing the
weights such that Wy 5 = Wr, 5 = 1 in the considered range, and Wk,
a = Wr, » =0 elsewhere. Note that such a procedure is relatively
straightforward and could potentially be applied to the canopy scale in
a similar way.

In this study, three inversion procedures were applied to the six
independent experimental datasets, and their relative performances
were compared. These inversion procedures correspond to “one-step”
procedures, aiming at estimating EWT, LMA and N simultaneously from
both reflectance and transmittance:

- Iterative optimization 1 (IO1) uses an unweighted merit function (Wg,
2= Wr, 5 =1) with reflectance and transmittance defined from
900 nm to 2400 nm.

Iterative optimization 2 (I02) uses a weighted merit function as de-
fined by Colombo et al. (2008) (Wg, 5 = (R "% and Wr, 2 = ()
with reflectance and transmittance defined from 900nm to
2400 nm.

Iterative optimization 3 (I03) uses a weighted merit function defined
by Wg, » = Wr, 5 = 1 over an optimal contiguous spectral domain
[A1, An] defined between 900 and 2400 nm, and Wg 5 = Wy, 5 =0
elsewhere. This optimal spectral domain is adjusted in the present
study and is the same for both reflectance and transmittance, and for
all experimental datasets.

In the case of I03, the exhaustive comparison of all combinations of
spectral domains or spectral bands is computationally too demanding
and extremely inefficient given the strong correlations between neigh-
boring spectral domains. In order to reduce the computational cost, we
focused on contiguous spectral domains defined by partitioning the
initial spectral domain into 15 evenly-sized segments of 100 nm from
900 to 2399 nm. The choice of 100 nm segments is driven by constraints
in terms of computation and by the ability to identify the main ab-
sorption features of EWT and LMA individually. The performances of
PROSPECT inversion for the estimation of LMA and EWT were tested
with all continuous spectral domains that can be generated from these
15 spectral segments, leading to 120 continuous segments. Finally, the
spectral domain leading to the minimum RMSE averaged for all ex-
perimental datasets and for the estimation of both LMA and EWT from
PROSPECT inversion was selected and defined as the optimal spectral
range used in I03.

For 101, 102 and I03, N, EWT and LMA were simultaneously esti-
mated using a constrained nonlinear optimization algorithm, i.e., the
Sequential Quadratic Programming algorithm implemented within the
Matlab function fmincon. The lower bounds selected for the three
parameters to be optimized were defined to respect the condition of
strict positivity and include minimum values observed for experimental
data, whereas the upper bounds were set in order to include the max-
imum values observed for experimental data, with significant margins:
EWT values were investigated between 0.01 and 80mg.cm™? LMA
values were investigated between 0.01 and 40 mg.cm~%; N values were
investigated between 0.5 and 4. No correlation constraints between
EWT and LMA were included in the inversion procedure, since such
correlation was not systematic between datasets.

c. Data-driven estimation of EWT and LMA

The performances of data-driven methods inherently depend on the
training data. In most cases, these performances are reported after
splitting an experimental dataset into training and validation subsets,
and the resulting regression models are not validated on fully
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independent datasets. In the perspective of operational applications,
this raises the question of the possibility to share regression models
adjusted with ML algorithms on public experimental datasets, and to
use leaf spectroscopy operationally with no destructive measurements
required to adjust dataset-specific regression models. With increasing
use of machine learning, software packages including already trained
regression models may be shared the same way statistical models de-
rived from spectral indices have been proposed in the scientific litera-
ture (Féret et al., 2011). We want to answer the following questions
related to data-driven methods: do regression models trained with one
or several experimental datasets perform well when applied on in-
dependent datasets, or should training data systematically include
samples from the validation dataset? To answer these questions, three
strategies for the composition of a training dataset were tested, and the
performances of data-driven methods were compared with PROSPECT
inversions:

- Training sampling 1 (TS1): A single dataset was used as training data
and the regression model was then applied on each of the remaining
datasets.

- Training sampling 2 (TS2): All but one experimental datasets were

used as training data, and the regression model was then applied on

the remaining dataset.

Training sampling 3 (TS3): All experimental datasets were pooled

into a single one, and 300 samples (comparable in size to individual

datasets) were randomly selected for training. Validation was then
performed on the remaining samples (1668 samples for LMA, and

1396 samples for EWT), and performances (in terms of RMSE) were

evaluated per individual dataset and globally. In each case, to ac-

count for possible sampling bias, random sampling of training da-
taset was repeated 20 times and the distribution of RMSE values
across all samplings was calculated.

Here, these three strategies used to define the training dataset were
used with support vector machine (SVM) regression algorithm corre-
sponding to the Matlab implementation of the LibSVM library (Chang
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and Lin, 2011). Reflectance and transmittance measurements from 900
to 2400 nm were stacked in a unique vector, resulting in n, = 3002
predictor spectral variables for each sample. Reflectance and trans-
mittance were scaled between 0 and 1 for each spectral band, as well as
leaf chemical constituent of interest (LMA and EWT). The radial basis
function (RBF) kernel was selected, which implies optimizing two free
parameters, C and y. C is a cost parameter used to trade error penalty
for stability and common to any SVM model. v is specific to RBF kernels
and it corresponds to the inverse of the radius of influence of samples
selected by the model as support vectors. The C and y parameters were
optimized using an exhaustive grid search (C e [107%107%;..;1072,
ye€[107°%107%...;10""] in order to include the default values re-
commended by Chang and Lin (2011) and a five-fold cross validation
over the training data for each combination of C and vy. The optimal C
and vy values were then used with the full training data to adjust a re-
gression model.

4. Results

This section is divided into three subsections. The first subsection
aims at identifying the optimal spectral domain to be used with I03.
This first section is a prerequisite to the second section, which then
focuses on the comparison between the three types of iterative opti-
mization, and the two types of training samplings based on the in-
tegrality of experimental datasets, TS1 and TS2. Finally, the third sec-
tion compares the performances of TS3, which is based on a random
sampling among all experimental datasets, with the performances of
I03 and TS2, when the validation samples are identical to those used in
TS3.

a. Influence of spectral domain used for the estimation of EWT and
LMA with PROSPECT inversion (optimization of I03 method)

Figs. 1 and 2 show the results obtained for the estimation of EWT
and LMA, respectively, when inverting PROSPECT over each dataset
and each of the 120 spectral domains defined in Section 3.b with the
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Fig. 1. Normalized RMSE (NRMSE, in %)
obtained for EWT with PROSPECT inversion
method IO3 over each dataset and each re-
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I03 method. For the sake of comparison, for each dataset, the RMSE
was normalized by the RMSE obtained when using the spectral in-
formation from 900 to 2400 nm, and this normalized RMSE (NRMSE)
was expressed as a percentage. In the case of EWT, the optimal spectral
domain excluded the NIR domain under 1300 nm for all datasets, but
no unique optimal spectral domain common to each dataset could be
identified. The relative improvement induced by the reduction of the
spectral domain was also strongly dataset-dependent: NRMSE was re-
duced by 23% (LOPEX) to 56% (NOURAGUES).

In the case of LMA, both optimal spectral domain and relative im-
provement or degradation showed stronger consistency among datasets
than for EWT (Fig. 2). For all datasets, excluding information from
1500 nm and beyond led to strong degradations of the performances. In
the case of LOPEX and HYYTIALA, estimation of LMA could be improved
only when using spectral domains with ending wavelength between
2100 and 2400 nm, except when using a narrow spectral domain from
1600 to 1800 nm. For the four other datasets, extended spectral combi-
nations led to improved LMA, as most of the combinations excluding the
domain from 900 to 1200 nm led to improved estimation of LMA, except
when using a reduced spectral domain ranging from 1800 to 2100 nm
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Fig. 2. Normalized RMSE (NRMSE, in %)
obtained for LMA estimation with PROSP-
ECT inversion method 103, over each da-
taset and each reduced spectral domains
bounded by a starting wavelength A; (y-
axis) and an ending wavelength A, (x-axis).
The normalization is specific to each dataset
based on the performances of IOI
(NRMSE = 100%, lower right corner). The
green star indicates the spectral segment
producing the best results. (For interpreta-
tion of the references to color in this figure
legend, the reader is referred to the web
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only, which corresponds to one of the main absorption features of water.
Overall, the optimal spectral range excluded the NIR domain and in-
cluded spectral information until 2400 nm for all datasets. The relative
improvement induced by the selection of an optimal specific for each
dataset ranged from 60 (ITATINGA) to 67% (NOURAGUES).

These figures provide a visual representation of the spectral do-
mains leading to improved or decreased performances compared to full
spectral information. They confirm that selecting the appropriate
spectral information during inversion strongly influences for the esti-
mation of leaf constituents.

Fig. 3 provides NRMSE for the estimation of EWT and LMA averaged
over all datasets, and confirms suboptimal performances obtained when
using NIR information only. Overall, the spectral domain ranging from
1700 to 2400 nm was found to be optimal when estimating EWT and
LMA simultaneously (mean NRMSE was reduced by 33% for EWT and
by 55% for LMA), and was used hereafter within the I03 method.

b. Comparison of PROSPECT inversion methods and ML algorithms for
the estimation of LMA and EWT: training ML with independent
datasets

Mean NRMSE (EWT+LMA)
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Fig. 3. Mean normalized RMSE values
(NRMSE, in %) obtained for the estimation
of EWT (left), LMA (center), and both con-
stituents (right), after PROSPECT inversion
B over all experimental datasets pooled and
each of the 120 spectral domains defined in
Section 3.b. The green star indicates the
spectral segment producing the best results.
(For interpretation of the references to color
in this figure legend, the reader is referred
to the web version of this article.)
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The performances obtained for the estimation of EWT when using
TS1 and TS2 for ML regression, and 101, I02 or I03 (with the
1700-2400 nm spectral range) for PROSPECT inversion are reported in
Table 2. Overall, I02 and IO3 produced the most consistent results,
systematically outperforming the other methods. ML regressions per-
formed particularly poorly compared to I02 and I03, and TS2 led to the
better results than TS1 (except form HYYTIALA). TSI led to very in-
consistent results, with 175% increase compared to IO02 and IO3 on
average, and up to 500% increase in RMSE compared to PROSPECT
inversion I02 when estimating EWT from ITATINGA after training with
LOPEX.

Fig. 4 provides scatterplots for the results showed in Table 2 and
corresponding to IO1, I02, 103 and SVM regression with sampling
strategy TS2. Overall, I02 showed the best performances for the esti-
mation of EWT, and SVM regression produced the lowest performances,
mainly because of the strong error obtained for extreme values on
LOPEX.

The performances obtained for the estimation of LMA when using
training samplings TS1 and TS2 for ML regression, and I01, I02 or 103
for PROSPECT inversion are reported in Table 3. JO3 outperformed the
other methods for all datasets except HYYTIALA and ITATINGA: I02
slightly outperformed IO3 for ITATINGA only and TS2 outperformed
I03 for HYYTIALA and ITATINGA. However, the difference in RMSE
between IO3 and the optimal method remained < 20% for these two
datasets. The relative performances obtained with IO1 and 102 differed
among datasets: while using 102 led to significantly improved estima-
tion of LMA compared to IO1 for five datasets (from a 26% decrease in
RMSE for LOPEX to > 50% for ITATINGA, NOURAGUES and
PARACOU), and slightly degraded estimation compared to I03 for four
datasets, the performances obtained for HYYTIALA were degraded
by > 75% compared to IO1, with systematic strong overestimation
(Fig. 5). On the other hand, the RMSE corresponding to estimation of
LMA using IO3 decreased by 60% compared to IOI. ML regression
trained with TS2 performed better than IOI overall but was out-
performed by I02 and I03. As for EWT, ML trained with TSI led to very
inconsistent results, and was strongly outperformed by 102, I03 and ML

Table 2
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regressions trained with strategy TS2 in most cases.

Fig. 5 provides scatterplots for the results showed in Table 3 and
corresponding to I01, 102, I03 and SVM regression with training
sampling TS2. Overall, I03 produced the most accurate estimation of
LMA. 102, I03 and TS2 respectively resulted in 33%, 55% and 27%
decreases in RMSE for the estimation of LMA when compared to IO1.

c. Comparison of PROSPECT inversion methods and ML algorithms for
the estimation of LMA and EWT: training ML with pooled datasets

Table 4 and Table 5 summarize the performances of SVM regression
for the estimation of EWT and LMA when TS3 is selected as training
strategy (i.e. all dataset are pooled together and 300 calibration sam-
ples are randomly selected). The performances corresponding to I03
and TS2 were computed for the same validation samples as with TS3 for
each of the 20 repetitions in order to ensure fair comparison.

The mean performances reported in Tables 4 and 5 were very si-
milar to those reported in Tables 2 and 3 for both I03 and TS2, which
means that I03 systematically outperformed TS2 on individual datasets,
except for the estimation of LMA for HYYTIALA and ITATINGA. TS3
outperformed TS2 in most cases for the estimation of both EWT and
LMA. Still, TS3 was outperformed by I03 when estimating EWT, the
overall RMSE increasing by 44% (and by 99% when using TS2). When
estimating LMA, TS3 and IO3 showed very similar overall perfor-
mances, with < 6% increase of RMSE for TS3 when compared to I03.
I03 and TS3 showed very similar average RMSE for LOPEX, HYTTIALA
and NOURAGUES, TS3 showed higher RMSE for ANGERS and
PARACOU, and lower RMSE for ITATINGA. However, the standard
deviations associated with these performances highlight the strong ef-
fect of training and validation samplings on the performances of the ML
algorithm: the standard deviation computed over 20 repetitions was 5
to 20 times higher for TS3 than I03 when estimating EWT, while it was
2.5 to 10 times higher when estimating LMA. The standard deviations
related to the performances of TS2 were generally similar to those
obtained for I03, suggesting that the strong differences in performance
between regression models were induced by the selection of the

RMSE values (in mg.cm ~2) obtained for the estimation of EWT with SVM and training strategies TSI
and TS2, and with 101, I02 and I03. For each column (validation dataset), the minimum RMSE is
indicated in bold, and colors correspond to the level of performances, from green color for minimum

RMSE to red color for maximum RMSE.

Valid
Method ANGERS LOPEX HYYTIALA  ITATINGA NOURAGUES PARACOU
Train
ANGERS - 4.82 1.90 331 2.49 -
LOPEX 3.14 - 3.23 6.73 2.32 -
HYYTIALA 3.79 5.40 - 2.84 3.92 -
751
ITATINGA 3.38 5.82 3.03 - 343 -
NOURAGUES 2.54 5.04 3.15 2.47 - -
PARACOU - - - - - R
752 Allbut 1 2.47 4.54 2.68 2.08 2.10 -
101 PROSPECT 2.07 2.03 1.72 1.93 3.44 -
102 PROSPECT 1.48 1.68 1.44 1.13 1.21 -
103 PROSPECT 1.41 1.70 1.21 1.20 1.66 -
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Fig. 4. EWT estimation results obtained using PROSPECT inversion (I01, I02, I03) and ML regression (training sampling TS2).

Table 3

RMSE values (in mg.cm ~2) obtained for the estimation of LMA with SVM and training samplings TSI
and TS2, and with I01, I02 and IO3. For each column (validation dataset), the minimum RMSE is
indicated in bold, and colors correspond to the level of performances, from green color for minimum

RMSE to red color for maximum RMSE.

Valid
Method ANGERS LOPEX  HYYTIALA  ITATINGA NOURAGUES PARACOU
Train
ANGERS - 4.91 2.49 - 2.76 2.70
LOPEX 2.92 - 2.18 ---
HYYTIALA - 3.19 3.32 4.00
TS1
ITATINGA 5.08 - 3.86 4.50
NOURAGUES  4.04 4.82 3.74 1.40 - 221
PARACOU 2.96 3.96 230 2.11 -
752 All but 1 2.31 4.06 2.14 2.41
101 PROSPECT 2.48 3.36 3.49 2.60 3.95 4.75
102 PROSPECT
103 PROSPECT 44

training samples.
5. Discussion
a. Differences in performances among merit functions
Our study shows that IO1, the most commonly used merit function,

is actually outperformed by a less common merit function (I02) when
estimating EWT and LMA from PROSPECT inversion using reflectance

and transmittance in the NIR/SWIR domain (900-2400 nm). These re-
sults are in agreement with the results obtained when investigating the
optimal spectral domain to be used with I03: Fig. 3 shows that, in most
cases, selecting a spectral domain including NIR information leads to
suboptimal estimation of both EWT and LMA. Therefore, the applica-
tion of a weight inversely proportional to the square of the reflectance
and transmittance (I02) reduce the importance of spectral domains
showing higher reflectance and transmittance values such as the NIR
domain. The improvement is particularly strong for the estimation of
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Fig. 5. LMA estimation results obtained using PROSPECT inversion (I01, I02, I03) and SVM regression (training sampling TS2).

Table 4

Mean RMSE and standard deviation of RMSE (both in mg.cm™ 2) of the estimation of EWT using SVM regression (TS2 and TS3) and PROSPECT inversion (I03) on the

validation samples used for TS3. Best mean performances are indicated in bold.

ANGERS LOPEX HYYTIALA ITATINGA NOURAGUES PARACOU Total
TS3 1.76 = 0.24 2.77 £ 0.47 2.08 = 0.37 1.64 = 0.33 2.18 = 0.37 - 2.12 * 0.26
TS2 2.47 = 0.04 4.55 = 0.28 2.66 = 0.07 2.08 = 0.04 2.1 = 0.05 - 2.97 = 0.10
103 1.43 += 0.04 1.70 = 0.07 1.21 + 0.04 1.21 + 0.02 1.65 += 0.05 - 1.47 = 0.02
Table 5

Mean RMSE and standard deviation of RMSE (both in mg.cm’z) of the estimation of LMA using SVM regression (TS2 and TS3) and PROSPECT inversion (I03) on the
validation samples used for TS3. Best mean performances are indicated in bold (differences in mean RMSE < 1% are considered equivalent).

ANGERS LOPEX HYYTIALA ITATINGA NOURAGUES PARACOU Total
TS3 1.70 = 0.28 1.98 *= 0.56 1.56 = 0.22 1.12 = 0.29 1.59 = 0.19 2.01 = 0.18 1.64 = 0.18
TS2 2.24 = 0.21 4.05 = 0.06 1.33 = 0.04 1.23 = 0.02 2.13 = 0.03 2.43 = 0.05 2.31 = 0.05
103 0.92 = 0.03 2.00 = 0.07 1.54 = 0.08 1.45 = 0.04 1.58 = 0.06 1.77 £ 0.07 1.54 = 0.03

LMA, as reported in Fig. 3. The particularly low performances obtained
for the estimation of LMA on HYYTIAA were also investigated. The leaf
optical properties measured for this dataset showed low SNR, particu-
larly in the SWIR domain for wavelengths of 2300 nm and beyond. The
estimation of LMA with IO02 was strongly improved on this dataset
when applying a Savitzky-Golay smoothing filter and restricting the
spectral domain from 1700 to 2300 nm. The exclusion of the spectral
domain beyond 2300 nm was responsible for the strongest improve-
ment. Finally, the RMSE obtained for HYYTIAA when using the merit
function used in I02 and these preprocessing reached 1.97 mg.cm ™2,
which is still 30% higher than the RMSE obtained with IO03. Therefore
using 102 is strongly discouraged when the signal to noise ratio of leaf
optical properties is not sufficient, while I03 based on the
1700-2400 nm spectral range appears to be reliable even with low SNR.

b. Physical interpretation of the performances obtained with PROSP-
ECT inversion

As highlighted in the previous section, the SNR of leaf optical
properties can become a strong limitation when estimating leaf

10

constituents using PROSPECT inversion if the spectral domain and
merit functions are not carefully chosen. However, this SNR is not the
main limiting factor explaining the poor performances of I01 for the
estimation of LMA and its suboptimal performances for the estimation
of EWT. Indeed, the NIR domain is theoretically characterized by a
higher signal to noise ratio for leaf material but still appears to be the
main limitation for an accurate estimation of these leaf constituents.
Therefore, we attempt here to list possible explanations for such poor
performances.

i. Predominant water absorption

The main reason cited to explain the poor retrieval of LMA is the
predominant water absorption in the SWIR domain. Indeed, Fig. 3
shows that LMA is poorly estimated when the spectral domains used for
inversion mainly include domains with strong water absorption, such as
the domain from 1800 to 2100 nm. However Fig. 3 also shows that LMA
can still be estimated accurately even if most of the spectral information
corresponds to domains with predominant water absorption. Our re-
sults show that the main limitation with IO1 is actually caused by the
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NIR domain between 900 and 1300 nm: most of the spectral domains
excluding such wavebands resulted in improved estimation of LMA. The
900-1300 nm range does not show predominant water or dry matter
absorption, so the poor retrieval of LMA cannot be explained by ab-
sorption features hidden by water absorption or any other constituent.

ii. Approximations of PROSPECT

As any model, PROSPECT is based on a number of approximations.
Although some of these approximations are possible sources of in-
accuracy in specific situations, they guarantee good overall perfor-
mances given a minimum number of descriptors of leaf biophysical
properties. Model discrepancies in the simulation of leaf optical prop-
erties may be explained by inaccurate physical description at three le-
vels: surface effects, volume scattering and volume absorption.

Surface effects strongly depend on the presence of waxes or tri-
chomes, and Barry and Newnham (2012) reported how epicuticular
waxes affect PROSPECT inversion. Surface effects mostly influence leaf
reflectance in the domains characterized by strong absorption where
the leaf reflectance is minimum (Bousquet et al., 2005; Jay et al., 2016).
In the NIR/SWIR spectral range, these domains mainly depend on water
absorption. The sensitivity analysis performed by Jay et al. (2016) with
similar EWT values showed that surface effects have the largest influ-
ence beyond 1800 nm, this domain being close to the one leading to
optimal PROSPECT inversion results with I03 (1700-2400 nm). Such a
result thus tends to indicate that surface effects had a limited detri-
mental influence on estimation performance.

Volume scattering is modeled by multiple factors in PROSPECT,
including leaf structure with the N parameter, and the refractive index.
The unique value of the refractive index is a well-identified simplifi-
cation of PROSPECT, as it does not agree with the Kramers-Kronig re-
lations stating that the real (refractive index) and imaginary (absorp-
tion coefficient) parts of the complex refractive index of a medium are
physically linked (Lucarini et al., 2005). Qiu et al. (2018) developed
PROSPECT-g, a modified version of PROSPECT including an additional
wavelength-independent factor specific to each leaf and aiming at re-
presenting first-order effects of anisotropic scattering, which are not
included through the N structural parameter of the original PROSPECT
model. They also proposed a multistage inversion to be used with
PROSPECT-g. This inversion procedure may strongly increase com-
puting time, and the applicability of PROSPECT-g inversion at the ca-
nopy scale does not seem straightforward as additional parameters may
increase the ill-posedness of canopy models such as PROSAIL
(Jacquemoud et al., 2009). However, they reported promising results,
including improved estimation of LMA and improved simulation of both
reflectance and transmittance in the NIR domain when compared to
PROSPECT-5.

Volume absorption is defined by the SACs which are adjusted based
on experimental data during the calibration of PROSPECT (Féret et al.,
2008, 2017). We attempted a recalibration of the SAC for LMA in order
to reduce the inaccuracies observed between experimental and simu-
lated data, and improve the estimation of LMA. This did not lead to any
improvement when including the NIR domain. Moreover, the incorrect
definition of the SAC corresponding to LMA would lead to systematic
underestimation or overestimation of absorption when running PROS-
PECT in direct mode. However, the analysis of the residuals between
measured leaf optical properties and their simulated counterparts ob-
tained with PROSPECT in direct mode did not result in systematic er-
rors (results not shown). The SAC corresponding to LMA in PROSPECT
integrates the optical influences of various organic constituents, which
may also lead to inaccuracies if leaf samples include strong variations in
stoichiometry. However, the data required to test this possible source of
inaccuracy was not available.

iii. Bias in the leaf optical measurements
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As highlighted in the introduction, the uncertainty associated to leaf
optical measurements in the NIR domain may be increased because of
the incomplete collection of the light leaving the highly scattering
tissue (Merzlyak et al., 2002). Merzlyak et al. (2004) proposed a cor-
recting factor for transmittance based on the hypothesis that leaf ab-
sorption in the NIR domain from 780 to 900 nm is negligible for healthy
leaves. However this correcting factor is not adopted as a standard
correction by the community. In order to detect possible uncertainty in
the optical measurements in the NIR domain with our data, we tested
our ML approach with TS1 (training with a unique dataset) and spectral
information either from 1700 to 2400 nm or from 1400 to 2400 nm
(results not showed).

For both LMA and EWT, the regression models applied on in-
dependent datasets performed similarly for the two spectral domains
considered, but systematically performed better than the regression
models trained with the spectral information from 900 to 2400 nm.
However, they were still outperformed by PROSPECT inversion. Such a
result thus tends to confirm that leaf optical measurements in the NIR
domain might be affected by some experimental uncertainty.

The poor performances reported for the estimation of LMA with
PROSPECT inversion using IO1 are therefore mainly explained by the
use of the NIR domain, which is subject to inaccuracies, from a mod-
eling and/or from an experimental point of view. Based on our study,
we cannot conclude on the relative importance of one or the other
factor. These two possibilities should then be considered and tested
using the methods proposed in the literature (Merzlyak et al., 2004; Qiu
et al., 2018). Finally, the difference between directional hemispherical
measurements and bidirectional measurements should be system-
atically accounted for and appropriate physical models should be used
with the type of data they are expected to simulate.

c. Influence of the sampling of the training dataset on machine
learning algorithms

Our results highlight the strong influence of the training dataset on
the performances of ML methods, which is not an original result per se.
However, the different training strategies tested here show that re-
gression models should be used with extreme care when they are ap-
plied on data which were not collected in the exact same conditions as
training data. Finally, the optimal training strategy in our case, TS3,
requires that each campaign aiming at collecting leaf optical properties
in order to estimate constituent content based on statistical/ML
methods should include destructive measurements to be used during
the training step. This means that publicly available datasets such as
ANGERS and LOPEX should not be used as the only training datasets for
the estimation of leaf chemistry based on spectroscopy from in-
dependent datasets. The origin of the suboptimal performances ob-
tained in particular with TS2 and TS3 should also be investigated. ML
algorithms are currently mainly used for their predictive capacity.
However, they can also as part of a descriptive framework. Feilhauer
et al. (2015) proposed an interesting illustration as they suggested
combining multiple methods in order to identify the most relevant
spectral bands related to leaf chemistry, based on both experimental
and simulated data. Following the same method, the identification of
the spectral bands maximizing the generalization ability of ML algo-
rithms by discarding spectral domains prompt to experimental un-
certainty or model approximations could be considered. Finally, hybrid
methods using simulated data during the training stage of a ML algo-
rithm appear as an interesting alternative to data-driven methods
purely based on experimental data, and further investigation is needed
in order to define the proper strategy to generate such training dataset
and combine the generalization ability of physically-based approaches
with the computational efficiency of data-driven approaches.

d. Relevance of these results for leaf trait monitoring
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The results obtained in this study contribute to a better under-
standing of the optimal remotely-sensed monitoring of LMA and EWT,
two key vegetation traits that convey multiple information about the
spatial and temporal variation in ecological and functional diversity of
terrestrial ecosystems. This can possibly contribute to facilitating the
study of plant functions and their interactions with and responses to the
environment. As an example, Feilhauer et al. (2018) provide a good
illustration of the interest of remotely-sensed LMA for ecological ana-
lysis of wetland vegetation, in particular for the better understanding of
the effect of long-term drought on ecosystem functions. They focused
on LMA because of its plasticity in response to variable environmental
conditions, and its relationship with potential growth rate.

The estimation of these traits at the leaf scale now needs to be
further investigated at the canopy scale. In order to test the applic-
ability of our approach at the canopy scale, the first step will consist in
working with a simulated dataset obtained with canopy reflectance
models such as SAIL (Jacquemoud et al., 2009; Verhoef, 1984) and
DART (Gastellu-Etchegorry et al., 1996, 2015). The direct application
of model inversion based on iterative optimization restricts the com-
plexity of the canopy model, hence the type of vegetation to be in-
vestigated: the adaptation of our method should be relatively
straightforward when using PROSAIL on homogeneous canopy covers,
but hybrid methods should be considered when using DART simulations
and working on heterogeneous canopy covers.

An important challenge for the applicability of our results at the
canopy scale is the low intensity of the solar radiation in the optimal
SWIR domain identified in this study, which usually leads to low signal
to noise ratio. Currently, hyperspectral information is mainly available
from airborne imaging spectroscopy (Asner et al., 2012; Schaepman
et al., 2015). Asner et al. (2015) obtained accurate estimation of LMA
based on multivariate statistical methods applied on imaging spectro-
scopy for heterogeneous canopies in tropical ecosystems, and they also
concluded on the importance of the spectral domain from 2000 nm to
2500 nm for a proper calibration of the regression models. Recently,
Feilhauer et al. (2018) reported good suitability of airborne imaging
spectroscopy analyzed with a hybrid method (Random forest trained
with PROSAIL simulations) for LMA mapping in natural ecosystems.
Hyperion is the only spaceborne sensor, but the signal to noise ratio is
known to be relatively low (le Maire et al., 2008). The contribution of
modeling through sensitivity studies performed at canopy scale may
therefore provide insightful information for the instrumental specifi-
cations of future satellites dedicated to the monitoring of vegetation
and environment such as EnMAP, and for the development of algo-
rithms (Jetz et al., 2016; Lee et al., 2015; Leitdo et al., 2015).

6. Conclusions

In this paper, we compared the performances of various methods for
the estimation of EWT and LMA based on leaf reflectance and trans-
mittance in the spectral domain ranging from 900 to 2400 nm. These
methods included PROSPECT inversion based on iterative optimization
with various merit functions and machine learning (ML) algorithms
with different training strategies. Six independent datasets acquired
from various vegetation types, including temperate, boreal and tropical
ecosystems were used in order to validate our results.

Our results showed that the poor performances of PROSPECT in-
version reported in many studies for the estimation of LMA could be
dramatically improved when excluding spectral information in the NIR
domain from 900 to 1300 nm. We investigated the performances of
PROSPECT inversion for the estimation of EWT and LMA using multiple
spectral subdomains, and identified an optimal spectral domain ranging
from 1700 to 2400 nm. Overall, PROSPECT inversion performed on this
spectral domain provided more accurate LMA and EWT estimates than
ML algorithms trained on experimental datasets. Unlike ML algorithms,
PROSPECT inversion showed strong generalization ability. Despite
numerous studies showing the poor performances of PROSPECT for the
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estimation of LMA, our study shows that model inversion using iterative
optimization can outperform other methods with an appropriate merit
function, with no need for recalibration or training stage. By this study,
we therefore confirm the strong potential and accuracy of PROSPECT
on critical spectral domains. We also identified weaknesses which can
be attributed either to physical modeling and experimental acquisition
of leaf optical properties in the NIR domain.

These results motivate further investigation involving hybrid
methods for the estimation of LMA and EWT, in order to take advantage
of the computational efficiency of data-driven algorithms and overcome
limitations inherent to suboptimal experimental sampling of training
data. Implications of these results for the optimal estimation of LMA
and EWT at the canopy scale will also be investigated, as LMA and EWT
are both key traits when monitoring ecosystem functions.
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