First order phase transitions and holography

Oscar Henriksson University of Helsinki & Helsinki Institute of Physics

Phase transitions are all around us!

…*might* have happened in the early universe!

- Many BSM proposals lead to 1st order PTs
- Collision of bubbles sources gravitational waves \rightarrow detectable by e.g. LISA?
- Important quantities: Nucleation temperature, transition strength, transition rate, wall speed, …
- Normally studied with perturbation theory at weak coupling…

Outline

- 1. Basics of first order PTs and bubble nucleation
- 2. Holographic approach, with a simple example
- 3. Alternatives to bubble nucleation

Based on…

…**2109.13784** and **2110.14442** with Fëanor Reuben Ares, Mark Hindmarsh, Carlos Hoyos & Niko Jokela.

…work in progress, also with Alessio Caddeo, Xin Li, Mikel Sanchez-Garitaonandia.

First order phase transitions – some basics

…typically proceed through bubble nucleation

Later: Other possibilities…

Bubble nucleation in QFT

- Studied by Callan, Coleman (1977), at non-zero temperature by Linde
- Transition mediated by Euclidean bubble solution
- Nucleation rate $\sim e^{-S(\text{bubble})}$

Fig. from Laine & Vuorinen '17

Thermal bubble nucleation in QFT

 $1.0 \cdot$

 0.8

Figure from Hindmarsh et al. (2021)

 $\overline{\lambda} = 0.05$

 $\overline{\lambda} = 0.15$ $\overline{\lambda} = 0.25$

 $= 0.35$

 $\overline{\lambda} = 0.45$ $= 0.55$

 $\overline{\lambda} = 0.65$

 $\frac{1}{\Phi}\Bigg|0.6$ $= 0.75$ $\overline{\lambda} = 0.85$ 0.4 $-\overline{\lambda} = 0.95$ $0.2 \cdot$ 0.0 2.5 5.0 7.5 12.5 15.0 17.5 20.0 10.0 rM $10^6\,$ $10⁵$ 10^4 $\Gamma_{O(3)}$ 10^3 $\Gamma_{O(3)} \approx 150$ $10²$ 10^1 10^0 10^{-1} $\tilde{\widetilde{T}}^{2.0}$ 0.8 1.2 1.6 2.4 2.8

- 1. For each T, find effective action
- 2. Solve for O(3) bubble
- 3. Get nucleation rate as function of T

Where's gravity?!?

We want to study bubble nucleation…

…at strong coupling…

…using holography!

Bubbles in holography

Can look for bubble solutions directly in gravity theory \rightarrow Complicated PDEs... \odot

Easier way: compute field theory effective action for "order parameter"

$$
\Gamma[\Psi] = W[\Lambda] - \int d^4x \,\Lambda \Psi
$$

 \rightarrow Find bubble solutions – now ODE! \odot

The **general** approach

We want to compute the effective action, in a derivative expansion…

$$
\Gamma[\Psi] = -N^2 \int d^4x \left\{ V(\Psi) + \frac{1}{2} Z(\Psi) (\nabla \Psi)^2 + \cdots \right\}
$$

…using holography.

- Potential $V(\Psi)$ obtained from homogeneous black brane solutions \rightarrow Extract S-curve $\Lambda(\Psi)$; integrate
- Kinetic term $Z(\Psi)$ obtained by fluctuations around homogeneous solutions
	- \rightarrow Γ[Ψ] generates 1PI n-pt functions
	- \rightarrow 2-pt function to order k^2 gives $Z(\Psi)$

Example in a simple toy model

Bottom-up 5D gravity-scalar theory:

$$
S = \frac{1}{2} \int d^5 x \sqrt{-g} \left\{ R - \left(\partial_\mu \phi \right)^2 + \frac{12}{L^2} - m^2 \phi^2 \right\}
$$

Choose m^2 such that dimension of dual operator $\boldsymbol{\varPsi}$ is 4/3

Multi-trace deformations

The dual operator Ψ is a **dimension 4/3 single trace operator**.

We can deform the original CFT by *multi-trace* operators:

$$
S_{CFT} \rightarrow S_{CFT} + \int d^4x \left\{ \Lambda \Psi + \frac{f}{2} \Psi^2 + \frac{g}{3} \Psi^3 \right\}
$$

- Easy in holography: changing boundary conditions in AdS
- Easy in field theory: Simple modification of effective action $\Gamma[\Psi]\to\Gamma[\Psi]+Λ\Psi$ + \int 2 Ψ^2 + \overline{g} 3 Ψ^3

Dim-4/3 theory – results

Multi-trace deformations provide *knobs* which can induce a first order PT!

Gravitational waves!

- In our model, we compute all quasi-equilibrium GW parameters
- Use phenomenological relationship (from other holographic works) to estimate wall speed
- Use (improved) LISA cosmology working group model to find GW power spectrum \rightarrow
- Detectable signal for small Λ and "large" g

Alternatives to bubble nucleation

Other ways to transition

If bubble nucleation suppressed (as is the case for $N \to \infty$)

 \rightarrow reach spinodal point

…then what?

Option 1: Spinodal decomposition

- As energy is removed, system enters unstable branch
- Temperature will start to increase
- Field perched on local maximum of effective potential
- Long-wavelength instability

See e.g. Attems et al. 1905.12544

Option 2: "Forced cooling"

What if system is *forced* to continue cooling down?

E.g. when "PT sector" is in equilibrium with larger system which cools down.

 \rightarrow Effective potential "tilts over", field rolls down to true vacuum

Not discussed in the literature?

Option 2: "Forced cooling"

What if system is *forced* to continue cooling down?

- E.g. when "PT sector" is in equilibrium with larger system which cools down.
- \rightarrow Can implement this in holography with similar multitrace model as earlier, in *probe limit*
- →Preliminary results…

Summary

- 1st order PTs appear in all branches of physics (in particular: gravity, cosmology…)
- Typically proceed through bubble nucleation \rightarrow In holography, can treat "easily" (no PDEs) by computing QFT effective action in derivative expansion
- Alternatively, one can transition through... \rightarrow Spinodal decomposition (old) \rightarrow "Forced cooling" (new?)

In the works…

- Compute bubble solutions on gravity side; compare with effective action
- Use effective action approach to find other non-trivial solutions?
- "Easy" method to compute wall speeds from holography? (Also: Bea et al. '21, Bigazzi et al. '21, Henriksson '22, Janik et al. '22)
- Alternative ways to complete transition \rightarrow results \rightarrow useful/relevant for anything???

